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SUMMARY 
 

For complex problems in engineering, analytical solutions are difficult and often impossible to obtain. Use must then be made of numerical 

methods of solution for the determination of approximate solutions that can be used in engineering practice. It must be kept in mind, however, 

that even the mathematical idealization of an engineering system is in itself an approximate representation of reality.  

 

A numerical method is either of the differential or integral type, depending on whether the analysis precedes or follows integration of the 

governing differential equation of the problem at hand. The most widely known and used method at present in structural mechanics is the Finite 

Element Method (FEM), with the Finite Difference Method (FDM) being popular in fluid mechanics. The latter method replaces the governing 

differential equation by a system of algebraic equations valid at a set of nodes (or nodal points) within the domain of interest, through an 

approximation of the derivatives by finite differences. The former method replaces the domain itself by a set of sub-domains (known as 

elements) and then approximates the behavior of the field variable(s) within each element. The elements are interconnected at the nodes and 

comprise the entire domain.  

 

The Boundary Element Method (BEM) is in essence a numerical integration of integral equation representations of the governing differential 

equations. There is an intermediate step, however, whereby the integral equation is reformulated so that actual boundary-value problems can be 

solved, a process that results in what is known as Boundary Integral Equation (BIE) formulations. In many cases, the BEM requires a surface-

only discretization of the problem at hand, in contrast to both FEM and FDM that require full domain discretizations. Finally, from a 

chronological point of view, the FDM predates all, with FEM and BEM developments dating from the 1960’s and 1980’s, respectively. 

 



 

Of course, hybrid numerical schemes are possible through combinations of the three basic classes of methods previously mentioned, not to 

mention other possibilities such as the finite strip method, meshless methods, etc. The question of which numerical approach is best for a given 

problem is, in many ways, an open question to be answered by engineers on the basis of professional experience. 

 

In this brief, introductory-type treatise, we will present the basic concepts underlying the BEM and show how it can be applied in two important 

fields, namely potential problems and elastostatics. Of course, in this last quarter-century, the BEM has been used across the entire spectrum of 

engineering science (e.g., structural mechanics, fluid mechanics, wave propagation, electromagnetic theory, acoustics, fracture mechanics, 

corrosion, etc.), as can be ascertained by perusing through books on the BEM that have appeared in recent years. 



 

1. INTRODUCTION 
 

1.1 Brief Review of the Literature 
 

The theory behind integral equations was developed by Fredholm (1903), while applications followed later in potential theory (Kellogg, 1929) 

and elastostatics (Muskhelishvili, 1953; Kupradze, 1965). A comprehensive treatise on the theory of singular integral equations is that of 

Mikhlin (1965), while the numerical treatment of integral equations was elaborated later on in books such those by Baker (1977) and Delves and 

Mohamed (1992). 

 

The earliest numerical methods for the solution of engineering problems based on integral equations are attributed to Trefftz (1926) and to 

Prager (1928). It was only after the introduction of the electronic computer as a computational tool in the mid-1950’s that a new impetus was 

given to the subject of computational methods. Specifically, we have the emergence of boundary integral methods in potential theory (Smith and 

Pierce, 1958; Hess, 1962; Jawson, 1963; Symm, 1963), in acoustics (Friedman and Shaw, 1962; Banaugh and Goldsmith, 1963), and in 

elastostatics (Massonnet, 1965; Oliveira, 1968). At about the same time, boundary integral methods of the direct type, which were extremely 

well suited for the solution of boundary value problems (BVP), were introduced in two-dimensional (2D) and three-dimensional (3D) 

elastostatics by Rizzo (1967) and Cruse (1969), respectively, and in transient elastodynamics by Cruse and Rizzo (1968). Also, the relation 

between integral methods and the general weighed residual statement was identified by Zienkiewicz et al. (1977) and by Brebbia (1980). 

 

 

 



 

Numerous articles have since appeared on the use of numerical methods based on boundary integral equation formulations in all fields of 

engineering science such as potential theory, potential fluid flow, acoustics, torsion, electric and magnetic field theories, elastostatics, 

elastodynamics, plates and shells, heat conduction, viscoelasticity, thermoelasticity, fracture mechanics, plasticity, water waves, viscous flow, 

ground water flow, corrosion, contact problems, coupled-field problems, etc., as can be surmised by looking through a number of textbooks that 

have appeared in the last twenty years or so (Jawson and Symm, 1977; Liggett and Liu, 1983; Brebbia et al., 1984; Beskos, 1987; Manolis and 

Beskos, 1988; Brebbia and Dominguez, 1989; Beskos, 1991; Antes and Panayiotopoulos, 1992; Pozrikidis, 1992; Dominguez, 1993; Kane, 

1994; Banerjee, 1994; Melnikov, 1995; Canas and Paris, 1997; Sladek and Sladek, 1998; Bonnet, 1999). 



 

 

1.2 Development of the BEM 
 

Using BEM, a problem is formulated in terms of integral equations relating boundary values and solution is then found numerically. If values in 

the interior domain are needed, they can be calculated from the boundary data. Thus, the dimension of the problem at hand is reduced by one, 

while the resulting system of algebraic equations is invariably smaller in size compared to similar systems obtained from use of the FEM or the 

FDM. Only in certain cases (e.g., nonlinearities, inhomogeneities, certain types of body forces) does the BEM require discretization of the 

interior domain. There are two basic categories of BEM, namely indirect and direct. In the former case, which is also known as the source 

method, the boundary integral formulation is accomplished in terms of fictitious source densities from which the physical quantities of the 

problem can be recovered. In the latter case, the boundary integral formulation is accomplished in terms of physical quantities such as potentials, 

fluxes, displacements, etc., which are computed directly without use of intermediate steps. 

 

Fredholm (1903) established the existence of integral equation solutions to potential problems on the basis of a limiting discretization procedure 

and identified the Fredholm integral equations (FIE) of the first, second and third type. The first application of a direct BEM was in fluid 

mechanics (and specifically for the axisymmetric jet problem) by Trefftz (1926), who used the method of successive approximations to satisfy 

his integral equation. Prager (1928) examined doubly symmetric potential flow past an elliptic cylinder using a direct-type boundary integral 

formulation, and subsequently divided the surface of the problem into elements, thus reducing the integral equations into a system of algebraic 

equations.  

 



 

It appears that boundary integral techniques were well known by the 1950’s, but were not popular due to high computational effort. Among the 

first to use the electronic computer to solve axisymmetric potential fluid flow problems were Smith and Pierce (1958). Martensen (1959) 

extended Prager’s method to 2D fluid flow problems, while Hess and Smith (1964) solved 3D potential fluid flow problems using an indirect 

BEM called the panel method because the surface of the body in question was discretized into flat quadrilateral elements. At about the same 

time, Jawson (1963) and Symm (1963) presented a numerical technique for solving Fredholm integral equations of the first kind resulting from 

use of the indirect BEM in 2D potential problems. They also presented a direct BEM based on Green’s third identity, which was capable of 

relating in integral form the physical quantities of the general mixed BVP. 

 

 

Since the mid-1960’s, a number of both direct and indirect BEM formulations for elastostatic problems have appeared. The most notable of these 

is the direct formulation of Rizzo (1967) relating boundary displacements and tractions, which allowed for the solution of general, mixed-BVP. 

The early 1970’s witnessed an extension of the BEM to other engineering fields, the introduction of higher–order elements which brought about 

significantly improved accuracy and efficiency, as well as the coupling of the BEM with other methods such as the FEM in an effort to exploit 

the best features of different numerical techniques. Nowadays, the BEM and has become an established computational tool whose efficiency for 

certain categories of problems is well known and complements the most popular method to date, namely the FEM. 



 

 

1.3 Mathematical Background 
 

Green’s second theorem relates two C2–continuous functions u and v, defined over a finite and simply connected domain V with a regular 

surface S as 

 

 ( )2 2

V S

dv duu v v u dV u v dS
dn dn

⎛ ⎞∇ − ∇ = −⎜ ⎟
⎝ ⎠∫ ∫  (1.1) 

 

Although the above equation is nothing more than a reciprocal relationship between u and v, it nevertheless forms the basis of the direct BEM. 

 

Fredholm’s integral equations (FIE) of the first and second kind are respectively defined as 

 

 ( ) ( ) ( ) )(, xvdSxKu
S

=∫ ξξξ  (1.2) 

and 

 ( ) ( ) ( ) ( ) ( )xvdSxKuxu
S

=− ∫ ξξξ ,  (1.3) 

 

with K a known kernel function and u, v being the unknown and known functions. 



 

The Fredholm alternatives are as follows: 

 

Theorem 1: Either Eqn. (1.3) has one, and only one, solution for every function v, or the corresponding homogeneous equation (v = 0) has at 

least one non-trivial solution ( )0≠u . 

 

Theorem 2: If the first alternative holds, then the next alternative also holds for the adjoint equation 

 

 ( ) ( ) ( ) ( ) ( )xvdSxKuxu
S

=− ∫ ξξξ ,  (1.4) 

 

For either alternative, the corresponding homogeneous equation and its adjoint have the same finite number of linearly independent solutions.  

 

Theorem 3: In case of the second alternative, a necessary and sufficient condition for the existence of a solution for Eqn. (1.3) is that  

  

 ( ) ( ) ( ) 0
S

v u dSξ ξ ξ =∫  (1.5) 

 

where ( )ξu  is any solution of Eqn. (1.4). The above three theorems can be used to prove existence and uniqueness of solution for the classical 

Dirichlet and Neumann BVP of potential theory. 

 



 

Despite the fact that Eqn. (1.2) looks simpler than Eqn. (1.3), it was only recently that its proper theoretical background was established. In 2D, 

Muskhelishvili (1953) proved the following theorem: 

 

Theorem: Either equation 

 ( ) ( ) 1||ln =−∫ ξξξ dSxu
S

 (1.6) 

or equation  

 ( ) ( ) 0||ln =−∫ ξξξ dSxu
S

 (1.7) 

 

has a solution for any smooth contour S. This theorem can then be used to establish existence and uniqueness of solutions for Eqn. (1.2) in 2D. 

 

 

 

 

 

 

 

 

 



 

The kernel function K(x, ξ) is singular if 

 

 ( ) ( )lim , , 0ar x K xξ ξ →    as xξ →  (1.8) 

                                                       

where r is the radial distance between points ξ and x, while a is a real number. As example, a kernel in 3D potential theory is 1
1

−∗ == ruK  and 

its derivative is dnduK /2
∗= , i.e.,  

 

 ( )
dn
dr

rdn
dr

dr
rd

dn
dr

dr
du

dn
duK 2

1

2
1

−====
−∗∗

 (1.9) 

 

where n  is the outward pointing normal vector at ξ. For K2 and a = 2, Eqn. (1.8) reduces to 

  

 ( )
( )
,

lim 0x

dr x
dnξ

ξ
ξ→ →  (1.10) 

 

Thus, kernels ∗u and dndu /∗  for 3D potential problems are singular, which means the Fredholm theorems apply. 



 

 
 

 

 

Figure 1: Geometry of a continuous body with volume V and surface S 



 

1.4 Advantages / Disadvantages of the BEM 
 

(a) It is a numerical technique founded on a firm mathematical basis and is therefore applicable to a wide range of problems in engineering. 

(b) It usually requires surface discretization only, which reduces the dimensionality of the problem at hand by one.     

(c) The method is capable of yielding a high degree of accuracy, since the underlying integral equation is an exact statement of the problem at 

hand. Approximations are introduced at the second stage, i.e., when the surface of the problem is discretized. 

(d) The fundamental singular solutions (or Green’s functions) used in the BEM satisfy radiation-type boundary conditions. As a result, infinite 

or semi-infinite domains can be treated without the artificial boundaries introduced in the FEM and the FDM. 

(e) Values of the unknowns at points inside the domain can be selectively found from the boundary solution. 

(f) The BEM can be used to construct influence matrices for large homogeneous regions or regions containing semi-infinite boundaries (super 

elements), which in turn can be incorporated within FEM analyses. 

   

(a) The BEM generates non-symmetric, fully populated influence matrices. This is in contrast to the FEM, which generates symmetric and 

sparse influence matrices. The order of the BEM influence matrices, however much smaller than that of those generated by the FEM. 

(b) For certain classes of problems, it is either very difficult or impossible to obtain the appropriate fundamental solutions. It is also possible that 

the fundamental solution is an approximate one, or is known in discrete form only, thus giving rise to rather inefficient computational schemes. 

(c) The BEM is inefficient as compared to the FEM for problems where one spatial direction is small compared to the remaining ones, and for 

problems with rapidly varying material properties. 

(d) The presence of known distributed body forces in linear problems or pseudo-incremental body forces in nonlinear problems requires volume 
integrals, which in turn necessitate internal domain discretization. 



 

2. INTEGRAL EQUATION FORMULATIONS 
  

Consider the non-homogeneous partial differential equation (PDE) 

 

 ( ){ } ( )xgxuL =  (2.1) 

 

in volume V, where ( )xu  is the dependent variable and ( )xg  is the forcing function. We first consider the homogeneous (g = 0) version of the 

PDE and define the inner product  

 

 ( ){ } ( ),Lu w L u x w x dV= ∫∫∫  (2.2) 

 

where ( )xw  is an arbitrary function to be chosen. Successive integrations by parts yields the following statement: 

 

 ( ) ( ) ( ) ( ) ( ){ } ( ) dVwuLdSuNwMuMwNwdVuL ∫∫∫∫∫∫∫∫ ∗∗∗ +−=  (2.3) 

 

 

 



 

In the above, N and M are differential operators resulting from the integrations and the asterisc superscripts denotes the adjoint operator. If a 

differential operator has the property that ,LL =∗  then it is said to be self-adjoint. Self-adjointness in an operator is analogous to symmetry in a 

matrix, and results in ,NN =∗ MM =∗ . Also, the above integration process results in two types of boundary conditions, essential (or 

kinematic) and non-essential (or natural), which are respectively defined as M(u) on the S1 part of the surface and N(u) on the remaining S2 part. 

The presence of the forcing function in the PDE results in a term ( )gL w dV∗∫∫∫  on the right hand side (RHS) of Eqn. (2.3) that remains 

unaltered, unless ( )xg  has a special form. The development that follows is limited to self-adjoint, positive definite operators (i.e., <Lu, u> >0 if 

0≠u  and = 0 if u = 0). 

 

 

 

 

 

 

 

 

 

 

 



 

We will focus here on the Laplacian 2∇ , which is a self-adjoint, positive definite operator. The form that equivalent to Eqn. (2.3) is nothing 

more than Green’s identity, i.e., 

 

 ( ) dS
n
wuw

n
udVuwwu ∫∫∫∫∫ ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=∇−∇ 22  (2.4) 

 

The above statement is not as useful as it first seems for the construction of integral equation statements, because of the presence of the volume 

term ∫∫∫ ∇ .2wdVu  The level of effort needed to dispose of this term is comparable to solving the original equation, i.e., to set 02 =∇ w  and then 

find w. As a result, recourse is made to the method of weighted residuals (MWR). In its most general form, the MWR for Laplace’s equation 

with a non-zero forcing function is (Brebbia et al., 1984) 

 

 ( ) ( ) ( ) ( ) 0~~~~
21

2 →−+
∂
∂

−+−∇= ∫∫∫∫∫ ∫∫ dSwqqdS
n
wuuwdVguuR  (2.5) 

 

as uu →~ . The above equation implies that three types of errors are minimized as we seek the solution ( ),xu  namely the error committed in (a) 

satisfying the differential operator ,02 =−∇ gu  (b) satisfying the kinematic boundary conditions u  on S1, and (c) satisfying the natural 

boundary conditions q  on S2. Although the above formulation is meant for 3D problems, it is possible to construct a 2D counterpart, with the 

volume and surface integrals respectively replaced by surface and line integrals.  



 

A number of approximate techniques result from the general MWR statement of Eqn. (2.5), depending on the choice of the weighting function w 

and on the boundary conditions that u~  and w have to satisfy. The variant of the MWR where u~  and w are the same function is called Galerkin’s 

method (or, more appropriately, the MWR with Galerkin’s criterion). It is very commonly used in deriving FEM formulations, and exclusively 

so in the absence of a functional whose Lagrange-Euler equation is the original differential equation, in which case a variational technique can 

be employed (Zienkiewicz, 1977). In retrospect, the novelty behind the FEM was in satisfying Eqn. (2.5) on an element-to-element basis rather 

than on the entire domain of definition of the problem. This considerably simplifies the choice of representations for u~ (usually as a summation 

of known basis function Φi with unknown constants ai to be determined) and tremendously improves the accuracy of the method. The volume 

integral in Eqn. (2.5) cannot be avoided and actually gives rise to the so-called system matrix. Although the FDM is based the concept of 

defining a series of nodes at which a discrete version of the differential operator is satisfied in an average sense, it is possible to derive FDM 

formulations using the MWR over sub-regions with the weighting function expressed in terms of Dirac delta functions (Brebbia et al., 1984). 

 

 

 

 

 

 

 

 



 

The power behind the direct BEM approaches is in dispensing with the volume integral of Eqn. (2.5) by identifying the weighting function with 

a generalized Green’s function of the differential operator. Double integration by parts of the term ( )∫∫∫ ∇ wdVu~2  results, upon re-arrangement, 

in the following expression: 

 

( ) ∫∫∫∫∫∫∫∫∫∫∫∫∫∫ +−−
∂
∂

+
∂
∂

=∇ gwdVwdSqwdSqdS
n
wudS

n
wudVuw 2121

2 ~~~  (2.6) 

 

By identifying w as the solution of πδ42 −=∇ w  and under homogeneous (radiation type) boundary conditions, the volume integral on the left 

hand side simply becomes .~4 uπ−  In case where ,0=g  then Eqn. (2.6) involves only boundary terms. If not, then the volume term is 

unavoidable, unless special forms of g are present, which allow a further reduction into surface integrals. Once Eqn. (2.6) becomes a boundary 

integral equation following the path previously mentioned, then the unknown boundary quantities u~  and q~  can be solved in terms of the 

boundary conditions u  and q . Substitution in the original integral equation statement gives values of the potential at any desired location within 

the volume. 

 

 

 

 

 



 

The Trefftz (1926) method is an early version of the direct BEM whereby u = w. Going back to the original Green’s identity given in Eqn. (2.4) 

and imposing the boundary conditions gives 

 

 2121 dS
n
uudS

n
uuudSqdSuq

∂
∂

+
∂
∂

=+ ∫∫∫∫ ∫∫∫∫  (2.7) 

 

This can now be used for solution of the dependent variables of the problem u, q in terms of the prescribed boundary conditions. There are 

finally two additional methods for deriving boundary integral equation-based formulations. The first is the indirect BEM, which is based on 

physical insight regarding the differential operator at hand. The other is a variant of the direct BIEM technique that is based on a reciprocal 

relationship (if available) that relates two distinct fields, one of which is the solution sought while the other is identified with the generalized 

Green’s function. An example from elastostatics is Somigliana’s identity, which is based on the reciprocal work concept. 

 

 

 

 

 

 



 

3.  THE BEM IN POTENTIAL PROBLEMS 

 

3.1. Potential Theory 
 

Consider a 2C  function ( )xpp =  satisfying Laplace’s equation  

 

 ( ) ( ) 0
2

2 =
∂∂
∂

=∇ xp
xx

xp
ii

 (3.1) 

 

in the 3D, simply connected domain V of Fig. 1, bounded by a closed smooth surface S with the following boundary conditions (BC): 

 

 ( ) ( )xpxp =      on    1S  (3.2) 

 

 ( ) ( ) ( )xfnxp
n
xp

=⋅∇=
∂

∂    on   2S  (3.3) 

In the above, n  is the outward pointing, unit normal vector on .21USSS = Mixed BC are of the Cauchy-type that combine both Dirichlet and 

Neumann BC, as given by Eqn. (3.2) and Eqn. (3.3), respectively. Function ( )xp  is called harmonic if it is continuous in V and S, C2 

differentiable in V and satisfies Laplace’s equation. 



 

One special case in potential theory arises for a mass distribution with density ( )xρ  in V, whereby the attractive forces create a volume potential 

of the type 

 

 ( ) ( ) ( ) ( )ξ
ξ

ξρρ dV
xr

x
V ,

1
∫=  (3.4) 

 

If there is a mass distribution of density ( )xμ  on S, the attractive forces create a surface (single–layer) potential of the type 

 

 ( ) ( ) ( ) ( )Ξ
Ξ

Ξ= ∫ dS
xr

x
S ,

1μρ  (3.5) 

 

The potential obtained by taking the limit of two single layer potentials of opposite sign, which coincide in the limit, is called a double–layer 

potential and has the form 

 

 ( ) ( ) ( ) ( ) ( )Ξ
ΞΞ

Ξ= ∫ dS
xrdn

dx
S ,

1λρ  (3.6) 

 

where ( )Ξλ  is the new surface density. 

 



 

Potential functions (3.4)-(3.6) are defined in a 3D space. In 2D, the ln(r) replaces the 1/r function, while V and S are replaced by surface S and 

contour C, respectively. It can be shown that any harmonic function can be expressed as a potential distribution and vice-versa. 

 

Equations (3.5) and (3.6) contain singularities in their integrand as ( )Ξ,xr  approaches zero, i.e., as Ξ→Χ→x  from inside V in the direction of 

n (see Fig. 2). Consider the former case first; through a limiting procedure we have that 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ξ
Ξ

Ξ+Ξ
Ξ

Ξ= ∫ ∫
−

→

e eSS S

dS
xr

dS
xr

xp
,
1

,
1lim 0 μμε     (3.7) 

 

It is clear that the integral over εSS −  is continuous as .0→ε  The integral over εS  contains a weak singularity and is also continuous as 

0→ε , provided that density μ remains bounded at all points along S. Next, consider Eqn. (3.6), where again through the same limiting 

procedure we obtain 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ξ
ΞΞ

Ξ+Ξ
ΞΞ

Ξ= ∫ ∫
−

→

e eSS S

dS
xrdn

ddS
xrdn

dxp
,
1

,
1lim 0 λλε        (3.8) 

 



 

 
Figure 2: Source-receiver configuration as field point x approaches the surface S 
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Figure 3: Details of the volume of exclusion on the surface for singularity integration as source and receiver points coalesce



 

Once more the integral over εSS −  remains continuous as 0→ε , since .0≠r  The integral over εS , however, contains a strong singularity that can be 

written as 

 

 ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( )Ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΞΞ

+Ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΞΞ

−Ξ ∫∫ dS
xrdn

dxdS
xrdn

dx
SS ,

1
,
1

εε

λλλ  (3.9) 

 

If density λ is continuous on S, then the first integral in Eqn. (3.9) vanishes as 0→ε . We now look at εS  in greater detail, as shown in Fig.3. 

For the second integral, we have that 

 

 ∫ ∫ ∫ =⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

ε ε ε

λλλ
S S S

dS
r
a

r
dS

dn
dr

rdr
d

rdn
d

2

111  

∫ ∫ ∫ ∫
+

⎟
⎠
⎞

⎜
⎝
⎛ −==−=−=−

π β ε ε
ε

ε
πλπλπλπλθββλ

2

0 0
233

22

12|222
a

a a
a

a
r
adr

r
ardr

r
add

r
a      (3.10) 

 

In the limit as ,0→ε 0→a  and the above result is equal to .2πλ− . If x  approaches X  from outside, then radndr // −=  and the limiting 

process gives .2πλ+ . Thus, the 3D double layer potential has a discontinuity or jump of 

 

 ( ) ( ) ( ) ( )( ) ( )XXXXpXp πλπλπλ 422 −=−−−=− −+  (3.11) 

 



 

These concepts are valid for 2D problems as well, where the kernel function is ln(r). The discontinuity or jump term here is equal to ( ).2 xπλ−  

In sum, we see that for Xx → , the single-layer and double-layer surface potentials given in eqs (3.7) and (3.8) become  

 

 ( ) ( ) ( ) ( )Ξ
Ξ

Ξ= ∫ dS
Xr

Xp
S ,

1μ  (3.12) 

 ( ) ( ) ( ) ( ) ( ) ( )Ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΞΞ

Ξ+−= ∫ dS
Xrdn

dXXp
S ,

14 λπλ  (3.13) 

 

The kernel functions appearing above are the fundamental solutions ( )ξ,xu  of Laplace’s equation for a point force, i.e.,  

 

 ( ) ( )ξδξ ,,2 xxu −=∇  (3.14) 

 

with δ being the Dirac (or generalized) delta function with the following properties: 

 

 ( ) andxforx ξξδ ≠= 0, ( ) ( ) ( ) ( )∫ =
V

xdVx ρξξδξρ ,  (3.15) 

 

Specifically, the fundamental solutions are ( ) ( ) ( )ξπξ ,4/1, xrxu =  in 3D, while ( ) ( ) ( )( )ξπξ ,/1ln2/1, xrxu =  in 2D. 

 



 

Applications of potential theory include the following areas:  

(a) Gravitational force field, where ρ  is the gravitational potential and ρ∇=f  is the gravitational force. 

(b) Potential fluid flow, where ρφ =  is the velocity potential and φ∇=v  is the velocity for steady-state irrotational flow of an ideal fluid.  

(c) Groundwater flow, where p is the piezometric head and ρ∇−= kv  (k the soil permeability) is the fluid velocity. 

(d) Heat conduction, where pT =  is the temperature and Tch ∇=  (c the thermal conductivity) is the heat flux. 

(e) Electric current flow, where U = p is the electrical potential and ui ∇−= σ  (σ  the electrical conductivity) is the electrical current flux. 

(f) Magnetic field induced by current flow, where A  is the magnetic vector potential satisfying Poisson’s vector equation ,2 iA μ−=∇ withμ  

the magnetic permeability. The magnetic induction field vector is .AxB ∇=  

(g) Torsion of shafts, with ρφ =  is the warping function and ,, 211211 xxuxxu θθ =−=  ( )213 , xxu θφ=  is the displacement field. Furthermore, 

3x  is the longitudinal axis of the shaft and θ its angle of twist per unit length. 



 

3.2 Indirect BEM Formulation 
 

For the Cauchy problem involving mixed BC and defined by eqs (3.1)–(3.3), one can express ( )xp  as a single–layer potential in the form 

 

 ( ) ( ) ( ) ( ) CdSxuxp
S

+ΞΞΞ= ∫ ,σ  (3.16) 

 

where σ is the unknown source density and C is a constant to insure uniqueness of solution. If C is omitted, then the supplementary integral 

condition ( ) ( ) 0=ΞΞ∫ dS
S

σ  is needed to enforce uniqueness. Through differentiation in the normal direction n, we have 

 

 ( ) ( ) ( ) ( )ΞΞΞ= ∫ dSxu
dn
dxf

S

,σ  (3.17) 

 
The limiting expressions for eqs (3.16) and (3.18) as Xx →  take the form 

 

 ( ) ( ) ( ) ( ) CdSXuXp
S

+ΞΞΞ= ∫ ,σ  (3.18) 

 

 ( ) ( ) ( ) ( ) ( )ΞΞΞ+−= ∫ dSXu
dn
dXXf

S

,
2
1 σσ  (3.19) 



 

Note that the fundamental solution has a factor of 4π in the denominator and that the limiting procedure involving εS  takes place only from 

inside V to S, thus giving half the total jump factor. Using Eqn. (3.18) for 1SX ∈  and Eqn. (3.19) for 2SX ∈  allows the source density σ to 

be expressed in terms of the BC. Then, the former equation is solved for 2SX ∈  giving the unknown p, while the latter equation is solved for 

1SX ∈  giving the unknown f. 

 

The Dirichlet and Neumann types of problems are special cases of the Cauchy problem. It is also possible to express ( )xp  as a double–layer 

potential of unknown source density, in which case the solution to the Direchlet problem exists and is unique. For the Neumann problem, a 

sufficient condition for existence of solution of Eqn. (3.19) is that ( ) ( ) 0=ΞΞ∫ dSf
S

. 



 

 

3.3 Direct BEM Formulation 
 

The direct BEM employs physical, rather than fictitious, quantities in the formulation. Here we start with Green’s second theorem, although 

other approaches such as the MWR are also possible. We let ( )ξ,xuu =  be the first fundamental solution, while 

( ) ( ) ( )ξξ ,/,/ xuxnxunu n=∂∂=∂∂  is the second fundamental solution. In addition, ( )xpv =   and   ( ) ( ) ( ).// xfxnxpnv =∂∂=∂∂  Thus,  

 

                 ( ) ( ) ( ) ( ) ( ) ∫∫∫∫ =∇+=∇+=∇−∇
VVVV

pdVuppdVudVxxpdVuppu 2222 , ξξξδ  

  ( ) ( ) ( ) ( ){ } ( )xdSxuxpxfxu
S

n∫ −= ξξ ,,  (3.20) 

 

which is known as Green’s third identity. If ξ  lies outside V, then ( ) .0=ξp  Taking the limit as Ξ→ξ  , gives the following BIE: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )XdSXfXuXdSXpXup
SS

n Ξ=Ξ+Ξ ∫∫ ,,5.0  (3.21) 

 

For non-smooth boundaries, the jump term is ( )Ξc  and depends on the local curvature. 

 



 

In solving the Cauchy problem, Eqn. (3.21) is written for 1S∈Ξ , then for 2S∈Ξ  and finally the surface integrals are also broken into S1 

and S2 parts. This allows for determination of p on S2 and for f on S1 in terms of the BC. Subsequently, Eqn. (3.21) can be used to determine p in 

the interior V. If  f  is also desired in the interior, then differentiation of Eqn. (3.21) in the form ( ) ( ) ( )ξξξ dndpf /=   yields 

 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2, ,
S

d df f X u X p X u X dS X
dn dn

ξ ξ ξ
⎧ ⎫

= −⎨ ⎬
⎩ ⎭
∫  (3.22) 

 

that can be used for that purpose. Finally, if use of the direct BEM gives rise to Fredholm integral equations of the first kind, then problems of 

non-uniqueness arise and are treated in the same way as in the indirect BEM. 



 

Table 1: Boundary Integral Equation Formulations in Potential Theory 
_____________________________________________________________________ 
The Single-Layer Potential:  

 
 ( ) ( ) ( ) ( )ξξξρ dSxGxu ,∫∫=   

 ( ) ( ) ( ) ( ) ( ) ( )ξξ
ξρρ dS

n
xG

xxcxq
x∂

∂
+−= ∫∫

,
  

 
For Dirichlet BC, the first equation is a FIE of the 1st kind in terms of ρ. 
For Neumann BC, the second equation is a FIE of the 2nd kind in terms ρ. 
_____________________________________________________________________ 
The Double-layer Potential:  
 

 ( ) ( ) ( ) ( ) ( ) ( )ξξ
ξμμ

ξ

dS
n

xG
xxcxu

∂

∂
+−= ∫∫

,
  

 
For Dirichlet BC, we have a FIE of the 2nd kind in terms of μ.  
For Neumann BC, the equation is hypersingular. 
_____________________________________________________________________ 
Direct Formulation by MWR: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ξξξξ
ξ

ξ dSxGqdS
n

xG
uxuxc

x

,
,

∫∫∫∫ =
∂

∂
+   

 
For Dirichlet BC, we have a FIE of the 1st kind for q. 
For Neumann BC, we have a FIE of the 2nd kind for u. 
 



 

_____________________________________________________________________ 
Fundamental Solutions: 

 
For 3D problems, the fundamental solution corresponding to a point source of unit strength is  

 ( ) ( )xr
xG

,
1,
ξ

ξ =   and  ( ) π2=xc   

while for 2D problems,  

 ( ) ( )xr
xG

,
1ln,
ξ

ξ =   and  ( ) π=xc   

Note: For Poisson’s equation, the volume integral ( ) ( ) ( )zdVxzGzg ,∫∫∫  must be included in the RHS of all boundary integral equations. 
_____________________________________________________________________ 
Boundary Integral Equations for Solution in the Interior: 
 
(a) In all cases, the CPV in the integral involving the nG ∂∂ /  kernel is irrelevant. 
(b) In the indirect formulation, ( ) 0=xc . 
(c) In the direct formulation, ( ) π4=xc  for 3D and ( ) π2=xc  for 2D. 
_____________________________________________________________________ 
 



 

 

3.4 Numerical Implementation 
 

As a vehicle for illustrating the numerical implementation of the boundary integral equations derived in the previous section (which are 

summarized in Table 1), we will consider the 2D direct formulation given by Eqn. (3.21). At first, the surface of the problem (here the perimeter) 

is divided into a number of segments (boundary elements), each of which is described by series of nodes. Also, values of the potential )(xu and 

of the flux )(xq  are collocated at those same nodes (as in the case of isoparametric finite elements) or at any other set of nodes on the surface (as 

in the case of sub- or super- parametric finite elements). The simplest possible case is shown in Fig. 4(a) where straight–line elements are 

defined between two nodes on the surface and )(xu as well as )(xq are collocated at the centroid of each element to avoid creation of artificial 

corners. It is noted that up to this point, the BIE (3.21) is an exact statement for the solution of the corresponding BVP. 

 

By allowing the field point x  to sequentially coincide with all the collocation nodes, the following system of equations is generated: 

 

 ( ) ( ) ( ) ( )dSxGqdSxFuxuxc ij
S

j

N

jijj
S

N

jii

jj

,,)()(
11

ξξξξ ∫∫ ==
Σ=Σ+  (3.23) 

 

where i, j = 1,2…, N.  

 



 

We note that integration over the entire surface S has been broken down into integration over sub-surfaces jS , each corresponding to a boundary 

element j. It is also reminded that in the above equation, ( ) π=xc  since the element is a straight line. Also, ( ) ( )xrxG ,ln, ξξ −=  , while 

( ) ( ) ./,, xnxGxF ∂−∂= ξξ Next, the surface integrals can be evaluated using numerical quadrature, i.e., 

 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ijjikjk
K

kj
S

ijjij
S

j
FuxFwudSxFudSxFu

jj

=Σ==
=∫∫ ,,,
1

ηξξξξξξ  (3.24) 

 

and 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ijjikjk
K

kj
S

ijjij
S

j
GqxGwqdSxGqdSxGq

jj

=Σ==
=∫∫ ,,,

1
ηξξξξξξ  (3.25) 
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Figure 4: (a) Surface and (b) interior discretization of continuous body V with surface S 



 

In the above, the fact that both potential and flux remain constant over a boundary element has been taken into account. In terms of notation, η 

and w are the Gauss points and weights, respectively. The former are normalized, usually as ,10 ≤≤η  so that functional relationship can be 

written between ( )ii 21 ,ξξξ =  and η. Details on the derivation of Gaussian-type quadrature formulas can be found elsewhere (Stroud and Secrest, 

1966). If suffices to say here that the integrand is expanded in terms of a basis of orthogonal polynomials, whose zeros are the integration points, 

and the weights are found by integrating the polynomials over the normalized interval of interest. 

 

For nonsingular cases, ( )ξ=x , Gauss–Legendre quadrature is adequate since the use of K integration points exactly integrates a polynomial of 

degree 2K-1. For singular cases ( )ξ=x , however, the formulas in eqs (3.24) and (3.25) cannot be used because the integrand is discontinuous. 

For the mild singularity of kernel ( ) ,ln, rxG =ξ  it is possible to find special integration formulas, such as the log-weighted Gaussian quadature 

(Stroud and Secrest, 1966). If not, one uses the same approach as for the strongly singular kernel ( )xF ,ξ , whereby the Cauchy principal-value 

(CPV) definition dictates a subdivision of the boundary element in such a way so as to exclude the singularity. Ordinary Gaussian quadrature can 

then be used over each sub-element. Also, for simple enough kernels such as those encountered in potential problems and for straight-line 

boundary elements, the singular integrations can be performed analytically (Jawson and Symm, 1977). In all cases, the final result is the 

following system of linear algebraic equations: 

 

 ( ) jijji

N
jijjijji

N qGucF
1,1, ==

Σ=+Σ δ  (3.26) 

 



 

In the above, ijδ  is Kronecker’s delta, which is equal to unity if i = j and zero otherwise. In the general case of a non-smooth boundary, the jump 

terms jc  can be obtained by imposing a uniform potential to the problem in question, in which case the right hand side of Eqn. (3.26) is zero, 

thus allowing jc  to be obtained as the sum of all the off-diagonal terms of Fij. The above system of equations can now be re-ordered and solved 

for the N unknown values of the potential and flux in terms of the prescribed boundary conditions.  

 

Once the boundary-value problem has been solved, the interior version of Eqn. (3.23) with ( ) π2=jxc  can be used to find values for the 

potential in the interior ( ).Vxi ∈  The numerical process is the same, except that the kernels ( )xG ,ξ  and ( )xF ,ξ  need to be re-evaluated since 

radial distance ( )xr ,ξ  changes every time a new interior point is specified. 

 

In the case of Poisson’s equation, it is necessary to evaluate volume integrals of the form ( ) ( ) ( ),, zdVxzzg G∫∫∫  where ( )zg  is a prescribed 

forcing function. To that purpose, the volume area (in a two-dimensional problem) is discretized into cells, as shown in Fig. 4(b). Again, the 

simplest approach is to use triangles and/or quadrilaterals with collocation taking place at the centroid of each cell. For quadrilaterals, integration 

over each cell can be accomplished through double application of 1D Gauss-Legendre formulas, i.e,  

 

 ( ) ( ) ( ) ( ) ( ) ( )( )
1 1

, , , ,
j j

K L
j j j ji i ij k j kk

V V

g z G z x dV g z G z x dV g z w w G z xη η
= =

= = Σ Σ∫∫ ∫∫   (3.27) 

 

In the case of triangles, special quadrature formulas for triangular (or natural) coordinates can be found in the literature (Zienkiewicz, 1977). 



 

Nowadays, curved isoparametric boundary elements with higher order interpolation functions are commonly used in commericial BEM 

computer programs (Lachat and Watson, 1976). Also, cubic splines have been used to interpolate the field variable (the potential) and its 

derivatives over any type of element (Prenter, 1989). As an example, consider the quadratic boundary element of Fig. 5. The potential (and 

similarly the flux) is interpolated as 

 

 ( ) ( ) ( ) ( ) ( ) m
jmmjjjj

uuNuNuNu ηηηηξ ΝΣ=++=
=

3

1

3
3

2
2

1
1  (3.28) 

 

where the shape functions mΝ  are quadratic functions in η, i.e., 

 

 ( ),15.01 −=Ν ηη      ( )( )ηη +−=Ν 112 ,     ( )15.03 +=Ν ηη  (3.29) 

 

The same shape functions are used in mapping the three-noded element from the η-space, where it is a straight line, to the 2D space ( )21 , xx , 

where the shape varies as a quadratic function of the coordinates. The spatial coordinates are fitted through the element’s nodal values as 

( ) ( )
mmm

xxx ξηΝΣ==
=

3

121 , , while the length of the element is given by the determinant of the Jacobian transformation J, i.e., 

                                      ( ) ηηη
ηη
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d
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As a result, all integrations in Eqn. (3.23) can now be carried out as follows: 
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Figure 5: Line element in the physical (x1, x2 ) coordinate system and in the intrinsic coordinate system η 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1
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⎝ ⎠∫ ∫       (3.31) 

 

The same principles can be applied for area integrations, where isoparametric quadrilateral boundary elements, which are the 2D extensions of 

line elements, or triangular boundary elements, which are based on the concept of natural coordinates, can be used. As far as the numerical 

solution of 3D problems is concerned, the area elements discussed in the context of 2D problems are used for surface integrations, while for 

volume integrals use is made of brick and tetrahedral elements, which are the 3D extensions of quadrilaterals and triangles (Zienkiewicz, 1977). 



 

 

3.5 Numerical Example 
 

Consider the 2D steady-state temperature distribution in a circular cylinder of infinite extent (Brebbia et al., 1984). As shown in Fig. 6, the 

prescribed surface temperature across a cross-section of radius R is ( ) 0, TRrT == θ  for πθ ≤≤0  and equal to zero for .20 πθ ≤≤  The 

analytical solution involves solving Laplace’s equation in polar coordinates (r, θ) with T identified as u, and is given in terms of Fourier series: 

 

 ( ) ,...5,3,1,sin10.25.0/,
10 =⎟

⎠
⎞

⎜
⎝
⎛Σ+=

=

∞ nn
R
r

n
TrT

n

n
θ

π
θ  (3.32) 

 

The solution obtained by the BEM using two meshes, both composed of straight-line elements, along with the results of the analytical solution, 

are shown in Table 2 for eight internal nodes. The first and second meshes respectively consist of 24 and 48 equally spaced elements. The sign 

convention regarding the way the surface is traversed is CCW so as to keep the normal on the RHS of an observer. The first internal point is at 

the center of the cylinder, while the remaining seven are at r/R = 0.5 with a spacing of π/6 radians, starting from the 2x axis. Since there is a 

discontinuity in the surface temperature distribution at θ = 0 and π, the radial flux rTdnTq ∂∂=∂= //  at the surface will also have a 

discontinuity. This is reproduced in Fig. 7 for the first quadrant of the cylinder. 

 
 
 
 
 



 

 
Table 2: Temperature Distribution at Internal Points 

 
Location Analytical BEM-Mesh 1 BEM-Mesh 2

1 0.500 0.500 0.500 
2 0.795 0799 0.796 
3 0.773 0.776 0.774 
4 0.687 0.689 0.688 
5 0.500 0.500 0.500 
6 0.313 0.311 0.312 
7 0.227 0.224 0.226 
8 0.205 0.201 0.204 
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Figure 6: Circular cylindrical disc under constant surface temperature T0 on the upper boundary 
 



 

 
Figure 7: Radial flux q on the surface of the disc versus angle θ ( ___ = analytical solution, ••• = mesh no. 1, °°° = mesh no. 2) 



 

4. THE BEM IN ELASTOSTATICS 
 

4.1 Problem Statement 
 

Since many of the concepts regarding boundary integral equations for elastostatics are common with those employed in potential theory, the 

treatment here will be brief. First, the governing equation for elastostatics is the equilibrium statement involving the stresses σij written in terms 

of the displacement vector ( ),xu  i.e., 

  

 ( ) ( ) ( ) ( ) ( ) 0
21 ,,, =+

−
+=+ xbxuxuxbx ijijkkiijij ν

μμσ  (4.1) 

 

The above second order, partial differential equation system is known as Navier’s equations. We employ indicial notation with the summation 

convention implied for repeated indices. Furthermore, commas indicate partial differentiation with respect to the subscripts that follow. Finally, 

( )xb  is the body force, μ is the shear modulus and ν is Poisson’s ratio. 

 

 

 

 

 



 

The equations of equilibrium are accompanied by kinematic boundary conditions of the form 

 

 ( ) ( ) 1, Sxxuxu ii ∈=  (4.2) 

 

and by natural boundary conditions of the form 

 

 ( ) ( ) ( ) ( ) 2, Sxxtxnxxt ijiji ∈== σ   (4.3) 

 

where ti  are the surface tractions and jn  are components of the outward pointing, unit normal vector on S. 



 

 

4.2 Boundary Integral Equation Formulation 
 

We will restrict attention to the direct formulation, because it is for more common than indirect formulations. As with potential theory, it is 

possible to start with a weighted residual statement of the form (Brebbia et al., 1984) 

 

 ( ) ( ) ( ) ( ) dSuttdStuudVubuR i
S

iii
S

iiiijiji
***

,

21

~~~~ ∫∫∫∫∫∫∫ −+−−+= σ  (4.5) 

 

such that ( ) 0~ →iuR  as ,~
ii uu →  with *

iu  and *
it  being displacements and tractions corresponding to the weighting field. In elastostatics, 

however, it is more convenient to use the reciprocity relation  

 

 ∫∫∫∫∫∫ = dVdV ijijijij
** σεεσ  (4.6) 

 

which derives from the symmetry of the stress and strain (εij) tensors associated with two distinct equilibrium states. The un-starred state is the 

one for which a solution is sought, while the starred state can then be identified with the generalized Green’s function, i.e., with the solution of 

Eqn. (4.1) for a point body force of unit strength ( ) ( ) ,*
iexxb −= ξδ  where ie  is the unit vector. The boundary conditions here are of the 

radiation type, so that both ( ) jiji exGu ,ξ=∗  and ( ) jiji exFt ,ξ=∗  go to zero as .|| ∞→− xξ  



 

Integration by parts of both sides of the reciprocity relation and use of the equilibrium condition, along with the definition of small strains as 

( )ijjiij uu ,,5.0 +=ε , results in the reciprocal theorem of Betti, given below as 

 

 ∫∫∫ ∫∫∫∫∫ ∫∫ ∗∗∗∗ +=+ dStudVbudStudVbu iiiiiiii  (4.7) 

 

Further substitution of ( )xb∗  and of the fundamental solutions ∗∗
ii tu ,  gives Somigliana’s identity as follows: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )+−= ∫∫∫∫ ξξξξξξ dSuxFdStxGxu jijjiji ,,  

  ( ) ( ) ( )zdVzbxzG jij∫∫∫+ , ,   Vx∈  (4.8) 

 

The fundamental solution ijG  has the form (Rizzo, 1967) 

 

 ( ) ( ){ } ( ){ }rrrxG jiijij νπμδνξ −+−= 116/,,43,  (4.9) 

 

in 3D, where ( ) |,| xrr ξ=  and ( ) .//, rxxrr iiii −−=∂∂= ξ  The corresponding expression for ( )xFij ,ξ  can be found from processing solution ijG . 

 

 



 

This requires processing the displacement–strain relation and the elastic constitutive law ,kijkij C εσ =  with ijkC  the elasticity tensor: 

 

 ( )jkijikkijijkC δδδδμδδ
ν

μν
++

−
=

21
2  (4.10) 

 

Physically speaking, ( )xGij ,ξ  and ( )xFij ,ξ  respectively represent the displacement and tractions in the i-th direction at point ξ  corresponding to 

a unit force in the j-th direction acting at point x . 

 

As it stands, the Somigliana identity cannot be used for solving BVP. Instead, a boundary integral equation needs to be produced, by allowing 

point x  to ascend to the surface S through a limiting process. As with the potential problem case, kernel ( )xGij ,ξ  exhibits a mild (integrable) 

singularity of the form 1/r, while kernel ( )xFij ,ξ  exhibits a strong singularity of the form ( ) ( ),///1 nrrr ∂∂∂∂ necessitating a CPV interpretation 

of the corresponding integral. The relevant manipulations can be found in Rizzo (1967) and thus 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+=+ ∫∫∫∫ ξξξξξξ dStxGdSuxFxuxc jijjijjij ,,   

( ) ( ) ( ) SxzdVzbxzG jij ∈+ ∫∫∫ ,,  (4.11) 

 

where ( ) ijij xc δ5.0=  in the case of a smooth surface. 



 

 

4.3 Numerical Implementation 
 

As with the case of potential problems, numerical solution in elastostatics follows four basic steps: 

(a) The boundary S is discretized using surface elements, over which the displacements and tractions are interpolated using shape functions. 

Since we are now dealing with vector quantities, each component of u  and t  is interpolated in the way depicted by Eqn. (3.28). 

(b) Equation (4.11) is sequentially applied at each node ,1,...,2,1, Nixi =  where N1 is the total number of nodal points. The integrals over 

,2

1 j
N

j
SS

−
Σ=  where N2 is the total number of surface elements, are computed on an element-by-element basis using numerical quadrature. 

Again, special techniques must be used in conjunction with singular ( )x=ξ  cases. The final result is an N1xN1 system of linear algebraic 

equations like Eqn. (3.26) involving the boundary displacements and tractions. 

(c) Next, the appropriate boundary conditions are imposed, thus allowing solution of the unknown boundary values in terms of the prescribed 

ones. Standard matrix reduction techniques can be used at this stage. Also, if body forces are present, appropriate volume integration will 

produce a vector that is directly added to the known right-hand-side of the algebraic system of equations. 

(d) Once the boundary value problem has been solved, then Eqn. (4.8) can be used to obtain the displacement vector at selected interior points. 

Furthermore, Eqn. (4.8) can be manipulated to yield expressions for the strains and stresses at interior points. 

 

 

 

 



 

Two additional points that must be kept in mind are the following: 

(e) In the case of corners in the physical problem, the jump term ( )xc  is no longer equal to π in the boundary integral formulation of Eqn. (4.11), 

but depends on the solid angle (in three dimensions) or the planar angle (in two dimensions) that actually forms at x . In most numerical 

implementation schemes, this jump term is measured indirectly through summation of off-diagonal terms in the matrix resulting from the ijF  

kernel, which is a consequence of the concept of rigid-body motions (Lachat and Watson, 1976). 

(f) In the case of traction–prescribed only BVP, certain displacement components must be restrained to avoid rigid motions that do not produce 

any stresses in the body.  



 

 

4.4 Numerical Example 
 

As an example, consider the problem of stress concentration in a hollow circular cylinder of width w=5 in and height L=20 in containing a 

centered spherical cavity of radius R=a=3 in., as shown in Fig 8(a). This problem appears in Cruse and Wilson (1978). The cylinder has a 

Young’s modulus E=18.0 106 lb/in2 and a Poisson’s ratio v=0.3 and is subjected to a self-equilibrating uniaxial tension of σxx=10.0 103 lb/in2 

Due to symmetry, only one-quarter of the cylinder needs to be modeled in the BEM solution, as shown in Fig. 8(b). In particular, two elements 

(a triangle and a quadrilateral) are used to represent the surface of the cylinder, while four elements (two triangles and two quadrilaterals) are 

used to represent the surface of the sphere, resulting in a total 28 nodal points. Both these types of elements are of the isoparametric type and 

employ quadratic shape functions. Figure 9 depicts the numerically obtained stress concentration factor ( )( ) xxwRK σσ // 2
max 1−=  plotted 

against ratio a/w. Concurrently shown is an experimentally obtained curve, as well as the results from a simpler BEM solution using a total of six 

linear boundary elements. 
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Figure 8: (a) Circular cylinder of height L and width w containing a spherical cavity of radius R=a under uniform tension and 
(b) discretization of upper one-quarter of the cavity 



 

 
Figure 9: Stress concentration factor K versus dimensionless distance a/w  
( ___ = experimental results, ••• = linear boundary elements, °°° = quadratic boundary elements) 



 

5. THE BEM IN ELASTODYNAMICS 
 

5.1 Introduction 
 

Perhaps surprisingly, the use of integral equation formulations for the analysis of transient phenomena in solids and fluids is over one hundred 

years old, going back to the Helmholtz-Kirchhoff integral formula, which in turn is the mathematical interpretation of Hyugens’ principle (Baker 

and Copson, 1939). In a large number of cases, part of the boundary is at infinity, which makes the use of integral equation formulations all that 

more attractive, since they can account for the radiation condition (Morse and Feshbach, 1953; Eringen and Suhubi, 1975; Kupradze 1979). 

 

In here, we will mention some of the earliest developments, whereby integral equation formulations were processed numerically for the solution 

of BVP. Specifically, we have work by Friedman and Shaw (1962) and Chen and Schweikert (1963) in acoustics and by Banaugh and Goldsmith 

(1963) in steady-state elastic wave propagation. A milestone paper in computational elastodynamics was that by Cruse and Rizzo (1968) on use 

of a direct BIEM in conjunction with the Laplace transform for reconstitution of the transient response of the elastic half-plane subject to a 

surface pulse distribution.  In what follows, the basic BIEM formulations will be developed following along the lines given in a comparison 

study by Manolis (1983). 

 

 

 

 

 



 

 

5.2 Problem Statement 
 

Let V denote the volume and S the bounding surface of an elastic solid. Euclidean E4 coordinates ( )tx,  are employed, and associated with the 

surface is the outward pointing, unit normal vector ( )n . Under the assumption of small displacements and linear elastic, isotropic homogeneous 

material behavior, the equations of motion written in terms of the displacement vector ),( txui  are as follows: 

  

 jjiijSijiSP ufucucc =++− ,
2

,
22 )(  (5.1) 

 

In the above, ( )txf i ,  is the body force per unit mass, while ρμρμλ /,/)2( 22 =+= SP cc  are pressure (P) and shear (S) wave speeds in the 

elastic body. As before, we employ indicial notation with the summation convention implied for repeated indices. Also, commas indicate partial 

differentiation with respect to the subscripts that follow and dots indicate time derivatives. Finally, λ, μ  are the Lame constants, ν is Poisson’s 

ratio and ρ is the mass density. 

 

 

 

 

 

 



 

The displacements and tractions ( )txti , satisfy the following boundary conditions:  

 

 ( ) ( ) 1,,, Sxtxutxu ii ∈= ,     ( ) ( ) ( ) ( ) 2,,,, Sxtxtxntxtxt ijiji ∈== σ  (5.2) 

 

where σij   are the stresses and the total surface is subdivided as 21 SSS ∪= . Furthermore, the displacements and velocities must satisfy initial 

conditions of the following type: 

 

 ( ) ( ) SVxxuxu ii +∈= ,0, 0 ,   ( ) ( ) SVxxuxu ii +∈= ,0, 0  (5.3) 

 

Finally, the Sommerfeld radiation condition must hold for outgoing waves. 

 

 

 

 

 

 

 

 

 



 

The Laplace Transform: The direct LT is defined in terms of parameter s replacing time t  reads as follows: 

 

                         { } ∫
+∞

−==
0

)exp(),(),(),( dtsttxftxfLsxf                    (5.4) 

where the overbar indicates a transformed function. Applied to the hyperbolic PDE (5.1) and taking the initial conditions into account since the 

transform starts at time t=0, the LT yields the following elliptic system of equations: 

 

                          jojojjiijSijiSP usuusfucucc −−=++− 2
,

2
,

22 )(           (5.5)  

 

The Fourier Transform: The direct FT is defined in terms of frequency ω replacing time t  reads as follows: 

 

                         { } ∫
+∞

∞−

−== dttitxftxfFxf )exp(),(),(),( ωω                   (5.6) 

 

Applied to the hyperbolic PDE (5.1) and ignoring any initial conditions since they are irrelevant to a transform running through the full time 

axis, the FT yields the following elliptic system of equations: 
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5.3 Boundary Integral Equation Formulations 
 

It is well known (Wheeler and Sternberg, 1968; Kupradze, 1979) that a system of partial differential equations along with the appropriate 

boundary and initial conditions may be cast in integral equation form. This holds true for either a system of equations in the time domain or in a 

transformed (Laplace, Fourier, etc.) domain. Various mathematical questions regarding the validity of such representations in elastodynamics, as 

well as the existence and uniqueness of solutions that may be obtained, can be found in Sternberg and Eubanks (1955). 

 

The basis for an integral equation formulation in elastodynamics is the dynamic extension of Betti’s reciprocal theorem. This theorem is derived 

from virtual work considerations and essentially relates two different dynamic states for the same elastic body. The obvious choice for one of the 

elastodynamics states is the unknown state we are seeking to find. A judicious choice for the other state is the appropriate fundamental solution 

(Green’s function) that satisfies the governing equations of motion in region V  under radiation conditions only. After some manipulations, the 

dynamic equivalent to Somigliana’s identity can be obtained from Betti’s reciprocal theorem, and the limiting form of this identity results in the 

singular integral equations that form the basis of the BEM. 

 

 

 

 

 

 



 

 

5.4 Time-domain Integral Equation Formulations 
 

In the time domain, the Green’s function is the fundamental point force solution of Stokes, while the singular integral equations are of the form  

 

                 ( , ) ( , ; )* ( , ) ( , ; )* ( , ) ( )ij i ij i ij is
c u t G x t t x t F x t u x t dS xξ ξ ξ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤= −⎣ ⎦∫           (5.8) 

 

where ξ ′  and x′  are source and receiver points, respectively. In Eqn (5.4), the prime symbol used as a superscript denotes 3D quantities, while 

superscripts range from 1 to 3. Also, the jump term is 

 

                 , 0.5 , 0ij ij ijc for V for S for V Sδ ξ δ ξ ξ′ ′ ′ ′ ′ ′ ′ ′= ∈ = ∈ = ∉ ∪             (5.9)  
 
If the boundary S ′ is non-smooth at ijc′′,ξ  becomes a function of solid angle θ  traced at point .ξ ′   Also, operator * denotes convolution in time:  

                

                  
0
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f x t g x t f x g x t d for t for tτ τ τ′ ′ ′ ′= − 〉 = ≤∫              (5.10) 

 

 



 

The Green’s function ijG′  represents the displacement vector at x′  and at time t  due to a unit impulse in space-time of the form 

)().(( ξδτδ ′−′− xt  applied in the three principal directions at ξ ′and at time τ , with δ  being the Dirac delta function. Usually τ  is set equal to 

zero. Finally, ijF ′  represents the resulting tractions due to the same unit impulse, and can be obtained from ijG′  through the use of the constitutive 

equations and the definition of tractions. These kernels can be found in Manolis (1983), along with details for the solution procedure.  

 

The approach delineated above is essentially a 3D formulation applied to an infinitely long, cylindrical body whose longitudinal axis coincides 

with the z-axis of the Cartesian co–ordinate system (see Fig. 10). For a spherical wave assumption emanating from the source point, the 

formulation corresponds to a plane strain case. The infinitely long cylindrical body may be viewed as a cavity if an interior problem is under 

consideration. 

 

There is an alternative path for solving 2D problems in the time domain by integral equations. This simply requires the integration of tensors ijG′  

and ijF ′  along the longitudinal axis so that their true 2D forms ijG and ijF  are obtained. Equation (5.8) then reads as   

 

              0 0 0 0 0
0

( , ) [ ( , ; , ) ( , ) ( , ; , ) ( , )] ( )
t

ij i ij i ij i
S

c u t G x t t t x t F x t t u x t dS x dtξ ξ ξ= −∫ ∫                   (5.11) 

 

In the above, S  is now the circumference of the 2D body in question. As far as the integration over time is concerned, it appears satisfactory to 

assume that both iu  and it  remain constant over time step [ ]00 , ttt Δ+ , although linear or quadratic variations have been tried as well. 



 

 
Figure 10: (a) Transient spherical wave from source point ξ; (b) 2D surface S at different values of Laplace transform parameter s.  



 

 

5.5 Laplace Transform Domain Integral Equation Formulation 
 

In the Laplace transform domain, the Green’s function can be found in Cruse and Rizzo (1968) and the corresponding singular integral equations 

are of the following quasi-static form:  

 

                           ( , ) ( , , ) ( , ) ( , , ) ( , ) ( )jiji i iij i s
c u t G x s t x s F x s u x s dS xξ ξ ξ⎡ ⎤= −⎣ ⎦∫                   (5.12) 

 

The explanatory notes following Eqn (11) apply here as well. It should be reminded at this point bars over a dependent variable denote its 

Laplace transform. The solution procedure in the Laplace transform domain has been elaborated in Manolis and Beskos (1988) and only a few 

remarks will be made here. 

 

The problem is essentially static-like for fixed values of the transformation parameter s. The solution procedure consists of solving for the 

unknown boundary values of iu  and jt in terms of the prescribed boundary conditions with the aid of Eqn (5.12), for a spectrum of values of 

parameter s.  

 

 

 

 



 

The final step is to numerically invert the transformed solution back to the time domain. The pertinent inversion integral is a contour integral 

over the complex s-plane in the form  

                   

           dsstsxf
i
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)exp(),(
2
1),( ∫
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β
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         1−=i                    (5.13) 

 

where 0〉β  is arbitrary, but greater than the real part of all singularities of ),( sxf . Since Eqn (5.13) is an integral over the complex plane, it 

must be solved for complex values of the parameter s, that is  

 

                         ( )2s i T nβ π= +                                                  (5.14) 

 

In the above, T is the total time interval of interest and 1,...n N= . Good accuracy of the results cannot be obtained by numerical Laplace 

inversion algorithms based on real values of s  only. The numerical Laplace inversion algorithm that was used in Manolis (1983) was a 

trapezoidal quadrature scheme for the integral of Eqn (5.9) by Durbin (1974) that employed the fast Fourier transform (FFT) concept of Cooley 

and Tukey (1965) for expediting the calculations involved. 

 

 

 

 



 

5.6 Fourier Transform Domain Integral Equation Formulation 
 

As far as the solution in the Fourier transform domain is concerned, Eqn (5.12) can be used if s iω= , where ω is the frequency of vibration (in 

Hz). The only difference is in the numerical inversion procedure, since the inversion integral is of a different form now:   

 

                         ( , ) ( , ) exp( 2 )f x t f x i t dω πω ω
+∞

−∞

= ∫                             (5.15) 

 

For this case, the FFT algorithm of Cooley and Tukey (1965), which has been extensively used in the past, is employed. Since we are dealing 

with the one-sided finite transformation, the upper and lower limits in Eqn (5.15) are replaced by 0 and Ω (the maximum frequency of interest). 

Then, the well-know problem associated with finite Fourier transform, namely the approximation a non-periodic motion by a periodic one, 

arises. This problem is circumvented by adding a sufficient number of trailing zeros to the transformed solution. 

 

Finally, one should be aware of a difficulty associated with the Fourier transform solution. Specifically, Eqn (5.15) fails to produce a solution for 

an exterior (or interior) problem for a particular set of frequencies ω corresponding to the eigenvalues of the associated interior (or exterior) 

problem. The original BVP possesses, of course, a unique solution at those frequencies. This problem was noticed by workers in the field of 

acoustics and a number of methods were introduced to combat it, such as the technique of Schenk (1968). It also possible, however, for problems 

in elastodynamics to isolate the eigenvalues of the associated problem by methods such as the one described in Tai and Shaw (1974) and then to 

modify the solution procedure of the original problem as in acoustics so as to avoid solution divergence.  

 



 

 

5.7 Numerical Implementation Aspects 
 

It is obvious that BIE such as Eqn (5.8) and (5.12) cannot, in general, be solved analytically and therefore resort must be made to numerical 

methods of solution. The bounding surface S (circumference) of the 2D body is therefore discretized into J segments with a node defined at the 

midpoint of a given segments, as shown in Fig. 10. The spatial variation of the displacements and traction over a given segment is assumed to be 

constant, although it is possible to define or higher order variations using linear or quadratic isoparametric elements. 

 

In the 3D approach of the time domain formulation, the convolution integral is discretized using discrete time steps so Eqn (5.8) is rewritten as 

 

                          [ )∑∫
=
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N
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                        [ )tKNxutKxQtKxTn iijmijmm Δ+−Δ+Δ− )1(,());,();,( ξξ       (5.16) 

                        ( ] )()))(,();, xdStKNxutKxQ iijm Δ−Δ− ξ  

 

The time axis is now formally discretized into L segments so that total time of interest is tLT Δ=  and a constant temporal value of the 

displacements and tractions over an interval is adopted. Eqn (5.12) can be recast in the following convenient for numerical computations form: 
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i
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n
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In the above, the spatial indices range as i, j=1,2,…,J  while the temporal indices first sweep as n=1,2,…,L and then as m = 1, 2,…, n. The 

discrete system matrices nm
ijDG and nm

ijDF  are the spatial integrals of the kernels ijmij TU ,  and ijmQ , respectively. In the latter case, use was made 

of the finite difference scheme that allowed the velocity vector to be expressed terms of the displacement vector. 

 

In the 2D approach of the time domain formulation, Eqn (5.11) can also be recast in the form of Eqn (5.17), where nm
ijDG and nm

ijDF  are now 

given by the following space-time integrals: 
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In the above formulas SΔ is the length of segment i. Essentially, the difference between the two aforementioned time approaches is that in the 

former (3D) the integration is done over area segments that move with time, while in the latter (2D) the integration is done over a line segment 

and then over a time step. 

 

The advantage of using a 3D time domain formulation is that singularities in the kernels are encountered only once in the time marching scheme, 

when n = m = 1 and for i = j. These singularities are discussed in Cole et al. (1978) for the anti-plane strain case.  If a 2D time formulation were 

to be used, then a singularity would be encountered every time step m, when i= j. This comment becomes more obvious in reference to Fig. 10. 



 

 

In the integral transform formulations (Laplace and Fourier), as described in Manolis and Beskos (1981), a static-like system of equations results 

in marked contrast to the time-domain formulations. Specifically, 

 

                                        i
i

jii
i

jij uFDtGDu ∑∑ −=5.0                       (5.20) 

 

where the spatial integration schemes are similar to those used in elastostatics. Eqn (5.20) is therefore solved for a number of values of the 

transformed parameter s or the frequency ω. The additional price that is paid is that a numerical inverse transformation is required to bring the 

tractions and the displacements back to the time domain from the transformed spectrum where they are initially produced. The singularities 

encountered in these formulations, when i = j  are of the form )ln(r  for the ijG tensor and of the form rnr ii,  for the ijF tensor. The behavior of 

these singularities as 0→r is well documented from elastostatics (Brebbia et al., 1984). 

 

 

 

 

 

 

 



 

 

5.8 Numerical Example 
 

As an example, consider a P-wave sweeping a circular cylindrical cavity in an otherwise infinitely extending elastic medium (see Fig. 11(a)). 

This is a plane strain problem and the P-wave has a sharp normal front (since H  is the Heaviside function), past which a load tensor with 

components 0 0( ), ( /(1 )) ( ), 0xx n yy n xyH t t H t tσ σ σ ν ν σ τ= − = − − = envelopes the cavity wall. Time 0t =  is the instant the wave first 

impinges on the cavity, and nt  is the time required for the wave traveling with velocity Pc  to reach a given station n on the circular boundary.  

 

Several semi-analytical solutions exist (Baron and Matthews, 1961; Pao and Mow, 1972) and the resulting stress distribution is obtained by 

superimposing the incident wave field described above, to the one scattered by the cavity, and imposing a traction-free condition along the cavity 

boundary. This latter problem is solved by the BEM. Consider granite with wave velocities 3 3208 10 / sec, 120 10 / secP Sc in c in= × = ×  

containing a cavity of radius 212R in=  (1in=2.54cm). The time required for the P-wave to envelop the cavity is 2 / 0.002 secPR c = , while the 

stress intensity is normalized to 2
0 1.0 /lb inσ = .  

 

The results in Fig. 11(b) are taken from Manolis (1983) and depict the stress concentration factor (SCF) time history at the top (crown) of the 

cavity, at an angle of 900 from the line perpendicular to the wave front. 

 



 

Three BEM formulations were employed, namely the time-stepping BEM, the Laplace transformed BEM and the time-harmonic BEM with 

Fourier synthesis. In all cases, the spatial discretization was relatively simple: only 20 isoparametric (i.e., three-noded) surface elements were 

required for the cavity surface. The total time interval of interest was ten half-transit times ( 0.010 sec ), so as to match the semi-analytical 

solutions. Regarding the three BEM formulations, the time-stepping one used 25 time steps, the Laplace transformed one used only 10 values for 

the Laplace transform parameter and the Fourier transformed one used 32 values for the frequency parameter. Accuracy was comparable, but 

regarding efficiency, the Laplace transformed BEM performed best. 



 

 
Figure 11: (a) Circular cavity in infinite medium swept by P-wave; (b) stress concentration time history at the crown of the cavity. 



 

6. FUTURE DEVELOPMENTS 
 

Most new developments regarding the BEM will come from the field of software development. Despite the proven effectiveness of the BEM in 

dealing with continuous systems, and the existence of much in-house computer programs, not much commercial software is available in general. 

The steps that have to be taken in this respect will follow those already taken in conjunction with the FEM, namely: 

 

(a) Automatic mesh generation schemes, (b) adaptive mesh refinement based on h-type convergence, p-type convergence and their combination, 

(c) development of both general-purpose as well as special-purpose programs, (d) software development in new languages (e.g., Fortran 90, C++) 

so as to take advantage of vectorization and parallel processing capabilities of modern computers, and (e) modular-type programming and use of 

symbolic-type mathematics for solution of relative simple problems using integral equations.  

 

As far as developments on the methodology itself are concerned, the following areas can be identified: 

 

(a) Construction of exact or even approximate fundamental solutions for certain classes of problems (e.g., non-homogenous media, gradient-type 

constitutive laws) which have been proven difficult for the BEM to track, (b) hybridization of the FEM and BEM as well as the construction of 

new types of elements (e.g., finite super-elements), (c) development of domain-decomposition techniques for the treatment of large-scale 

problems, (d) development of mesh-less types of methods whereby integrations are carried out around nodal points dispensing with the need to 

use elements, and (e) new developments in the conversion of volume integral into surface ones for the efficient analysis of nonlinear problems 

and (e) refinements in the solution algorithms used currently, especially for transient (time-stepping) problems. 
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