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Hybrid Seismic Modeling Based on Discrete-wave Number and
Finite-difference Methods

JiRi ZAHRADNIK' and PETER Moczo?

Abstract — Any calculation of seismic wave propagation comprising the seismic source, the travel
path, and the receiver site in a single finite-difference (FD) model requires a considerable amount of
computer time and memory. Moreover. the methods currently available for including point sources in
the 2D FD calculations are far-field approximations only. Therefore we have developed a new hybrid
method for treating the seismic wave fields at localized 2D near-surface structures embedded in a 1D
background medium, and excited by a point source. The source radiation and propagation in the
background model is solved by the discrete-wave number (DW) method, while the propagation in the
local 2D structure is calculated by the FD method. The coupling between the two sets of calculations is
performed on a rectangular excitation box surrounding the local structure. We show the usefulness of the
method in ground-motion studies where both near-field source effects and local site effects are important.
Technical problems connected with the inconsistency between the 3D source radiation and the 2D FD
calculation are minor for the relatively distant in-plane point explosive sources, but are more serious for
the in-plane dislocation sources.

Key words: Seismic waves, strong ground motions, discrete-wave number method. finite-difference
method. hybrid method.

Introduction

Modeling of seismic wave fields requires efficient numerical methods. However,
efficiency of a particular method is usually restricted to a particular aspect of the
wave field. Therefore, it is often advantageous to combine different methods. Such
‘hybrid methods’ have been developed, for example, by VAN DEN BERG ( 1984),
KUMMER et al. (1987). EMMERICH (1992), FAH et al. (1994), and ROVELLI et al.
(1994). These approaches are based on the combination of finite-element or
finite-difference methods with, respectively, analytical methods, the frequency-wave
number filter method, the modal summation method, and the stochastic method.
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Our intention is to develop a new hybrid method able to treat localized
near-surface 2D structures embedded in (possibly deep) 1D media, and excited by
relatively distant point sources of arbitrary focal mechanisms. For this purpose we
combine the Discrete-Wave number (DW) method and the Finite-Difference (FD)
method. Both techniques allow the computation of the complete wave fields.
including all body and surface waves, and near-field source effects. The linear
stress-strain relation is assumed. The methods can take into account causal attenu-
ation in the form of an arbitrary frequency dependence of the quality factor Q.
Large 1D models (i.e., distant sources, and deep models) are relatively easy to
tackle for the DW method, but difficult for the FD method. 2D near-surface
heterogeneities, on the other hand, are relatively easy for FD, but more difficult for
DW. Also point sources are rather difficult to model for pure 2D FD methods,
although an approximate transformation between the line and point source is
available (VIDALE and HELMBERGER, 1987). This is why we suggest use of the DW
method to compute the 1D background wave field. Then, locally, around a 2D
near-surface structure, the FD method must be used. The DW-FD coupling is
realized similarly to the algorithm of ALTERMAN and KARAL (1968).

Our method most closely resembles that of FAH er al. (1994), who combined the
Modal Summation (MS) and the FD approach. Their method has proved success-
ful in many practical applications in earthquake seismology, including those with
very complex crustal models. The completeness of the wave field in the MS method,
1.e., body phases and near-field effects, can be guaranteed after certain modifications
(FAH, personal communication). Regardless, using DW instead of MS is an
innovation, since DW does automatically describe the complete wave field, includ-
ing the near-field effects. Also, our algorithm of the DW-FD coupling is different
from the one used by FAH et al. (1994), allowing shallower (i.c., less expensive) FD
models. Another contribution of this paper is that we analyze thoroughly the
accuracy of the hybrid method. The cases of explosive and dislocation sources are
discussed separately, and their different numerical performance is theoretically
explained. All examples have a methodical character. Applications to real data will
be published elsewhere.

Method

DW method. The DW method (BoucHON, 1981) is based on an assumed
periodic repetition of the sources in a horizontal plane. The periodicity simplifies
the integral representation of the elastic wave field in a 1D medium to an infinite
summation over horizontal wave numbers. The sum is convergent (i.e., it can be
truncated) except in the case in which the receiver and the source have the same
depth. For 1D models represented by homogeneous layers the method is combined
with the matrix algorithm of KENNETT and KERRY (1979). No principal limitations
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are imposed on the source-to-receiver distance, model depth or velocity contrast.
The only requirement is that a finite frequency bandwidth and a finite time window
are considered.

The causal attenuation (frequency independent Q) is introduced by means of
complex valued elastic parameters in the frequency domain, where the Green’s
tensor 1s calculated. After multiplication with the seismic moment tensor (prescrib-
ing the spectral content and the focal mechanism of the source) and application of
the inverse Fourier transform, the time-domain solution is obtained. As long as the
source periodicity length is chosen to be large enough and a small amount of an
artificial attenuation—Ilater removed from the final solution—is added to prevent
time-domain aliasing, the final seismograms are free of any fictitious arrivals. It
should be mentioned that the same artificial attenuation also prevents the occur-
rence of numerical singularities. Successful applications of the DW method require
a careful choice of the time- and frequency-window lengths, and their careful
sampling, so as to ensure that the results are not affected by aliasing and/or
frequency truncation. In this paper the DW method encoded by COUTANT (per-
sonal communication, 1994) is used.

FD method. The FD method provides a direct numerical solution of the 2D
elastodynamic equations of motion on a finite-extent space domain. The top
boundary of the domain is a flat free surface, the others are artificial ‘nonreflecting’
(or, say, ‘transparent’) boundaries. Their particular realization is of little interest
for this paper. The free-surface and internal grid points of the FD domain are
solved by the PS2 scheme developed in ZAHRADNIK (1995a), and verified for both
body and surface waves in ZAHRADNIK and PRIOLO (1995). The scheme belongs to
the so-called heterogeneous schemes, in which the interface continuity conditions
are automatically approximated. The free-surface condition is simulated using the
so-called vacuum formalism (ZAHRADNIK et al., 1993). As the PS2 scheme is only
2nd-order accurate, the minimum shear wavelength must be sampled at least at
10-20 grid points in the FD calculation. Optionally, a line (2D) source is included
after ABoupi (1971).

Implementation of the attenuation is based on the approach suggested for SH
waves by EMMERICH and KoRrRN (1987), and 1s equivalent to EMMERICH'S (1992)
generalization for the P-SV case. The corresponding equations of motion contain
additional terms. Each of these terms obeys an ordinary differential equation. The
method makes it possible to account for both an arbitrary frequency dependence of
0, and a spatially varying attenuation. See also Moczo and BARD (1993).

DW-FD coupling. The DW-FD coupling represents a key point of the hybrid
method. Therefore, it is to be described here in a greater detail. Although the
algorithm is similar to the one by ALTERMAN and KARAL (1968), three of its
features require a good explanation: It is the definition of the excitation and
residual wave field, the preferred form of excitation lines, and the interpolation at
these lines.
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Figure 1
Schematic representation of the hybrid method. In the first step, the source (asterisk) is present in the
background medium. The known background wave field U, is stored along the lines @ and b. In the
second step, the source is already absent, but a local structure is (optionally) placed inside the excitation
box, formed by the lines @ and b. Then, the complete wave field U = U, + U,, and the residual field U,
are computed in the domains A and B, respectively. The top line is the free surface. In the second step
the domain B is limited by the left, right and bottom artificial (‘nonreflecting’) boundaries.

The FD domain is divided in two parts, A, and B, as shown in Figure 1. The
lines ¢ and b, belonging to A and B, respectively, are called the excitation lines.
Their spacing is equal to the FD grid step. Zone A is the excitation box. The
(vector) wave field U is assumed to be represented by

u=U +U, (D)

where U, and U, are a known and residual part, respectively. The U, is the wave
field corresponding to the 1D medium with no additional local 2D heterogeneity,
i.e., the so-called background field. At the excitation lines the part U, must be
known throughout the entire time window computed by the FD method. In zone A
the complete field U is computed, while only the residual field U, is computed in
zone B. When calculating U at line «, the required values of U at line b are not
directly available from the FD calculation (since only U, is computed there).
Nevertheless, the values of U at line b can be obtained from U, by adding the
known value of U,. A quite similar approach is employed to calculate U, at line b.
We note that two lines correspond to the 2nd-order FD method. For example. a
4th-order method would require four lines, etc.

Though the U, values must be at our disposal at the excitation lines @ and b for
all grid points and all time levels, all these values are not necessarily computed by
the DW method and stored there. It is possible to compute and store U, at
relatively coarse irregular positions along the lines @ and b, and then make a linear
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interpolation into the FD grid points and time levels. This feature of our algorithm
is essential for most model configurations. It is because, when treating near-surface
(low-velocity) structures by the FD method, relatively small space and time grid
steps are to be chosen to control accuracy and stability, respectively. Calculating
and storing the DW background solution at such a fine grid would be highly
excessive. Moreover, it would be very difficult, or even impossible, to obtain the
same time step in the DW and FD method, as both are determined by quite
different criteria. Even more important is the possibility of circumventing the
convergency problems of the DW method when the source and receiver are at the
same depth. At that time we can simply use the receivers above and below the
source level, and interpolate between them.

The sampling is at least two locations per minimum wavelength at the excitation
lines, or more. The best way to find a suitable sampling rate of the excitation is to
choose one, to plot the excitation time series at these lines, to judge its spatial
variability (caused by discontinuities, focal mechanism, etc.) and to sample most
densely in the locations where more abrupt variations of the wave field take place.
It is also important to note that the minimum shear wavelength of the background
model is often larger than the minimum wavelength in the local structure under
study, which permits a coarser sampling than in the FD caluclation. Examples of
the excitation sampling are given below.

The DW-FD modeling then consists of two main steps. In the 1st step the
background (1D) field due to a point source is computed, ahd complete seis-
mograms are stored at the selected locations along the excitation lines. In this step
the 1D model is, in principle, much larger (both horizontally and vertically) than
the FD model. In the 2nd step the point source is no longer present and the medium
is truncated to the FD domain. The prescribed solution from the 1st step serves as
U,. It is interpolated into the FD locations along the excitation lines. Thereafter,
the FD calculations of U and U, take place in domains A and B respectively. The
results are plotted for predefined receivers as U and U,, in domains A and B
respectively. Or, if the U, field was also stored at all the receivers in B, we compute
U= U, + U, there, and plot U everywhere.

An important feature of the present method is that the excitation lines form a
box. It contrasts with the approach of FAH er al. (1994), in which the FD region
was subdivided into domains A and B by two vertical lines only. The advantage of
using a box is that the FD domain can be made shallower. A more detailed
explanation is given in ZAHRADNIK (1995b), and is demonstrated below in the
numerical examples. Another advantage of the excitation box is a better spatial
sampling of the source radiation pattern. Finally, at least in some models, the
residual field U, is rather weak and thus more easily eliminated at the nonreflecting
boundaries of the FD domain than the complete wave field U in the method of FAH
et al. (1994).
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Verification of the Coupling Algorithm

Models investigated in this paper are schematically shown in Figure 2. Their
specific features are given in Table 1. Only horizontal components are presented in
this paper, and all of them are for the receivers at the free surface.

We present two numerical experiments to verify the coupling algorithm. In
Experiment 1 an analytical solution is coupled with the FD calculation, while
Experiment 2 consists in a FD-FD hybrid calculation. The actual DW-FD hybrid
calculation will be presented in the next section.

Experiment 1 involves a homogeneous halfspace excited by an upward verti-
cally propagating plane wave. This model is treated in two modes. Mode la
assumes U, = U,,., where U, is the analytically prescribed incident wave field.
Model 1b takes the analytically prescribed field U, = U, + U, Where U, is the
free-surface reflection of the incident wave. The excitation U, is, in this model,
computed and stored at all grid points and time levels required for the FD
calculation. (For the FD grid steps, see Table 1.) The vertical segments of the
excitation line b are located at x =40 and 140 m. The horizontal segment 1s at
z=28m. As the complete solution in both cases should be the same,
U=U,.+ U, we expect U, = U,,, and U, =0 for cases la and 1b respectively.
As seen from Fig. 3, the expected result is actually obtained in Experiment 1b, but
not in la. Model la is wrong not only in deriving U, # U, but also
U#U,+ U, On the contrary, model 1b accurately provides U, =0 and
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Figure 2
Schematic representation of the models ivnestigated in this paper. The excitation is by a point or line
source at a depth 4 (asterisk) or by a plane wave. The background medium is a homogeneous halfspace.
In some models a symmetrical basin is embedded in the halfspace. Its left corner is at x = x0, its width
at the free surface is L1, and the bottom width is L2. The basin depth is H. The Vp, Vs, Rho, Qp and
Qs denote the P- and S-wave velocities, density, and the P- and S-wave quality factors. For the
particular models, see Table 1.
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Table 1

Parameters of the investigated models. Here [, is the maximum frequency generated by the source. The
dx and dt are the FD grid steps. For explanation of the other symbols, see Figure 2

h foax  dX dt Vpl Vsl Rhol
Experiment Source (m) (Hz) (m) (s) (m/s) (m/s) ( kg;’m-‘} Qpl  Qsl
la plane wave 10 1 0.00086 700 1800 1000 1000
(/"A EE ["I.lnc
b plane wave 10 1 0.00086 700 1800 1000 1000
L'!f\' - b:inc T L'!rcl'
2 line vert. force 60 6 1 0.0015 500 250 2000 100 100
3 point explos. 60 10 ] 0.00086 700 350 1800 1000 1000
4 point disloc. 60 10 | 0.00086 700 350 1800 1000 1000
5 point explos. 60 10 1 0.00086 700 350 1800 1000 1000
x0 L1 L2 H Vp2 Vs2 Rho2

Experiment (m) (m) (m) (m) (m/s) (m/s) (kg/mY) Qp2 Qs2

la - - — - - -
b . _ _ . .

2 71 68 30 20 200 100 2000 15 10
3 2 =

4 . - _ . : _ -
5 849 78 40 20 200 100 1800 15 10

What brought about the failure in Experiment 1a? Prescribing the known wave
field as U, = U,,. we, in fact, assume that the background medium is unbounded.
Therefore, adding the free surface during the 2nd step of the hybrid method does
not represent a purely local variation of the background model inside the excitation
box. As it is only the excitation box where an interaction between the U, and U,
takes place, and where the U, can be generated, the box cannot guarantee a proper
generation of the residual field U, reflected from the free surface outside of the box.
Certainly, due to the interaction at the excitation lines, the error in the residual field
also penetrates inside, deteriorating the complete field there.

On the other hand, in Experiment 1b, where the prescribed field is
U, = Uy + U, the background medium is just the homogeneous halfspace.
Consequently, in the 2nd step we do not add any heterogeneity, i.e., we only try to
reproduce the background field. No sources of the residual field exist either inside
or outside of the excitation box. Resultingly, we correctly obtain both U, =0 and
U= U+ U

This experiment suggests a general rule that all sources of the residual wave field
should always be contained inside the excitation box. In other words, the background
model in the first step and the model used in the subsequent FD step cannot differ
outside the excitation rectangle.
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Figure 3
Hybrid analytic-FD synthetics for a homogeneous halfspace, excited by a vertically propagating plane S
wave; Experiments la, b, Table 1. The free-surface time histories are plotted with a step of 10 m. Five
curves at the top and five at the bottom display the residual field U, in domain B. Those remaining
present the complete field U in domain A. Panel a: the background field represented by the incident wave
only. Panel b: the background field represented by the incident + reflected wave.

Remark: The only possible way of correctly securing the complete halfspace
wave field U, + U, in the excitation box in case of U, = U,., would be to have
the entire free surface of the FD model included inside the excitation box (domain
A). This can be achieved by two horizontal excitation lines @ and b. This is, of
course, not new, since such a method has been intuitively used for a long time in
our previous FD codes to simulate the incidence of plane waves onto the near-sur-
face structures from below.

Experiment 2 illustrates the hybrid method based on coupling two FD calcula-
tions. i.e.. the FD-FD method. The reason for starting from FD-FD, before
studying DW-FD, is simplicity: using a line source in the first FD step, and a 2D
model of the medium in both steps, the FD-FD case is purely two-dimensional.

A sedimentary basin is excited by a line source chosen in the form of a vertical
body force (Fig. 4 and Table 1). In the 1st step the basin is not considered, i.e., the
background medium is a homogeneous halfspace. The wave field generated by the
source is calculated by the FD method and stored (in a form of the displacement
time series) at two rectangular lines a and b. The vertical segments of the excitation
line b are at x =59 and 161 m, while the horizontal one is at z =32 m. In this
example the solution is stored in all FD grid points belonging to the excitation lines
and at all time levels. Independently, the solution is also stored for selected receivers
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FD-FD hybrid method
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Figure 4
Hybrid FD-FD synthetics for a basin embedded in a halfspace, excited by a line source (vertical force):
Experiment 2. Table 1. The complete field U is displayed for all receivers. The first receiver (bottom
curve) is at x = 60 m, the others follow with the 5 m step. The hybrid FD-FD synthetics agree with those
computed by the direct FD method within the width of line.

along the free surface for the subsequent plotting. In the 2nd step. the line source
is switched off, and the basin is present inside the excitation box A. The FD
calculation of U, and U,, is performed in domains A and B, respectively. Finally,
the complete wave field U is presented for the free-surface receivers. For that
purpose the computed field inside the box is used directly (U) while outside the box
the stored field U, is added to the computed residual field U,. The resulting
seismograms are shown in Figure 4.

For comparison, this model is also solved directly by the FD method, including
both the source and basin in a single FD run. (This is possible here because of the
small size of the present test model.) These seismograms agree perfectly, within the
width of line, with those previously obtained from the hybrid calculation.

Three features of the present successful test are to be emphasized: (i) The line
source made the entire problem purely 2D. As shown later, point sources will yield
more complications. (i) The background (1st step) solution was a complete
halfspace solution, not only the incident wave. Using the incident wave as U, would
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yield erroneous results, as in Experiment la. (iii) Although the source was relatively
deep, the excitation box was rather shallow.

DW-FD Verification in 1D Models

After successfully checking the coupling algorithm, we proceed to the key point
of this paper; investigation of the DW-FD hybrid method. Its properties are
illustrated in two examples in which the same 1D model of medium is used in the
DW and FD calculations. It is possible to state that here we are interested only in
a ‘reproduction’ of the DW solution by the FD method.

Experiments 3 and 4 treat the wave field in a homogeneous halfspace, excited by
a point explosive and shear dislocation sources, respectively (Table 1). In both cases
the source lies inside the FD plane. The seismic moment time variation is a ‘smooth
step’ and the acceleration wave field is computed. The excitation rectangle has its
outer segments (line ) at x =838 and 938 m and at z =28 m. In the Ist step the
complete DW solution (including the free-surface effects) is stored at the excitation
lines @ and . The sampling of these lines is coarser than in the subsequent FD
model. It is performed at equal intervals of 8 m, both in the vertical and horizontal
directions, and with a time step of 0.01172s. It roughly corresponds to /,/4.4,
where /... is the minimum shear wavelength. In the 2nd step the point source is
switched off while the excitation at lines @ and b is on and the FD calculation of U
and U, in the domains A and B takes place, respectively, as explained above in
connection with eq. (1). The resulting solutions U (inside the excitation box) and U,
(outside) are plotted in Figures 5a and 6a for Experiments 3 and 4, respectively.
For comparison, a direct DW calculation is also performed and overlain with the
former in Figures S5b and 6b.

As seen from Figure 5b, Experiment 3 with its point explosive source still gives
a good agreement between the hybrid and direct solutions. A weak residual field for
this model is present outside the excitation box (Fig. 5a).

For the shear dislocation point source in Experiment 4, the DW-FD hybrid
result is much less accurate than in the explosive source case. This can be seen from
comparing the hybrid and direct solutions in Figure 6. The residual field U, is larger
than in Experiment 3.

Theoretical explanation of Experiments 3 and 4 is as follows: The 2D elastic
wave propagation is governed by two coupled equations which can be schematically

Figure 5
Hybrid DW-FD synthetics for a homogeneous halfspace, excited by a point explosive source; Experiment
3. Table 1. Panel a: The bottom time history is for x = 798 m, the others follow with the step of 10 m.
Five curves at the bottom and five at the top present the residual field U,. Those remaining are for the
complete field U. Panel b: Comparison of the complete field U computed by the DW-FD hybrid method
(crosses), and the direct DW method (line). The bottom seismogram is for x = 858 m, the others follow
with the 20 m step.
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written as
D1(u, w) =u, (2a)
D2(u, w) =w, (2b)

where D1 and D2 are the spatial differential operators involving the elastic
parameters and density; and « and w denote the horizontal and vertical components
of the displacement, parallel to the two in-plane coordinates x and z, respectively.
At the same time, the 3D point-source case is described by three coupled equations,
where in addtition to u and w, the transverse displacement component, v, also
appears. It is parallel to the out-of-plane coordinate y. Two of the 3D equations,
namely those updating # and w, read

D1(u, w)y+2af1(u)/dy + cgl(v)/dy =i, (3a)
D2(u, w) +3f2(w) [0y + dg2(v)[dy = w. (3b)

Here D1 and D2 are the same differential operators as in equation (2), while f1, g1,
/2, and g2 represent spatial differential operators involving the elastic parameters
and the displacement components # and v, as indicated in the brackets.

For the 3D point explosive source, the transverse displacement component
vanishes, v = 0, hence also the terms dg1(v)/dy and dg2(v)/dy. Therefore, in the 3D
explosion case, the two equations of motion for # and w differ from the 2D
equations only in the terms df1(u)/dy and df2(w)/dy. Physically it means that the
3D wavefront spreading takes place, although the wave field stays the same in any
vertical plane containing the source. If, moreover, the explosive source is relatively
distant, the terms ¢f1(«)/0y and df2(w)/dy are small. Conversely, in a general 3D
case, e.g., that of the point dislocation source, not only the 3D wave front spreading
takes place, also the nonspherical radiation pattern prevents the decoupling of u
and w from v, as represented by the terms g1 and g2. This interpretation explains
the differences observed between Experiments 3 and 4: the good agreement between
the DW-FD hybrid and the direct DW results for the point explosive source and
the discrepancies between the two solutions for the dislocation source. However,
even in the dislocation case, the P wave still has v = 0. That is why, in Figure 6, the
P-wave group features a better agreement between the DW-FD and DW solutions
than the S-wave group (with v #0).

Figure 6
Hybrid DW-FD synthetics for a homogeneous halfspace, excited by a point shear dislocation source
(strike 115, dip 80, rake 167); Experiment 4, Table 1. Panel a: The bottom time history is for x =798 m,
the others follow with the step of 10 m. Five curves at the bottom and five at the top present the residual
field U,. Those remaining are for the complete field U. Panel b: Comparison of the complete field U
computed by the DW-FD bybrid method (crosses) and the direct DW method (line). The bottom
seismogram is for x = 858 m, the others follow with the 20 m step.
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In other words, the 3D-varying wave field from the DW calculation is not easily
forwarded into the 2D FD calculation even if the model of the medium remains
only 1D in both the DW and FD steps. The larger the 3D variation (e.g., larger for
the dislocation source than for the explosive one, or larger for a less distant source),
the larger the inconsistency of the 3D solution with the 2D model. Hereafter, we
shall refer to it simply as the 3D-2D inconsistency’. Naturally, if the point source
was located off the FD plane, this inconsistency would be even larger. The latter
case 1s not treated in this paper, however see also ZAHRADNIK (1995b), where a
method for improving the propagation of the 3D excitation in the 2D models has
been suggested.

The main results of this section, that starting from a non-separable 3D solution
(u,v,w), and trying to ‘continue’ such a solution in a 2D model we never
accomplish correctly (u, v), can be explained also in analogy with Experiment 1.
Experiment 1 suggests that no correct hybrid result can be expected once the
background and the FD model differ outside the excitation box. In Experiments 3
and 4 the situation is, in fact, similar. Although considering the same 1D model of
the medium, the DW point source calculation is 3D, however the FD calculation i1s
2D. Therefore, the difference between the DW and FD wave fields exists every-
where. And, this is precisely the reason why, specifying a 3D excitation at the 2D
box, neither U, nor U can be obtained quite accurately.

How will the 3D-2D inconsistency affect the 2D models with local heterogenei-
ties? What we obtain from the FD step 1s a certain approximation to (u, w), say
(i1, w) = (4, w). The quality of this approximation depends on the 3D variation of
the DW solution. However, importantly, this FD solution (i, w) is already satisfy-
ing the 2D equations of motion (2). It is reproducible in the 2D model: For
example, if we store the solution (&, w) on the excitation lines and use it as the
excitation in the unchanged 2D model, we obtain again the same field (z, w) inside
the excitation box and the zero residual field outside (as numerically verified but
not shown here). As a consequence, the 3D-2D inconsistency should not increase
further in the second step, during which a localized 2D heterogeneity is placed in
the excitation box. Simply speaking, the error originating from the 3D-2D inconsis-
tency is made ‘only once’. The wave propagation inside a localized 2D heterogene-
ity should not further increase this error. To prove it numerically a 2.5D method is
needed, in which a point source radiation and a 2D heterogeneity are treated
accurately (e.g., PEDERSEN et al., 1994).

DW-FD Application in a 2D Model
Finally we proceed to the DW-FD calculation in which the solution from the Ist

(DW) step is used to excite a localized 2D heterogeneity, included in the excitation
box during the 2nd (FD) step.
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Experiment 5. The model is presented in Figure 2 and Table 1. It consists of a
sedimentary basin embedded in an otherwise homogeneous halfspace. As in the
previous section, an in-plane point source is assumed. As the 3D-2D inconsistency
was found above for the dislocation source, we consider the case in which the
excitation is performed by a relatively distant explosive source. The position of the
excitation box, as well as its spatial and temporal samplings, is identical to
Experiments 3 and 4. As compared to Experiments 3 and 4, the same source time
function is used but the displacement (not the acceleration) is computed. For this
reason, and also because both the DW and FD methods correctly describe the
near-field source contributions, the resulting seismograms feature a significant static
displacement (Fig. 7). That is why this result is an interesting combination of two
effects: the near-field source effect and the local site effect. As the static displace-
ment is basically a low-frequency phenomenon, it remains nearly untouched by the
shallow basin as compared to the background model. However, added to the
background solution is a considerable complexity of the high-frequency wave-field
components, caused by 2D multiple reflections inside the basin. At the same time,

DW-FD hybrid method
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Figure 7
Hybrid DW-FD synthetics for a basin embedded in a halfspace, excited by a point explosive source;
Experiment 5, Table 1. The bottom time history is for x = 738 m, the others follow with the step of 10 m.
Eleven curves at the bottom and twenty at the top display the residual field U, outside of the basin.
Those remaining represent the complete field U at the surface of the basin.
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outside of the basin the wave field is less changed, compared to the background. In
particular, the backward scattered waves are rather weak.

Joint investigations of the near-field source effects, and the site effects, have been
rather rare to date. Most published works have either concentrated on the site
effects in the far-field approximation or on the complete source effects without
detailed analyses of the site effect. This is why we believe that the DW-FD hybrid
method will find practical applications in the ground-motion assessment at such
sites where low-frequency engineering structures (such as long bridges, high-rise
buildings, etc.) might be damaged by static displacements, and, at the same time,
some of their structural components are vulnerable to the relatively high-frequency
motions affected by the local site geology.

Of course, for applications like these, the finite source extent should be
considered. With regards to the DW method, this can be achieved by summing
point source subevents. The DW-FD coupling algorithm developed in the present
paper could thus be applied to extended sources such as earthquake faults.

Another alternative, introducing not only the finite-extent sources, but also
perhaps more realistic path effects, would be to treat the source and path by a
stochastic method, for example, as in ROVELLI ef al. (1994).

Conclusion

A new method has been developed which is useful in treating efficiently seismic
wave fields at localized 2D near-surface structures embedded in a 1D (horizontally
layered) background medium and excited by a point source. It is a hybrid method
in which the background model is solved by the DW method, the local 2D structure
by the FD method, and their coupling is realized on a rectangular excitation box
surrounding the local structure from the left, right and bottom sides. Using the DW
method has proved advantageous because the background wave field is described
quite completely, including the near-field source effects also, e.g., the residual static
displacements.

Although our main objective has been to develop software for applications in
carthquake seismology, in this paper we focused on important ‘technical” aspects of
the method. This resulted in the following findings:

(1) The wave field U must be decomposed in U, + U, in such a way that U,, the
known background field, is available at the excitation lines throughout the entire
investigated time window, and all sources of the residual field U, are within the
excitation box only. In other words, the background DW structural model and the
final FD model should not differ outside the excitation box.

(1)) Wave fields due to relatively distant 3D explosive point sources, located
in the same plane as that of the FD model, can be propagated through 2D FD
models with little distortion. This results because the inconsistency between the
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3D DW solution and the 2D FD solution in that case derive from the 3D spreading
only.

(iii) Radiation from the dislocation point sources, in particular their .S waves, is
more sensitive to the 3D-2D inconsistency than the explosive point-source wave
field. This is due to the fact that the 2D calculation does not reproduce the coupling
between the in-plane and out-plane displacement components.

The main test example of this paper (Experiment 5, Fig. 7) has proved the
usefulness of the method when studying the ground motion in a sedimentary basin.
The response displayed not only a considerable site effect, but also a static
displacement due to the near-field source effect.

The advantages of the suggested DW-FD hybrid method, compared to the
direct FD solution, are evident. Any direct FD model comprising the source, path,
and site would require considerably more computation time and memory resources,
even if spatially irregular grids and higher-order schemes were used. Moreover, the
methods currently available for including the point sources in the 2D FD calcula-
tions are the far-field approximations only.

Possible application areas of the present method in earthquake seismology are
problems in which source, path and site effects must be treated as a whole. Mostly
it will apply to situations in which engineering structures such as long bridges or
high-rise buildings might be damaged by low frequency ground motions, including
the static displacements, while, at the same time, some of their structural compo-
nents are vulnerable to the relatively high-frequency motions affected by the local
site geology. Further generalizations of the DW-FD method should include the
nonlinear stress-strain relations, at least in the FD step, wherever strong ground
motions in loose soils are to be treated properly.

In exploration seismology the ground-roll effects, caused by near-surface layers,
often obscure reflections from deeper horizons. These effects, in particular those of
laterally varying near-surface structures, can also be treated by the present method.
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