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S U M M A R Y 

Numerical simulations of earthquakes and seismic wave propagation require accurate material 
models of the solid Earth. In contrast to purely elastic rheology, poroelasticity accounts for 
pore fluid pressure and fluid flow in porous media. Poroelastic effects can alter both the seismic 
wave field and the dynamic rupture characteristics of earthquakes. For example, the presence 
of fluids may affect cascading multifault ruptures, potentially leading to larger-than-expected 

earthquakes. Ho wever , incorporating poroelastic coupling into the elastodynamic wave equa- 
tions increases the computational complexity of numerical simulations compared to elastic or 
viscoelastic material models, as the underlying partial differential equations become stiff. In 

this study, we use a Discontinuous Galerkin solver with Arbitrary High-Order DERi v ati ve time 
stepping of the poroelastic wave equations implemented in the open-source software SeisSol 
to simulate 3-D complex seismic wave propagation and 3-D dynamic rupture in poroelastic 
media. We verify our approach for double-couple point sources using independent methods 
including a semi-analytical solution and a finite-difference scheme and a homogeneous full- 
space and a poroelastic lay er -over -half-space model, respecti vel y. In a realistic carbon capture 
and storage reservoir scenario at the Sleipner site in the Utsira Formation, Norwa y, w e model 
3-D wave propagation through poroelastic sandstone layers separated by impermeable shale. 
Our results show a sudden change in the pressure field across material interfaces, which man- 
ifests as a discontinuity when viewed at the length scale of the dominant wavelengths of S or 
fast P w aves. Accuratel y resolving the resulting steep pressure gradient dramaticall y increases 
the computational demands, requiring high-resolution modelling. We show that the Gassmann 

elastic equi v alent model yields almost identical results to the fully poroelastic model when 

focusing solely on solid particle velocities. We extend this approach using suitable numeri- 
cal fluxes to 3-D dynamic rupture simulations in complex fault systems, presenting the first 
3-D scenarios that combine poroelastic media with geometrically complex, multifault rupture 
dynamics and tetrahedral meshes. Our findings reveal that, in contrast to modelling wave 
propagation only, poroelastic materials significantly alter rupture characteristics compared to 

using elastic equi v alent media since the elastic equi v alent fails to capture the e volution of pore 
pressure. Particularly in fault branching scenarios, the Biot coefficient plays a key role in ei- 
ther promoting or inhibiting fault acti v ation. In some cases, ruptures are diverted to secondary 

faults, while in others, poroelastic effects induce rupture arrest. In a fault zone dynamic rup- 
ture model, we find poroelasticity aiding pulse-like rupture. A healing front is induced by the 
reduced pore pressure due to reflected waves from the boundaries of the poroelastic damage 
zone. Our results highlight that poroelastic effects are important for realistic simulations of 
seismic waves and earthquake rupture dynamics. In particular, our poroelastic simulations may 

of fer ne w insights on the complexity of multifault rupture dynamics, f ault-to-f ault interaction 

and seismic wave propagation in realistic models of the Earth’s subsurface. 

C © The Author(s) 2025. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1 
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1  I N T RO D U C T I O N  

Poroelasticity integrates concepts from elasticity, fluid dynamics 
and geomechanics and enables the coupling of fluid pressure and 
deformation in porous media, which is important for applications 
ranging from seismic exploration to monitoring of geological reser- 
voirs and earthquake physics (e.g. Carcione et al. 2010 ). Poroelastic 
effects are modulated by the porosity, permeability and fluid satura- 
tion of rocks and can affect the seismic wave field. In addition, the 
interaction between fluid flow and earthquake fault slip can affect 
dynamic rupture characteristics in earthquake simulations. Despite 
remarkable efforts in the laboratory and field (e.g. Berryman 1980 ; 
Plona 1980 ; Carcione 2015 ), observing poroelastic effects remains 
a challenge, moti v ating numerical simulations to accuratel y rep- 
resent the interaction between fluid flow and solid deformation in 
hetero geneous geolo gical settings. 

Ho wever , to capture these interactions at realistic scales and reso- 
lution, numerical simulations require large computational resources. 
For example, during a reflection and/or transition of seismic waves 
at/through material interfaces and/or at the free surface in poroe- 
lastic materials, a slow dif fusi ve P w ave is generated, which has a 
small wavelength compared to the fast P wave and S wave, and at- 
tenuates quickly with distance from its origin (Dutta & Od é 1983 ). 
To accurately model the slow P wave at an interface or free surface, 
a fine resolution is required to resolve the relative fluid velocities 
(Wolf et al. 2022 ). 

Poroelastic media can be described by Biot’s equations (Biot 
1956a , b , c , 1962 ), and poroelastic effects have been considered in 
numerical simulations of seismic wave propagation for more than 
three decades (e.g. Zhu & McMechan 1991 ; Masson et al. 2006 ; De 
Barros et al. 2010 ; Morency et al. 2011 ; Moczo et al. 2019 ; Gregor 
et al. 2021 , 2022 ). Ear thquake dynamic r upture simulations (Harris 
et al. 2011 , 2018 ; Ramos et al. 2022 ) account for the nonlinear cou- 
pling of seismic wave propagation and frictional failure along faults 
and are a mature tool to advance the understanding of earthquake 
physics and physics-based seismic hazard assessment (e.g. Oglesby 
et al. 1998 ; Harris et al. 2021 ; Gabriel et al. 2023 ). While a variety of 
numerical implementations exist (e.g. Virieux & Madariaga 1982 ; 
Cruz-Atienza & Virieux 2004 ; Kaneko et al. 2008 ; Barall 2009 ; 
Pelties et al. 2012b ; Duru & Dunham 2016 ; Okubo et al. 2020 ; 
Gabriel 2021 ; Hayek et al. 2023 ), dynamic simulations of earth- 
quake rupture typically assume simplified (elastic, viscoelastic, or 
visco-elasto-plastic) off-fault material rheologies (e.g. Uphoff et al. 
2017 ; Taufiqurrahman et al. 2022 ). 

New opportunities to address these challenges have emerged with 
recent advances in high performance computing and the develop- 
ment of advanced numerical methods. It is now possible to simulate 
ear thquake r upture scenarios in poroelastic materials: for example, 
Pampill ón et al. ( 2018 , 2023 ) and Li & Zhang ( 2023 ) demonstrate 
how pore pressure effects can additionally weaken a f ault, f acili- 
tating the transition to supershear rupture analysing planar faults 
in homogeneous media. Pampill ón et al. ( 2018 , 2023 ) use COM- 
SOL, a commercial finite element solver, while Li & Zhang ( 2023 ) 
dev elop a solv er based on a boundar y integ ral equations method. 
Recently, Wolf et al. ( 2022 ) developed an efficient high-order ac- 
curate ADER-DG (Arbitrary high-order DERi v ati ve Discontinuous 
Galerkin) scheme for the simulation of seismic waves in 3-D poroe- 
lastic media, extending the approach introduced by de la Puente 
( 2008 ). The work presented here extends the capabilities of the 
ADER-DG method by incorporating double-couple moment ten- 
sor point sources and dynamic rupture embedded in a poroelastic 
medium. We apply our approach to simulate seismic wave prop- 
agation in a complex 3-D geological model and dynamic rupture 
simulations accounting for fault branching and fault zone effects. 

The remainder of this paper is organized as follows: In Sec- 
tion 2.1 , we re vie w the theoretical frameworks underlying the poroe- 
lastic elastodynamic wave equations and dynamic rupture models. 
In Section 2.2 , we briefly summarize the discontinuous Galerkin 
approach to discretize the poroelastic wave equation. We study 
poroelastic effects for a moment tensor point source in Section 3.1 , 
focusing on the behaviour of pore pressure at material interfaces. We 
verify the correct implementation of double couple point sources in 
a homogeneous full-space and in a lay er -over -half-space model in 
comparison to semi-analytical and finite-difference results, respec- 
ti vel y. Then, we model the seismic wave field in a realistic carbon 
capture and storage (CCS) reservoir. In Section 3.2 , we investi- 
gate the effects of poroelasticity on 3-D earthquake dynamics for a 
branching fault model and a fault embedded in a fault damage zone. 
We discuss our findings, implications and future research directions 
that our work moti v ates in Section 4 . 

2  M E T H O D S  

2.1 Statement of the problem 

In the following, we briefly summarize the equations governing elas- 
todynamic wave propagation in poroelastic media. Fur ther more, we 
summarize the dynamic rupture source mechanism, which couples 
seismic wave propagation and frictional failure along pre-defined 
faults. 

A poroelastic medium consists of an elastic matrix, which repre- 
sents a solid material. The pore space within this matrix is saturated 
with a fluid. We follow Biot’s model that describes the interaction 
of the matrix and fluid by considering a homogenized material (Biot 
1956a , b , c , 1962 ). As principal quantities, we define the total stress 
of the combined material σi j , the solid particle velocities of the 
matrix u, v, w , the fluid pressure p and the relative fluid veloci- 
ties u f , v f , w f . We then solve the poroelastic wave equation in the 
first-order form as given by de la Puente et al. ( 2008 ): 

∂ Q p 

∂t 
+ A pq 

∂ Q q 

∂x 
+ B pq 

∂ Q q 

∂y 
+ C pq 

∂ Q q 

∂z 
= E pq Q q . (1) 

The vector � Q = 

(
σxx , σyy , σzz , σxy , σyz , σxz , u, v, w, p, u f , v f , w f 

)
comprises all unknowns, we use Q p to refer to the p th element of 
the vector. The elements of the flux matrices A, B, C ∈ R 

13 ×13 and 
the source matrix E ∈ R 

13 ×13 are detailed in Appendix A . Eq. ( 1 ) 
is written in Einstein notation, that is, a repeated index implies 
summation over this index. For more details on the use of this 
notation within SeisSol, see Uphoff & Bader ( 2020 ). 

The poroelastic material is described by a total of ten different 
material parameters. The solid matrix is characterized by its density 
ρS and the bulk modulus of the solid material K S . The drained matrix 
behaves like an elastic body, that is, its response to deformation is 
described by the two Lam é parameters λM 

and μM 

. The matrix and 
the geometry of the pore space are characterized by the porosity 
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, the permeability κ and the tortuosity T . The fluid, which fills
he pores, is defined by its bulk modulus K F , the density ρF and
ts viscosity ν. A detailed overview of the different parameters and
heir physical interpretation is given in Carcione ( 2001 ); de la Puente
 2008 ) and figs 2 and 3 in Gregor et al. ( 2022 ) illustrate all material
arameters. 

In the following, we will use the Gassmann equi v alent (Gassmann
951 ; Carcione 2015 ) to compare the poroelastic model with an
lastic approximation. Poroelastic media exist in two states: drained
dry) or undrained (wet). In the drained case, the pore space is empty,
nd there is no interaction with a fluid phase. This material behaves
urel y elasticall y and can be characterized by the Lam é parameters
f the matrix λM 

and μM 

together with its density (1 − φ) · ρS . In
he undrained case, the pore space is fluid-filled, and the interaction
etween both phases changes the physical behaviour. The Gassmann
qui v alent is an elastic approximation of the undrained poroelastic
aterial. It is described by the density φ · ρF + (1 − φ) · ρS , the

hear modulus μG 

= μM 

and the bulk modulus 

K G 

= K M 

+ 

( 1 − K M 

/K S ) 
2 

φ/K F + (1 − φ) /K S − K M 

/K 

2 
S 

(2) 

ith the matrix bulk modulus K M 

= λM 

+ 

2 
3 μM 

. The Gassmann
qui v alent material reproduces the primary P -wave speed of the
ndrained poroelastic medium at low frequencies but remains an
pproximation, as it does not capture wave attenuation, disper-
ion, or the existence of slow P waves. Because of interactions
etween solid and fluid phases, the poroelastic material attenuates
eismic wav es. Moreov er, because the fluid phase is not present
n the Gassmann equi v alent material, it only models the effective
tress and does not account the ratio between solid stresses σ and
he pressure p. Consequently, the slow P wave is not present in the
assmann equi v alent medium. 
During an earthquake, accumulated stresses are suddenly re-

eased in the form of slip along a fault. In a dynamic rupture
odel, the slip evolution along the fault is not prescribed but devel-

ps spontaneously. These simulations require initial conditions–the
istribution of initial stresses and the parameters of the frictional
onstitutive law, which can vary across the fault–in solving the equa-
ion of motion together with a frictional, internal boundary condition
Harris et al. 2018 ; Ramos et al. 2022 ). Earthquake dynamic rup-
ure models are physically self-consistent. Ho wever , they are also
omputationall y expensi ve (Uphof f et al. 2017 ). They are useful for
tudying the physics of earthquakes and seismic ground motions,
or example, to study topography effects and the influence of the
ubsurface velocity model on ground motions (Ely et al. 2010 ), to
nvestigate the potential role of seamounts during the 2011 M w 9.0
ohoku, Japan earthquake (Duan 2012 ), to constrain dynamically
lausible rupture propagation along a complex system of faults as
uring the 2016 M w 7.8 Kaikoura, New Zealand earthquake (Ulrich
t al. 2019 ), or to study unexpected ruptures across multiple fault
egments during the 2023 M w 7.8 and 7.7 Kahramanmaras, Turkey
arthquake doublet (Gabriel et al. 2023 ). 

In our framework, we consider the following fault friction model.
he stress field σ along the fault can be decomposed into the normal
tress component σn and the fault-parallel traction � σt . The fault
trength is computed as τ = μf · σn , where μf is a dimensionless
riction coefficient. If the traction is smaller than the fault strength
 ‖ � σt ‖ < τ ), the fault remains locked. If the traction exceeds the fault
trength, the fault starts to slide. We adopt the convention that the
lip rate vector � s (i.e. the discontinuity in particle velocity across
he fault) is parallel to the fault traction: � s τ = � σt ‖ � s ‖ . The ef fecti ve
riction coefficient μf is not constant but can vary in time according
o the adopted friction law. 

In this study, we consider a linear slip-weakening friction
aw (Andrews 1976 ). With increasing slip path length ϕ, the friction
oefficient drops linearly from the static value μs to the dynamic
alue μd . Co-seismic weakening occurs over the critical slip dis-
ance D c : 

μf ( t) = max ( μs − ( μs − μd ) · ϕ( t) /D c , μd ) , 

ϕ( t) = 

∫ t 

0 
‖ � s ( ξ ) ‖ d ξ . 

(3) 

.2 Numerical discretization 

q. ( 1 ) is numerically solved using the ADER-DG implementation
y Wolf et al. ( 2022 ). In this section, we will summarize the key
spects of the discretization: The DG method together with an up-
ind flux for the spatial discretization as well as the ADER time

tepping scheme. Fur ther more, we present the key attributes of our
ncorporation of dynamic rupture sources into ADER-DG scheme.

We discretize the computational domain � into a set of non-
verlapping and conforming tetrahedral grid cells E i . Follow-
ng a Discontinuous Galerkin approach, in each cell, the un-
nowns Q p ( t, x, y, z) are expanded using a set of polynomials

Q p ( t, x, y, z) = 

̂ Q pl ( t) 
 l ( x, y, z) , without requesting continuity
cross elements. The (solely space-dependent) polynomials 
 l are
efined locally in each cell. The ̂ Q pl denote the time-dependent
egrees of freedom. We formulate the finite-element-typical weak
orm, that is, multiply eq. ( 1 ) with a test function, and integrate by
arts to obtain 

∂ ̂  Q pl 

∂t 

∫ 
E i 


 l 
 k dV 

−A pq ̂  Q ql 

∫ 
E i 


 l 
∂
 k 

∂x 
dV − B pq ̂  Q ql 

∫ 
E i 


 l 
∂
 k 

∂y 
dV 

−C pq ̂  Q ql 

∫ 
E i 


 l 
∂
 k 

∂z 
dV 

+ 

∫ 
∂ E i 

F p ( � Q 

−, � Q 

+ ) 
 k dS = 

̂ Q ql 

∫ 
E i 

E pq 
 l 
 k dV . (4) 

n the surface-integral over ∂ E i , the term F then denotes the flux
f quantities across the cell boundaries. A suitable numerical flux

F ( � Q 

−, � Q 

+ ) , which takes the discontinuity between the solution on
he interior � Q 

− and the solution on the neighbouring element � Q 

+ 

nto account, is crucial for the convergence of the scheme (LeVeque
002 ; Hesthaven & Warburton 2008 ). The purpose of the numerical
ux is to approximate the flow of quantities across the interface. We
se the upwind-type Godunov flux (e.g. LeVeque 2002 ) because
t is relati vel y easy to compute and has fav ourab le appro ximation
roperties. The Godunov flux solves the Riemann problem, with
he quantities � Q 

+ and � Q 

− on both sides of the interface as the
nitial condition, to first compute the state � Q 

∗ at the interface and
hen the resulting flux: F p ( � Q 

−, � Q 

+ ) = 

˜ A pq Q 

∗
q . Here, ˜ A = n 1 A +

 2 B + n 3 C is the matrix describing the flux in the direction of the
utward pointing normal � n . 

The basis functions 
 are defined by a set of polynomials on
he reference element E ref . Hence, all integrals involving the basis
unctions can be pre-computed, which leads to a quadrature-free
emi-discrete formulation. For a detailed deri v ation of the DG dis-
retization of the elastic wave equation, see (e.g. Dumbser & K äser
006 ). 
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Table 1. Material parameters for the double-couple point source in a poroe- 
lastic homogeneous full space scenario. The parameters in this table refer to 
the viscous case. For the inviscid case, consider ν = 0 Pa s. See Section 2.1 
for a description of the parameters. 

Parameter Description Value 

ρS Solid density 2 . 08 × 10 3 kg m 

−3 

K S Solid bulk modulus 2 . 0 × 10 10 Pa 
λM 

Matrix 1 st Lam é parameter 5 . 28 × 10 9 Pa 
μM 

Matrix 2 nd Lam é parameter 6 . 40 × 10 9 Pa 
κ Matrix permeability 6 . 00 × 10 −13 m 

2 

T Matrix tortuosity 2 
φ Matrix porosity 0.4 
ρF Fluid density 1 . 04 × 10 3 kg m 

−3 

K F Fluid bulk modulus 2 . 50 × 10 9 Pa 
ν Fluid viscosity 1 . 0 × 10 −3 Pa s 
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The discretization in eq. ( 4 ) transforms the system of partial 
differential equations (PDEs) from eq. ( 1 ) into a system of ordi- 
nary differential equations (ODEs). Thus, in addition to the DG 

discretization, we require a time stepping scheme. We employ Ar- 
bitrary high-order DERi v ati ve (ADER) time stepping, a predictor- 
corrector scheme (Dumbser et al. 2008 ; Gassner et al. 2011 ), 
leading to the same convergence order in space and time. First, an 
element-local predictor is computed. Based on the predictor values, 
the numerical flux across element interfaces is computed. In the 
corrector phase, the numerical fluxes are used to obtain the final 
solution at the next time step. The ADER-DG scheme achieves the 
same order of convergence in space and time. 

Since the coupling between solid and fluid introduces a stiff 
source term, we need a locally implicit time-stepping scheme, such 
as the space–time variant of ADER-DG (e.g. Gassner et al. 2011 ), 
which computes the predictor values from an element-local space–
time discretization. de la Puente et al. ( 2008 ) demonstrated how 

the stiff source term in the poroelastic wave equation can success- 
fully be integrated using such a space–time ADER-DG scheme. 
This requires the solution of a linear system with several hundred 
unknowns for each element update. Recently, Wolf et al. ( 2022 ) 
derived a more efficient approach based on a blockwise back sub- 
stitution algorithm. We refer to this previous work for verification 
of the scheme and description of its parallelization and optimization 
for current supercomputers. 

Dynamic rupture (DR) models simulate the interplay between 
frictional failure along fault planes with the emanated seismic wave 
field. In the context of the ADER-DG discretization for elastic and 
visco-elastic media, the DR source mechanism can be implemented 
using numerical fluxes (de la Puente et al. 2009 ; Pelties et al. 2012a ). 
First, the state � Q 

∗ at the interface is computed by solving the Rie- 
mann problem, just as in the regular case. The state � Q 

∗ is used to 
e v aluate the normal stress and traction at the f ault interf ace. Based 
on these quantities, we can e v aluate the slip rate s across the face 
(which might be zero if the fault is still locked). With the slip rate 
present, an imposed state � Q 

DR is computed, which is consistent 
with the Rankine–Hugoniot jump conditions in the Riemann prob- 
lem and the friction law. Then, we use F p ( � Q 

−, � Q 

+ ) = 

˜ A pq Q 

DR 
q . 

More details can be found in (Uphoff 2020 ; Duru et al. 2021 ). 
Finally, we summarize the main steps of our implementation 

of dynamic rupture sources in poroelastic media, for which the 
pressure-weakening effect has to be taken into account (more details 
of the deri v ation can be found in Appendix B ). Again, the state � Q 

∗

at the interface has to be found, which is the solution to the Riemann 
problem at the interface. The solution to the poroelastic Riemann 
problem has to comply with three wave modes: the fast P wave, the S 
wave, and the slow P wave (Plona 1980 ). It can be obtained using the 
Rankine–Hugoniot relations: In the elastic case, the normal stress 
at the interface σn and the traction σt are independent of each other. 
In the poroelastic case, we also have to consider the pressure p ∗ at 
the interface, which is tightly coupled to the normal stress (see also 
Section 3.2 ). Once the normal stress and the pressure at the interface 
are a vailable, w e consider the ef fecti ve normal stress ˜ σn = σn − p ∗, 
instead of the normal stress σn . 

3  R E S U LT S  

In this section, we present simulation results that demonstrate the 
capabilities of our SeisSol implementation for poroelastic media. 
First, we verify the correctness of our scheme for double-couple 
point sources using simple canonical models (homogeneous full 
space model and a lay er -over -half-space model). Then, we demon- 
strate the geometric flexibility of the tetrahedral meshing on a re- 
alistic model of a carbon capture and storage site, which features 
a complicated layered structure. Finally, we utilize SeisSol to anal- 
yse dynamic rupture propagation on branching faults in poroelastic 
medium and on a planar fault surrounded by a poroelastic fault 
zone. 

3.1 Seismic w av es radiated by a double-couple point 
source in poroelastic media 

3.1.1 Verification of the double-couple implementation in a 
poroelastic homogeneous full space model 

If we are interested in seismic waves at teleseismic distances from 

the hypocentre, the slip at the fault may be approximated by a 
dislocation at an infinitesimally small fault, that is, as slip at a point. 
The seismic wave field radiated by earthquakes can be approximated 
b y the w ave field radiated b y a double-couple (DC) point source (Aki 
& Richards 2002 ). A DC source may be described by a moment 
tensor M . Wolf et al. ( 2022 ) used an e xplosiv e point source to 
verify the ADER-DG scheme for poroelastic media in the open- 
source softw are SeisSol. Howe v er, the e xplosiv e source radiates P 

w aves onl y. Therefore, here, we first verify the scheme using a DC 

point source that radiates both P and S waves. 
We consider a model of a homogeneous full space similar to 

that of Wolf et al. ( 2022 ), but replace the e xplosiv e source with 
a DC point source. We use the definition of the fault coordinate 
systems as by Moczo et al. ( 2014 ), and consider a source located 
at the origin with � s = δ = λ = 0 . 0 ◦, corresponding to M xz = 

M zx = −1 being the only non-zero components of the moment 
tensor. The source time function is a Ricker wavelet with dominant 
frequency f 0 = 16 Hz and time delay t 0 = 0 . 07 s . We study two 
different materials, which only differ in their fluid viscosity. The 
material parameters (including viscosity ν for a viscous fluid) are 
given in Table 1 . Additionally, we consider an inviscid fluid with 
viscosity ν = 0.0 Pa s. We place 12 receivers in the x–z-plane along 
three different diagonals at angles 0 ◦, 22 . 5 ◦ and 45 ◦ from the x- 
axis, at distances 600 , 1000 , 1800 m or 3000 m from the source, 
respecti vel y, as illustrated in Fig. 1 . 

The 3-D mesh spans the volume [ −7 km , −7 km ] 3 , centred 
around the origin. Within a cuboid around the receivers and the 
source, we specify a characteristic mesh size of 30 . 0 m . The refine- 
ment area is rotated with respect to the domain boundaries such 
that it symmetrically aligns with the receiver locations (Fig. 1 ). 
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Figure 1. Receiver positions for the double-couple (DC) point source 3-D 

scenario in the x–z-plane. All receivers are located either 600 , 1000 , 1800 m 

or 3000 m away from the source at 0 ◦, 22 . 5 ◦ and 45 ◦ from the x-axis, 
respecti vel y. The filled black circle indicates the DC source location. The 
black rectangle shows the area in which the mesh is adapti vel y refined. 
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ithin a sphere of radius 20 m , we locally refine the mesh down
o a characteristic edge length of 3 m . Towards the boundary, the
haracteristic mesh size grows up to 240 m . This mesh refinement
trategy is chosen to balance the resolution of waves in the area of
nterest and the computational cost. In total, the mesh consists of
7 200 000 tetrahedrons. We use fifth degree polynomials, resulting
n a convergence order of O6 . We computed the numerical solution
sing 300 nodes of the supercomputer SuperMUC-NG installed at
he Leibniz Supercomputing Centre (LRZ). The reference solution
s computed using the semi-analytical solution of Karpfinger et al.
 2009 ). 

Fig. 2 shows a detailed comparison of particle velocity u calcu-
ated using SeisSol and the reference solution at a selected receiver
0 . To assess the accuracy, we e v aluate envelope misfit (EM) and
hase misfit (PM) following Kristekova et al. ( 2006 , 2009 ). The EM
uantifies differences between two signals whereas PM quantifies
ifferences in phase. Low EM and PM indicate very good agree-
ent between the solutions for the inviscid as well as the viscous
uid model setups. We note that the misfits are slightly higher when
sing the inviscid fluid. In the inviscid case, the slow P wave is
ropagating with lower velocity and thus has a shorter wavelength,
hich renders this case numerically more challenging. 
To e v aluate the ov erall accurac y, we show EM and PM values for

ll three components of particle velocity and relative fluid velocity
t all receivers in Fig. 3 . The EM and PM values of u, w, u f and w f 

re also tabulated in the Appendix (Tables D1 and D2 ). 
First, let us explain the origin of the rather large EM and PM
isfits of up to 8 and 2.5 per cent, respecti vel y, characterizing the

elativ e fluid v elocities at receiv ers 9 to 12 . In the inviscid case, the
low P wave is propagating with a wavelength of 26 . 4 m at 40 Hz ,
 hich appro ximately matches the maximum frequency of the source

ime function. The af fected recei vers are located at a distance of
800 m or 3000 m , corresponding to several tens of wavelengths of
he slow P wave. The numerical convergence analysis in K äser et al.
 2008 ) suggests that using two elements per wavelength is required
or fifth degree polynomial basis functions in the ADER-DG method
o achieve sufficiently accurate results. Thus, to accurately simulate
he propagation of the slow P wa ve, w e would need a mesh with
n element size of 13 . 25 m . With an element size of 30 m , the
umerical solution for the slow P wave is underresolved. We note
hat we do not observe large EM and PM v alues at recei vers 7 to
 . These are at the same distances from the source as receivers 9 to
2 , but owing to the source orientation, they fall in the direction of
ure S -wave radiation. Thus, there is no slow P wave propagating in
he direction of receivers 7 to 8 , and consequently, the EM and PM

isfits are not af fected b y the underresolved slow P wave. We did
ot rerun the simulation with finer resolution because this issue only
ffects the slow P wave in the unrealistic in viscid case. Moreover ,
s can be seen from Fig. 2 , only relative fluid velocities are affected
ignificantly, but these are challenging to measure observ ationall y.
evertheless, we included the non-converged cases in Fig. 3 for

ompleteness, but using different symbols (open circles). 
In summary, we observe a very good agreement between the

converged) SeisSol results and the reference solutions, with EM
elow 2 per cent and PM below 0.5 per cent. 

.1.2 Verification of the double-couple implementation in a 
oroelastic layer -over -half-space model 

e verified the homogeneous full-space model solution (in Sec-
ion 3.1.1 ) against a semi-analytical reference solution. Ho wever ,
uch a semi-analytical solution is not applicable to a model with
nternal interfaces or a free surface. Both present important features
or realistic numerical simulations of seismic wave propagation
n poroelastic materials. Therefore, we next verify our poroelastic
DER-DG scheme in a lay er -over -half-space, model w hich con-

ains one internal interface and a planar, free surface. Since we are
ot aware of available (semi-)analytic solutions, we compare our
DER-DG solution with a solution obtained by the finite-difference
ethod (Moczo et al. 2019 ; Gregor et al. 2021 , 2022 ). 
We parametrize a poroelastic layer over a poroelastic half-space,

imilar to the ‘LOHp’ model of Wolf et al. ( 2022 ). The layer is
00 m thick and consists of a softer material with slow er wa ve speeds
ompared to the half-space. Atop the slower layer, we impose a free-
urface boundary condition. The material parameters for the layer
nd the half-space are given in Table 2 . We specify a DC source with
 s = 90 ◦, δ = 22 . 5 ◦ and λ = 90 ◦. Since the slip vector lies in the

x − z plane, it allows the creation of a line source by extending
he source along the y-axis to enable comparison of the results
ith a 2-D finite-difference solution. We place the source at depth

z = 1010 m . We use a Gabor wavelet with a flat spectrum up to
oughly 10 Hz as the source time function 

( t) = cos ( ω( t − t 0 )) · exp ( −( ω( t − t 0 ) /γ ) 2 ) , (5) 

here ω = 2 · π · f 0 and f 0 = 0 . 5 , γ = 0 . 25 , t 0 = 0 . 25 . 
We create an unstructured tetrahedral mesh of the domain span-

ing [ −10 km , 10 km ] × [ −10 km , 10 km ] × [ −7 km , 0 km ] . The
ayer interface at 500 m depth is explicitly meshed. At the top,
e impose a free surface boundary condition, while for all other
ve boundaries, we impose absorbing boundaries to mimic an un-
ounded half-space. Utilizing the flexibility of an unstructured
etrahedral mesh, we use different element-size constraints in
ifferent parts of the mesh, reflecting different requirements on
he local accuracy. Such an unstructured mesh allows achiev-
ng high accuracy while also maintaining high efficiency. The
esired element edge length during the mesh generation is set
o 50 m in the cuboid [ −500 m , 2500 m] × [ −1500 m , 1500 m] ×
 −1500 m , 0 m] and coarsened towards the boundary to up to 250 m .
n addition, we refine the mesh towards the source to a high res-
lution of up to 10 m element edge length. To capture the slow
 -w ave accuratel y, we further refine the mesh inside the layer and
elow the interface up to a resolution of 5 m (i.e. in the region
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6 S. Wolf et al . 

Figure 2. Detailed time-frequency misfit plots for the particle velocity u at receiver 10 in the homogeneous full space test case. The plots show the difference 
between the numerical SeisSol solution ("sim", in red) and the semi-analytical reference solution ("ref", black dots). We plot sev eral time-frequenc y misfit 
criteria (Kristekova et al. 2006 , 2009 ): Frequency Envelope Misfit (FEM), Time-Frequency Envelope Misfit (TFEM), Time Envelope Misfit (TEM), single- 
valued Envelope Misfit (EM), single-valued Phase Misfit (PM), Frequency-Phase Misfit (FPM), Time-Frequency Phase Misfit (TFPM) and Time-Phase Misfit 
(TPM). 
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[ −200 m , 2200 m] × [ −500 m , 500 m] × [ −550 m , 0 m] ). The line
source is represented by point sources equally spaced with 50 m dis- 
tance along the y-axis. The mesh contains 47 500 000 tetrahedrons. 
As before, we use polynomials up to degree 5 as basis functions, 
to achieve a convergence order of O6 . The total simulation time is 
2 s . The reference finite difference (FD) solution is computed on a 
regular uniform grid with 0 . 625 m grid spacing. 

We record the wave field at a set of receivers placed along a reg- 
ular grid with lateral distances of 0, 250, 500 and 1000 m from the 
source. The complete receiver configuration is depicted in Fig. 4 : 
We place the receivers with a spacing of 5 m between depths of 
5 and 35 m . To enable a more accurate analysis of the seismic 
wave field near the free surface, we specify additional receivers 
at a depth of 0 . 5 and 2 . 5 m . We also place receivers in the mid-
dle of the layer, above and below the interface, and in the half- 
space. We do not consider recei vers directl y at the free surface 
because, in the FD method, the free-surface boundary condition 
( p ≡ 0 ) is enforced exactly, whereas, in the DG framework, the 
free-surface boundary condition is only enforced in a weak sense 
by imposing a particular flux term. Consequently, pore pressure 

art/ggaf184_f2.eps
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Figure 3. Envelope misfits (EM) and phase misfits (PM) for different quantities (indicated by colours) at all receivers (indicated by numbers at x-axis) in 
the poroelastic homogeneous full space model setup. Note: The open circles denote non-converged solution components. See the text for a more detailed 
explanation. 

Table 2. Material parameters for the poroelastic layer-over-half-space 
scenario. 

Parameter Halfspace Layer 

ρS 2 . 50 × 10 3 2 . 21 × 10 3 kg m 

−3 

K S 40 . 0 × 10 9 7 . 60 × 10 9 Pa 
λM 

12 . 0 × 10 9 3 . 96 × 10 9 Pa 
μM 

12 . 0 × 10 9 3 . 96 × 10 9 Pa 
κ 6 . 00 × 10 −12 1 . 00 × 10 −12 m 

2 

T 2 2 
φ 0.20 0.16 
ρF 1 . 04 × 10 3 1 . 04 × 10 3 kg m 

−3 

K F 2 . 5 × 10 9 2 . 5 × 10 9 Pa 
ν 1 . 0 × 10 −3 1 . 0 × 10 −3 Pa s 
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t the free surface in DG solutions will be small but not obey to
p ≡ 0 . Quantifying the (mis)match between the solutions using a
elative error measure (such as the time-frequency misfits) when
he reference solution is exactly zero would lead to misleading
esults. 

Above, in Section 3.1.1 , w e ha ve compared the solid velocities
nd the relative fluid velocities with the reference solution. The
elative fluid velocities are important auxiliary quantities for the
umerical method and are therefore important for comparing the
esults of two numerical methods. However, because they quantify
he relative motion of the fluid in the pore space with respect to the

otion of the matrix, they can hardly be observed in reality. In the
revious section, we have concentrated on the relative fluid veloci-
ies. The analytic reference solution only provided the displacement
f the matrix together with the relative fluid motion. The more
ele v ant quantity with practical implications is the fluid pressure.
onsequently, we will focus on the evaluation of solid velocities
nd fluid pressure from now on. 

Fig. 5 summarizes the envelope misfits for x- and z-components
f particle velocities, u and w, and pore fluid pressure p. If we
onsider the receivers at 2 . 50 m depth and below, we find that the
 i
nvelope misfits are well below 3 per cent. For the near-surface
eceivers (depth of 0 . 5 m ), we obser ve ver y small envelope misfits
EM) for particle velocities, consistently with the small EM values
or deeper recei vers. Howe ver, for pore pressure, we observe much
arger EM values up to 2 per cent with one outlier at 2.5 per cent. We
uspect that the receiver at x = 500 m , z = −15 m is within or close
o a tetrahedron with a non-optimal shape, that is, a skewed aspect
atio. Since meshing for this scenario was already challenging, and
 misfit of 2.5 per cent at a single point does not question the quality
f the overall results, we decided to keep the mesh as it is and
efrain from further refinement. All phase misfits are well below 1.5
er cent. 

To explain the partiall y ele v ated EM v alues, let’s have a closer
ook at the depth-dependent evolution of pore pressure near the free
urface. Fig. 6 shows the pore pressure time histories at x = 1000 m
ecorded at different receiver depths. First, we see that the pore pres-
ure at the free surface (blue line) is visually zero, as expected and
 xplained abov e. Second, the magnitude of pore pressure does not
ignificantl y v ary for depths between 2 . 5 and 30 m . This implies
hat the transition of pore pressure from 0 Pa at the free surface
o ∼ 30 Pa must occur within the top 2 . 5 m . Capturing such steep
ariations of pore pressure is inherently challenging for elements
ith an edge length of 5 m . We recall that the reference FD solution

s obtained with a grid spacing of 0 . 625 m . From Fig. 5 , we can con-
lude that the overall agreement is good. Ho wever , if high accuracy
n modelled pore pressure near the free surface is important, the use
f even smaller element sizes is inevitable. 

Fig. 7 shows the distribution of pore pressure for the poroelas-
ic lay er -over -half-space model. Due to the steep increase of pore
ressure near the free surface (depicted in Fig. 6 ), we cannot see
ero pore pressure at the free surface (the top edge of the plot).
e also observe an apparent discontinuity in pore pressure at the

nternal interface. The explanation of this effect is similar to that
f the free-surface effect. Pore pressure variations near the internal
nterface are too steep to be captured at this scale. 
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Figure 4. Receiver positions (circles) for the poroelastic lay er -over -halfspace scenario. The thick black line at z = 0 m represents the location of the free 
surface, and the dashed line represents the location of the material interface. The filled black circle denotes the double-couple source position. Note that the 
z-axis contains a break and uses a zoomed-in scale above the break. 
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3.1.3 Application to the Sleipner, Utsira, carbon capture and 
storage site 

In this section, we apply SeisSol to model seismic wave propagation 
in a realistic 3-D poroelastic model of a CCS site, Sleipner, which is 
a part of the larger Utsira Formation, a deep saline reservoir located 
800 to 1000 m below the sea floor off the coast of Norway. 

First, we briefly describe the procedure for developing the com- 
putational model: We define a complex 3-D geometry of interfaces 
separating sandstone layers by impermeable shale layers from the 
Sleipner 2019 benchmark model (Equinor 2019 ). For a complete 
characterization of a poroelastic material, we need ten parame- 
ters. Ho wever , such a detailed description of the materials is not 
available neither for the Sleipner site nor the Utsira formation. We, 
therefore, derive the missing material parameters as described in the 
following: First, w e use P -wa v e v elocities for the Utsira formation 
reported by Yan ( 2017 ), who further refers to Traub ( 2008 ). Based 
on the P -wave speed values, we associate individual layers with 
one of five poroelastic materials: caprock, sandstone, thick shale, 
intra-shale and bedrock. Additionally, we consider a roughly 700 m 

thick, ef fecti vel y elastic layer above the caprock. 
Fig. 8 depicts the overall structure of our model. The S -wave 

speeds are calculated from the respective P -wave speeds using em- 
pirical relations by Vernik et al. ( 2002 ) and Mavko et al. ( 2009 ). 
These empirical relations distinguish between brine-saturated sand- 
stones and shales. Therefore, we use these relations for the sandstone 
material and all shale materials (including caprock and bedrock), 
respecti vel y. Density is determined by the po wer-la w form of Gar- 
dener’s empirical relation, with coefficients for sandstone (Gardner 
et al. 1974 ; Castagna & Backus 1993 ; Mavko et al. 2009 ) con- 
sistently with Yan ( 2017 ). The estimated values of P - and S -wave 
speeds and density are given in Table 3 . We use them as the input to 
our rock physics inversion, which is based on a nearest-neighbour 
algorithm utilizing Voronoi cell sampling (Sambridge 1999 ; Dupuy 
et al. 2016 ). 

To better constrain the inversion, we fix values of fluid bulk 
modulus, fluid density and viscosity, assuming the pore space is 
filled with brine. To further help constrain the inversion, we also 
assume a-priori values of solid bulk modulus K S , solid density 
ρS and permeability κ . Yan ( 2017 ) provided values of the three 
parameters for sandstone and bedrock in the Utsira formation, but 
we assume that all shale layers (thick shale, intra-shales, caprock 
and bedrock) have the same properties regarding K S , ρS and κ . 
Since we find that the inversion very poorly constrains tortuosity, 
we use a fixed value for the tortuosity of all materials in our model. 
Subsequently, the rock physics inversion is used to find the values 
of elastic moduli of the matrix and porosity. 

SeisSol currently does not support combining elastic and poroe- 
lastic materials in one computational simulation. Therefore, instead 
of parametrizing an elastic layer above the caprock, we use a poroe- 
lastic material with negligible poro-elastic effects, that effectively 
behaves as elastic material. All poroelastic material parameters for 
all materials in the computational model are summarized in Table 4 . 
Note that except for the sandstone layers, all other layers are almost 
impermeable. 

The thickness of some intra-shale layers in the original model 
is only 1 to 2 m , which is very small compared to the wavelengths 
expected in the model for a dominant frequency of 16 Hz (tens 
of meters). Therefore, to facilitate the meshing process, we mod- 
ified the original model such that all layers are at least 5 m thick. 
Since the wavelengths in this scenario are well above 35 m , we do 
not expect that this changes the results significantly. Fur ther more, 
in this test case, we are not interested in reproducing real-world 
recordings, therefore this change of geometry does not have a large 
influence on our results. To avoid intersections of these thicker 
la yers, w e also removed some of the intra-shale layers. The area 
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Figure 5. Envelope and Phase misfits between the SeisSol DG solution and the finite difference (FD) reference solution at receiver points in the poroelastic 
lay er -over -half-space model. Compare to Fig. 4 for a sketch of the source–receiver configuration. Except for the pressure close to the free surface, we find 
excellent agreement between the DG simulation results and the FD reference solution. 
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f interest, including the complex geometry and interfaces, spans
0 m , 3200 m] × [0 m , 5900 m] . To minimize potential artificial re-
ections from the absorbing boundaries, we enlarge the mesh to the
rea [ −5000 m , 8000 m] × [ −5000 m , 11000 m] and to a depth of
500 m . We enforce a characteristic edge length of 10 m in the bulk
nd 5 m in the thinnest layers, resulting in a mesh with 65 000 000
etrahedrons. Again, polynomials up to degree 5 are used as basis
unctions. 

The geometric flexibility of the DG method allows us to explic-
tly represent the layer interfaces in the inner mesh, where the 3-D
eometry of the layers is available. Outside this area, we infer a 1-D
epth-dependent material model. Therefore, we compute the aver-
ge depth of each interface and enforce a planar interface outside
he area, where detailed layer information is available. The char-
cteristic edge length for the tetrahedral mesh generation is set to
 m in order to align with the thickness of the shale la yers. A low er
esolution version of the resulting mesh is shown in Fig. 8 . 
We consider a double-couple point source with � s =
0 . 0 ◦, δ = 90 . 0 ◦ and λ = 0 . 0 ◦ with its hypocentre at ( x , y , z ) =
 1500 , 3000 , 1500 m 

) . The source time function is a Ricker wavelet
ith a dominant frequency of f 0 = 16 Hz , which is identical to the
erification setup in the poroelastic homogeneous full-space model.
e record the seismic wave field at a line of receivers at x = 1750 m ,

y = 3750 m and z = 0 m , 5 m , . . . , 2000 m . 
We compare the poroelastic version of the model to the elastic

qui v alent, using the Gassmann approximation (Gassmann 1951 ;
arcione 2015 ). Fig. 9 shows the envelope misfits (EM) for solid
article velocities between poroelastic and equi v alent elastic mod-
ls. The EM values remain consistently below 0.5 per cent through-
ut the domain, which implies that both models essentially yield
he same deformation of the matrix. Ho wever , this interpretation
gnores the effect of pore pressure. 

The pressure of pore fluids is onl y explicitl y modelled using
he poroelastic model. In the Gassmann equi v alent elastic model,

art/ggaf184_f5.eps
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Figure 6. Time history of the pressure at x = 1000 m for different receiver depths in the poroelastic lay er -over -half-space SeisSol DG simulation. The pressure 
at z = 0 m is zero, reflecting the traction-free boundary condition. Already at a depth of z = 0 . 5 m , we observe a pressure field at roughly half the amplitude 
compared to a depth of z = 250 m . This highlights the steep pressure gradient towards interfaces. 

Figure 7. Snapshot of the pressure field at 1 . 3 s . Black lines denote the lines of receivers at x = 0 , 250 , 500 and 1000 m as well as the interface at 500 m depth. 
The black circle denotes the position of the DC source. At this scale, the pressure appears to be discontinuous across the interface. See also Fig. 6 for a detailed 
overview of the pressure field at an interface. 
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the total stress σ is the sum of the fluid pressure p and the stress 
sustained by the matrix ˜ σ , but fluid pressure is not readily quantifi- 
able. In the sandstone layers, the fluid pressure can account for up 
to two-thirds of the total stress. The fault strength depends on the 
stress sustained by the matrix ˜ σ only. Thus, the correct computation 
of the fluid pressure is vital to assess, for example, whether dynamic 
triggering of an earthquake may occur. 

We conclude that for poroelastic seismic wave propagation sce- 
narios where only the displacement of the solid matrix is of 
interest, the Gassmann equi v alent is a sufficient approximation. 
This includes, for example, ground motion estimates from kine- 
matic earthquake source models. Ho wever , in the next section, we 
will study fault interaction in dynamic r upture ear thquake mod- 
els in poroelastic media, for which the fluid pressure can have 
a significant impact on the dynamic rupture nucleation, propa- 
gation and arrest (e.g. Kammer et al. 2024 ). In these cases, the 
Gassmann equi v alent approximation can lead to misleading con- 
clusions. 

3.2 3-D dynamic rupture in poroelastic media 

Dynamic rupture models combine frictional failure along the fault 
and seismic wave propagation in the surrounding rock volume. 
In this section, we will extend 3-D dynamic rupture simulations 
with SeisSol to poroelastic materials and present two scenarios 
in which the incorporation of poroelastic materials significantly 
changes rupture dynamics. We here study the dynamic effects of 
poroelasticity in 3-D multifault rupture branching and poroelastic 
fault zone models, paying special attention to the undrained pore 
pressure changes and their impact on fault strength and rupture 
propagation. 

art/ggaf184_f6.eps
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Figure 8. View of the unstructured tetrahedral mesh adapted from the geometrically complex 3-D Sleipner, Utsira CCS site. To clearly illustrate the different 
layers and how they are geometrically represented in the mesh in this figure, the mesh resolution is lower than for the mesh that is used for the numerical 
simulations with SeisSol. The mesh shown in this figure contains 6799 000 elements, while the fine mesh used in the simulations contains 6500 000 elements. 

Table 3. Estimated P -wave speed ( V P ), S -wave speed ( V S ) and density ( ρ) for the subsurface materials in the Sleipner, 
Utsira CCS site model that we use as an input for a rock physics inversion. 

Parameter Above Caprock Caprock Sandstones Thick Shale Intra Shales Bedrock 

V P 1900 2300 2050 2250 2150 2490 m s −1 

V S 711 900 589 858 773 1040 m s −1 

ρ 2080 2060 2000 2050 2030 2230 kg m 

−3 

Table 4. Poroelastic material parameters for the modified Sleipner, Utsira CCS site computational model. 

Parameter Above Caprock Caprock Sandstones Thick Shale Intra Shales Bedrock 

K S 37 . 0 × 10 9 22 . 6 × 10 9 32 . 3 × 10 9 22 . 6 × 10 9 22 . 6 × 10 9 22 . 6 × 10 9 Pa 
ρS 2 . 02 × 10 3 2 . 39 × 10 3 2 . 66 × 10 3 2 . 39 × 10 3 2 . 39 × 10 3 2 . 39 × 10 3 kg m 

−3 

λM 

5 . 20 × 10 9 1 . 89 × 10 9 2 . 81 × 10 9 1 . 65 × 10 9 1 . 21 × 10 9 2 . 91 × 10 9 Pa 
μM 

1 . 01 × 10 9 1 . 67 × 10 9 0 . 695 × 10 9 1 . 51 × 10 9 1 . 21 × 10 9 2 . 29 × 10 9 Pa 
κ 1 . 00 × 10 −21 1 . 47 × 10 −17 2 . 00 × 10 −12 1 . 47 × 10 −17 1 . 47 × 10 −17 1 . 47 × 10 −17 m 

2 

T 3.0 1.0 1.0 1.0 1.0 1.0 
φ 0.02 0.24 0.4 0.25 0.27 0.21 
ρF 1.2 1 . 03 × 10 3 1 . 03 × 10 3 1 . 03 × 10 3 1 . 03 × 10 3 1 . 03 × 10 3 kg m 

−3 

K F 101 × 10 3 2 . 3 × 10 9 2 . 3 × 10 9 2 . 3 × 10 9 2 . 3 × 10 9 2 . 3 × 10 9 Pa 
ν 1 . 9 × 10 −4 6 . 9 × 10 −4 6 . 9 × 10 −4 6 . 9 × 10 −4 6 . 9 × 10 −4 6 . 9 × 10 −4 Pa s 

 

d  

p  

a  

t  

2  

e  

c  

p  

fl  

T  

u  

e  

w  

t  

p  

s  

f  

p  

t  

s  

s  

A  

f  

s  

t  

d  

l
 

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/2/ggaf184/8140063 by C

om
enius U

niversity user on 16 July 2025
Previous studies have shown that a critical aspect of modelling
ynamic fault strength in poroelastic media is determining the fault
ore pressure, which directly influences the effective normal stress
nd consequently the rupture process of sub- and supershear rup-
ures (Rudnicki & Rice 2006 ; Dunham & Rice 2008 ; Jha & Juanes
014 ; Song & Rudnicki 2017 ; Yang & Juanes 2018 ; Heimisson
t al. 2021 ; Li & Zhang 2023 ; Pampill ón et al. 2023 ). Pressure
hanges across the fault surface depend on the assumed poroelastic
arameters and may be discontinuous and antisymmetric, with fluid
ow and fault per meability deter mining the pressure distribution.
he short timescales of dynamic rupture simulations account for
ndrained pore pressure changes, which predominantly affect the
f fecti ve normal stress. Pore pressure is onl y uniquel y determined
hen accounting for the continuous fluid flow at the mm-scale in

he fault normal direction. Ho wever , accurately determining pore
ressure on the fault remains challenging, particularly given that
mall-scale processes such as dilatancy and compaction are not
ully constrained at seismogenic depths. Therefore, simplified ap-
roaches were considered to account for the pore-pressure effects at
he fault. Assuming that the fault is completely impermeable with
lip occurring just on one side of the impermeable seal, the fault
trength can be determined by using pressure changes on that side.
lternati vel y, the strength can be determined on both sides of the

ault (taking into account pore-pressure on each side) and the fault
trength is then selected as the weaker strength. Another approach is
o average the pore-pressure values at each side of the fault and then
etermine the fault strength. Ho wever , these simplified approaches
ead to radically different predictions on rupture dynamics. 

Dynamic rupture models have been implemented in various com-
utational methods that have been established to solve the elastic
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Figure 9. Comparison of the displacement of the elastic matrix between the true poroelastic material and the Gassmann equi v alent in the Seipner, Utsira CCS 
site SeisSol simulations. For all three velocity components, we compute the envelope misfit for receivers placed at x = 1750 m , y = 3750 m with a vertical 
distance of 5 m . We focus on the sandstone-shale formation between 600 and 1200 m depth. With misfits well below 1 per cent, we conclude that the true 
poroelastic material and the Gassmann equi v alent yield similar results. 
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wave equations, including F inite Differences, F inite Elements, F i- 
nite Volumes, Discontinuous Galerkin (DG) and Boundary Integral 
methods (e.g. Day 1982 ; Cruz-Atienza & Virieux 2004 ; Day et al. 
2005 ; Barall 2009 ; Ely et al. 2009 ; Aagaard et al. 2013 ; Zhang 
et al. 2014 ; Uphoff 2020 ). For dynamic rupture simulations using 
the ADER-DG approach, a Riemann problem is solved to obtain the 
traction and velocity values at the fault interface (de la Puente et al. 
2008 ; Pelties et al. 2012b ; Duru et al. 2021 ). Then, the slip rate is 
computed to be consistent with the friction law and the surrounding 
elastodynamic wave field. Based on the slip rate, an imposed state 
at the interface is calculated, which is used in the flux computa- 
tion later on. In order to combine poroelastic media and dynamic 
rupture, the solver for the Riemann problem needs to be adapted 
to take the fluid pressure into account. When the fluid pressure p
and the stress in normal direction σn at the fault are known, we can 
compute the ef fecti ve stress as ˜ σ = σn − p (see Section 2.2 ). In our 
model, we choose the fluid pressure p to be the average of the fluid 
pressure on both sides of the fault. 

3.2.1 3-D rupture dynamics across branching faults in poroelastic 
materials 

We examine how poroelastic materials influence dynamic rupture 
across a branching multifault geometry. We consider a homoge- 
neous half-space with a vertical planar fault. The main fault is de- 
fined as the plane [ −16000 m , 12000 m] × { 0 } × [ −15000 m , 0 m] .
At x = 0 , the branch segment intersects the main fault. The branch 
has the same width as the main fault and is 12 km long. The angle 
between the branch and the main fault is 15 ◦. The resulting fault 
geometry is depicted in Fig. 10 . 

This 3-D model setup is similar to the TPV24 scenario (Har- 
ris et al. 2009 ), but the branching angle has been reduced, and the 
branch is located on the other side of the main fault. We modified the 
original TPV24 benchmark scenario to investigate the weakening 
effect of the fluid pressure. In the original configuration, the branch 
is located in a region of reduced pore-fluid pressure induced by the 
propagating rupture, thus inhibiting further rupture propagation on 
the branch. In our modification, the branch is located in the region 
of increased pore-fluid pressure, allowing us to investigate whether 
increased pore pressure facilitates dynamic rupture propagation. We 
performed several trial-and-error simulations with varying branch- 
ing angles. We chose the scenario with the most pronounced effect 
of poroelastic rheology. 

We consider a uniform background stress tensor 

σ = 

⎛ 

⎝ 

−17 . 0 × 10 7 4 . 5 × 10 6 0 . 0 
4 . 5 × 10 6 −1 . 00 × 10 7 0 . 0 

0 . 0 0 . 0 −1 . 00 × 10 7 

⎞ 

⎠ Pa (6) 

and employ linear slip weakening friction with μs = 0 . 7 , μd = 

0 . 3 , D c = 0 . 1 m . These friction parameters differ from the original 
description of TPV24. In particular, D c is chosen smaller, as 0 . 1 m . 
In this section, we will conduct a parameter study comparing sev- 
eral poroelastic materials. In order to nucleate rupture with uniform 

fault parameters in all of considered materials, we decided to use 
this smaller value of D c . To suppress supershear transition at the free 
surface, we set the cohesion at the free surface to C = 1 MPa , which 
linearly decreases to 0 at a depth of 1000 m . Below, the cohesion 
is 0. We initiate the rupture by prescribing local fluid overpressure 
lowering the ef fecti ve normal stress: 

p 0 = exp 
(−1 × 10 −6 

(
( x + 8000) 2 + ( y + 500) 2 + ( z + 10000) 2 

))
·8 . 0 MPa . (7

The Gaussian distribution corresponds to pore pressure distribu- 
tion from an instantaneous pressure point source (Shapiro 2015 ). 
Although there are more realistic models of pore pressure distribu- 
tion due to fluid injection (e.g Shapiro 2015 ; Galis et al. 2017 ), the 
Gaussian perturbation is sufficient for our case. 

We consider the material parameters used by Pampill ón et al. 
( 2023 ) (Table S2 in Supporting Information), see Table 5 . The Seis- 
Sol parameters can be obtained using these relations: μM 

= 

E 
2(1 + νP ) 

, 

λM 

= 

E ·νP 
(1 + νP ) ·(1 −2 νP ) 

, K M 

= λM 

+ 

2 
3 μM 

, K S = 

K M 
1 −αB 

, and K F = 

1 
β

. 
To investigate the role of poroelastic material on rupture prop- 

agation, we considered varying values of the Biot coefficient α. 
Additionally, we also consider the Gassmann equivalent elastic ma- 
terial. Because the Gassmann equi v alent material neglects all fluid 
effects, we use a modified normal stress ˜ σ = σyy − p 0 to nucleate 
the rupture. 

For the numerical simulation of the behaviour at the branch, 
we embed the fault in the cuboid [ −26000 m , 22000 m] ×
[ −10000 m , 13100 m] × [ −25000 m , 0 m] . At z = 0 m , we impose
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Figure 10. Sketch of the fault geometry for the fault branching experiment. The two circles on the main fault represent the nucleation area. The top of the fault 
aligns with the free surface. 

Table 5. Generic material parameters for the dynamic rupture fault branch- 
ing experiment. 

Parameter Description Value 

E Young’s modulus 20 . 0 × 10 9 Pa 
νP Poisson ratio 0.25 
ρS Solid density 2 . 50 × 10 3 kg m 

−3 

ρF Fluid density 1 . 00 × 10 3 kg m 

−3 

ν Fluid viscosity 0.001 Pa s 
κ Permeability 1 . 00 × 10 −14 m 

2 

β Fluid compressiblity 2 . 00 × 10 −9 Pa −1 

φ Porosity 0.1 
α Biot coefficient 0.3 up to 0.9 
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 free surface boundary condition, all other boundaries are absorb-
ng. This domain is designed ensuring such that each point on the
ault system is at least 10 km away from an absorbing boundary.
e chose a mesh resolution of 100 m , which has proven to be suf-

ciently accurate in a previous convergence test (Wolf 2024 ). The
cenario does not contain any material interfaces, so we do not
xpect pressure discontinuities (off the faults) as in section Sec-
ion 3.1.2 The final mesh contains 2300 000 elements. As before,
e use polynomials up to degree 5 as basis function. We used 30
odes of Frontera, installed at the Texas Advanced Computing Cen-
er (TACC), to compute the numerical solution up to a time of 20 s .

Fig. 11 shows a comparison of the on-fault rupture dynamics and
he seismic wave field after 11 s simulation time using the highest
nd lowest considered values of α, respecti vel y. On the fault, the
olour depicts the friction coefficient. In the purple areas, the friction
oefficient is still at its initial (static) value, that is, the fault has
ot broken there. In the yellow areas, the friction coefficient has
educed to 0.3, the dynamic friction coefficient, that is, the fault has
ntirely weakened. The figure reveals that rupture jumps onto the
ranching fault in poroelastic material with α = 0 . 9 . In contrast,
or the elastic equi v alent material, onl y the main fault breaks and
he branch is not acti v ated. For α = 0 . 3 , poroelastic material and
qui v alent elastic material yield the same results, that is, the rupture
oes not propagate to the branch. 

The Biot coefficient defines the partitioning of the total stress
etween the solid matrix and the pore fluid (e.g. De Simone et al.
023 ). α = 0 implies that the external stress results in no increase
n pore pressure, and α = 1 means that the external stress is equally
artitioned between the stress applied to the solid matrix and pore
ressure. To better understand the influence of the Biot coefficient,
e perform a series of simulations for α ranging between 0.3 and
.9 in steps of 0.05. This range covers the typically values of α (De-
ournay & Cheng 1993 ). We find that for α < 0 . 75 , the poroelas-
ic and the Gassmann equi v alent materials yield consistent results.
o wever , for α ≥ 0 . 75 , the results deviate. In the poroelastic case,
oth faults, the main fault and the branch, break, but in the elastic
qui v alent material only the main fault breaks. 

In the elastic equi v alent material, the branch never breaks in our
imulations, whereas in the poroelastic material it breaks, if the Biot
oef ficient is suf ficientl y high. This implies that for high values of
, the elastic equi v alent material is not a sufficient approximation
f the full poroelastic behaviour. In the case of a low Biot coeffi-
ient, though, we do not see a qualitative difference between the
oroelastic material and its elastic equi v alent. At the same time, it
s important to note that the response of poroelastic material does
ot depend on the Biot coefficient only, and, therefore, α = 0 . 75 is
ot a universal threshold for applicability of the elastic equi v alent
aterial for rupture dynamics. 
Additionall y, this ef fect is reco gnizable in the release of seismic

nergy. We plot the on-fault measured seismic moment rate for all
our scenarios in Fig. 12 . For α = 0 . 3 , the moment release rate is
lmost identical, when comparing the poroelastic and elastic mate-
ials. For α = 0 . 9 , the picture is very different. The moment release
ate for the elastic version remains consistent with that for α = 0 . 3
it is, in fact, slightly lo wer). Ho wever , in the poroelastic version, we
bserve an additional increase in seismic moment rate after around
 s , corresponding to the simulation time when the rupture jumps
nto the branch. 

Finally, we briefly mention our analysis using poroelastic proper-
ies corresponding to real-world materials in (Detournay & Cheng
993 ; Li & Zhang 2023 ) instead of generic material parameters (
ee Table 6 ). As expected, for all elastic equi v alent material, onl y the
ain fault breaks and the branch remains intact. For charcoal gran-

te (with very low α of 0.222), the elastic equi v alent and poroelastic
aterials yield consistent results. Ho wever , for all other materials,
e observe that for poroelastic rheology, the rupture diverted to the
ranch only, that is, the main fault remains intact behind the branch-
ng point. We thus observe qualitati vel y dif ferent behaviour than for
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Figure 11. Friction coefficient and wave field in the fault branching scenario after 11 s . Yellow (darker) parts of the fault are entirely broken, purple (lighter) 
parts are yet intact. The top ro w sho ws the results for α = 0 . 9 and the bottom ro w sho ws results for α = 0 . 3 . On the left, the simulation using the poroelastic 
material is shown. In the right column, the elastic equi v alent is shown. Parts of the branched fault are cropped to visualize the main fault behind it. In addition, 
all snapshots in steps of 1 s for the α = 0 . 9 case can be found in Figs C1 and C2 in the Appendix. Animations of this scenario can be found in the electronic 
supplement. 

Figure 12. Seismic moment rate release over time for the four possible scenarios ( α = 0 . 3 /α = 0 . 9 , poroelastic/elastic equi v alent) of the branching scenario. 
For α = 0 . 3 , the lines are virtually identical. For α = 0 . 9 , we clearly see the additional release of seismic energy caused by the breaking branch after t = 5 s . 
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Table 6. Realistic material parameters for the poroelastic fault branching dynamic rupture experiment 

Parameter Charcoal granite Pecos sandstone Ruhr sandstone Westerly granite 

K S 45 . 0 × 10 9 39 . 0 × 10 9 36 . 0 × 10 9 45 . 0 × 10 9 Pa 
ρS 3000 2590 2230 3000 kg m 

−3 

λM 

22 . 3 × 10 9 2 . 77 × 10 9 4 . 33 × 10 9 15 . 0 × 10 9 Pa 
μM 

19 . 0 × 10 9 5 . 90 × 10 9 13 . 0 × 10 9 15 . 0 × 10 9 Pa 
κ 9 . 87 × 10 −20 7 . 90 × 10 −16 1 . 97 × 10 −16 3 . 95 × 10 −19 m 

2 

T 2.0 2.0 2.0 2.0 
φ 0.02 0.2 0.02 0.01 
ρF 1000 1000 1000 1000 kg m 

−3 

K F 2 . 43 × 10 9 2 . 30 × 10 9 2 . 34 × 10 9 2 . 56 × 10 9 Pa 
ν 0.001 0.001 0.001 0.001 Pa s 
α 0.222 0.828 0.639 0.444 

Figure 13. Sketch of the fault geometry together with the surrounding fault 
zone for the poroelastic fault zone dynamic rupture experiment. The two 
circles on the fault represent the nucleation area. The top of the fault aligns 
with the free surface boundary. At the top, the fault zone is 1000 m wide 
and at the bottom its width is reduced to 200 m . 
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Table 7. Material parameters for the poroelastic fault zone dynamic rupture 
scenario. 

Parameter Basement Fault zone 

K S 41 . 7 × 10 9 80 . 0 × 10 9 Pa 
ρS 2 . 74 × 10 3 2 . 50 × 10 3 kg m 

−3 

λM 

16 . 7 × 10 9 4 . 00 × 10 9 Pa 
μM 

25 . 0 × 10 9 6 . 00 × 10 9 Pa 
φ 0.05 0.02 
κ 2 . 00 × 10 −17 1 . 00 × 10 −13 m 

2 

T 2.0 2.0 
K F 2 . 50 × 10 9 2 . 50 × 10 9 Pa 
ρF 1 . 00 × 10 3 1 . 00 × 10 3 kg m 

−3 

ν 1 . 00 × 10 −3 1 . 00 × 10 −3 Pa s 
α 0.2 0.9 
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he generic material properties above. This indicates that complex
nteraction between propagating dynamic rupture and dynamically
nduced pore-pressure variations determines vastly different dy-
amic triggering possibilities in a multifault system. 

.2.2 Fault embedded in a poroelastic damage zone 

n the second example application, we analyse dynamic rupture
cross a fault embedded in a poroelastic fault damage zone. Natural
amage zones contain highly fractured rocks (e.g. Chester et al.
993 ; Ben-Zion & Sammis 2003 ) and can impact on rupture dy-
amic, for example, inducing pulse-like rupture (Huang & Ampuero
011 ; Pelties et al. 2015 ). In distinction to previous studies, we here
pproximate a fault zone as a poroelastic material with higher per-
eability compared to the bedrock. Fig. 13 depicts the considered

ault zone geometry with the strike-slip fault in the middle and the
urrounding damaged zone. We consider the fault zone and base-
ent materials from (Chang & Segall 2016 ), which can be found in
able 7 . In the fault zone, the S -wave speed is reduced to approxi-
ately half of the value of the undamaged material in the basement.
e also note that the Biot coefficients increases from 0.2 in the

asement to 0.9 in the damaged zone. 
We consider the same background stress σ as in the fault branch-

ng example (c.f. eq. 6 ) and the initial pressure 

p 0 = exp 
(−5 × 10 −6 

(
( x) 2 + ( y) 2 + ( z + 1000) 2 

)) · 8 . 0 MPa . (8) 

he fault is governed by linear slip weakening friction with μs =
 . 7 , μd = 0 . 3 , D c = 0 . 1 m . In this case, we do not consider shallow
rictional on-fault cohesion. The domain of interest is the cuboid
 −12 km , 12 km ] × [ −10 km , 10 km ] × [ −12 km , 0 km ] . We ex-
licitly mesh the fault and the boundaries of the fault zone. The
haracteristic edge length is set to 25 m within the fault zone. with
esh coarsening towards the boundary outside the fault zone. The

-D mesh consists of 2420 000 tetrahedrons. 
We run the simulation for 5 s . We compare the results for the

oroelastic material with those for the Gassmann equi v alent mate-
ial, just as we did in the fault branching experiment earlier. We do
ot expect to see as huge differences in the intensity of the rupture
s can be found in (Li & Zhang 2023 ), who use a different mech-
nism to determine the pore pressure at the fault (c.f. Section 3.2 ).
ig. 14 compares the slip rate snapshots at the time 1 . 3 s . We ob-
erve almost identical rupture dynamics near the rupture fronts.
o wever , further behind the rupture fronts, the solutions look very
ifferent. The rupture propagates in a pulse-like regime (e.g. Heaton
990 ; Gabriel et al. 2012 ) in the poroelastic material, whereas in
 crack-like mode in the elastic equi v alent material. We conjecture
hat healing in the poroelastic material occurs as a consequence of
educed pore pressure at the fault due to reflected waves from the
nterface of the poroelastic damage zone. 

 D I S C U S S I O N  

ur models illustrate how the poroelastic material model affects
eismic wave propagation and rupture dynamics in 3-D earthquake
cenarios. In high-resolution seismic wave propagation simulations,
e find an apparent pressure discontinuity across material inter-

aces, which increases the requirements on the numerical resolu-
ion. While it is known that poroelastic models require increased
ccuracy at material interfaces, (e.g. Zhang et al. 2022 ), the appar-
nt pressure discontinuity has not yet been discussed. Nonetheless,
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Figure 14. Slip rate magnitude ‖ � s ‖ on the fault at time t = 1 . 3 s in the fault zone example. Left : the results for the poroelastic material. Right : the results for 
the elastic equi v alent material. The upper rupture front is the one reflected from the free surface, the lower one propagates directly from the hypocentre. We 
clearly observe that the rupture arrests earlier in the poroelastic case, compared to the elastic equi v alent. 
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we find this pronounced discontinuity in two independent numeri- 
cal solutions—using SeisSol, a 3-D discontinuous Galerkin imple- 
mentation, and using a 2-D finite-difference code. Therefore, we 
consider this effect to be a key component of the solution of the 
poroelastic wave equation. 

In the case of the Sleipner reservoir scenario, we observe that 
the Gassmann equi v alent serves as a suitable approximation to the 
poroelastic material describing the displacements of the matrix. 
Ho wever , the fluid pressure is not part of this equi v alent elastic 
model, as it only considers the combined stress, that is, the stress 
sustained jointl y b y the matrix and the fluid. Consequently, how 

much of the total stress is sustained by the matrix and how much is 
sustained by the fluid is not captured by the Gassmann approxima- 
tion. 

In our dynamic rupture simulations, we observe that the pressure 
weakening effect, resulting from changes in ef fecti ve fault strength 
due to fluid pressure variations, is not negligible. This effect sub- 
stantially changes the dynamic rupture characteristics, including 
rupture velocity and f ault-to-f ault interaction. Therefore, we argue 
that the Gassmann equi v alent should not be used when fluid pres- 
sure is expected to play a vital role in the specific application, as it 
does not adequately capture such dynamic effects. 

The analysis of two complex 3-D dynamic rupture scenarios 
highlights that the pore pressure weakening changes the rupture 
characteristics significantly. In the first scenario, a secondary fault 
branch is dynamically activated additionally to the main fault due to 
poroelastic effects and releases more seismic energy. In the second 
scenario, dynamic rupture arrests more readily in the poroelas- 
tic case, illustrating the influence of fluid pressure on earthquake 
size. 

Further studies are required to investigate the influence of addi- 
tional material parameters beyond the Biot coefficient α, which may 
further influence rupture dynamics (Vyas et al. 2023 ) and seismic 
w ave propagation. Also, anal ysis of poroelastic ef fects in more real- 
istic models going beyond idealized benchmark scenarios is beyond 
the scope of this study. 

Our model is limited to the low-frequency regime. We only con- 
sider frequencies up to the frequency above which flow through the 
pores would become turbulent. At frequencies of interest for most 
seismic applications, the flow in pores can be considered laminar, 
and thus the low-frequency regime suffices. An example of cases 
when this assumption is no longer valid are earthquake ground 
motions simulations in loose water saturated sediments (e.g. Gre- 
gor et al. 2021 ). 

This study focuses on rupture dynamics governed by linear slip- 
weakening friction. Our findings indicate that the dynamic inter- 
actions between rupture and dynamically induced pore pressure 
variations are complex and highly nonlinear. Different effects may 
be expected for different friction laws and can be the focus of future 
work. For example, a combination with the more complex concept 
of rate-and-state friction can easily be integrated in our implemen- 
tation of dynamic rupture in a poroelastic rheology. 

5  C O N C LU S I O N S  

We have successfully incorporated double-couple point sources in 
poroelastic media using the ADER-DG method within the earth- 
quake simulation software SeisSol. We verified our implementation 
in canonical models using independent methods, confirming the 
accuracy and reliability of our approach. Fur ther more, we demon- 
strated the potential of our method through a complex 3-D example 
of poroelastic seismic wave propagation at the Sleipner CCS site. 
Our analysis shows that the Gassmann elastic equi v alent model 
yields almost identical results to the fully poroelastic model when 
focusing solely on solid particle v elocities. Howev er, the elastic 
equi v alent fails to capture the evolution of pore pressure. Thus, re- 
sults relying on the elastic equivalent model may be misleading in 
poroelastic dynamic rupture applications where fault(s) are exposed 
to dynamically induced variations of pore pressure. 

By using suitable numerical fluxes, we have combined the dy- 
namic rupture model with poroelastic rheology using the ADER- 
DG method. This enhancement to the SeisSol solver allowed us 
to investigate poroelastic effects on 3-D dynamic rupture in com- 
plex scenarios. While for seismic wave propagation problems we 
observ e relativ ely limited effects of the poroelastic rheology that 
cannot be captured by the elastic equi v alent model, we observe sig- 
nificant and intricate effects on dynamic rupture behaviour in the 
poroelastic models that cannot be captured in the elastic equi v alent 
models. In a fault branching scenario, we observe that, depending 
on the Biot coefficient α, fault branching is facilitated or inhibited. 
In some cases, dynamic r upture diver ted to the branch, leaving the 
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ain fault unruptured. When the fault is surrounded by a poroelas-
ic fault zone, we observe pulse-like rupture with a healing front
nduced by reduced pore pressure due to reflected waves from the
oundaries of the poroelastic damage zone. 

This study is, to the best of our knowledge, the first where a 3-D
etrahedral mesh is used to analyse dynamic rupture propagating on
 fault system with complicated geometry embedded in poroelas-
ic media. This advancement allows considering more complicated
ault geometries, such as fault branching, intersections and poroe-
astic fault zones. The observed differences between results for the
oroelastic model and the Gassmann equi v alent model suggest that
oroelastic effects may play a crucial role in e xplaining comple x and
nexpected dynamics rupture patterns. Since the algorithms have
een implemented in the open-source solver SeisSol, this study can
e a starting point for other researchers to include poroelastic effects
n their models. 
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e la Puente , J. , Dumbser, M., K äser, M. & Igel, H., 2008. Discontinuous
Galerkin methods for wave propagation in poroelastic media, Geophysics,
73 (5), T77–T97. 

e la Puente , J. , Ampuero, J.-P. & K äser, M., 2009. Dynamic rupture mod-
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olf , S. , Galis, M., Uphoff, C., Gabriel, A.-A., Moczo, P., Gregor, D. &
Bader, M., 2022. An efficient ADER-DG local time stepping scheme for
3D HPC simulation of seismic waves in poroelastic media, J. Comput.
Phys., 455, 1–29. 

an , H. , 2017. Rock physics inversion for CO2 characterization at Sleipner,
Master’s thesis, NTNU. 

ang , Z. & Juanes, R., 2018. Two sides of a fault: grain-scale analysis
of pore pressure control on fault slip, Phys. Rev. E, 97 (2), 022 906,
doi:10.1103/PhysRevE.97.022906. 

hang , H. , Sun, Y.-C., Ren, H., Zhang, W., Huang, Q. & Chen, X., 2022.
Discontinuous curvilinear collocated grid combined with nonuniform
time step Runge-Kutta scheme for poroelastic finite-difference modelling,
Geophysics, 88 (1), T1–T12. 

hang , Z. , Zhang, W. & Chen, X., 2014. Three-dimensional curved grid
finite-difference modelling for non-planar rupture dynamics, Geophys. J.
Int., 199 (2), 860–879. 

hu , X. & McMechan, G.A., 1991. Numerical simulation of seismic re-
sponses of poroelastic reservoirs using Biot theory, Geophysics, 56 (3),
328–339. 

S  F O R  T H E  P O RO E L A S T I C  WAV E  

om eq. ( 1 ) as they are gi ven b y de la Puente ( 2008 ). SeisSol and the
in such a first-order formulation. The basic material parameters are
meters λM 

, μM 

of the matrix together with porosity φ, permeability
nsity ρF and the viscosity ν. Biot coefficient is defined as 1 − K M 

K S 

(A1) 

d source matrices now read: 
P

P

P

P

P

P

R

R

S

S

S

T

T

A
E

H
A
t
κ

a

w

http://dx.doi.org/10.1029/2018JB015533
http://dx.doi.org/10.1038/s41598-022-26890-9
http://dx.doi.org/10.1029/2011JB008857
http://dx.doi.org/10.1029/2011JB008857
http://dx.doi.org/10.1007/s00024-014-0881-0
http://dx.doi.org/10.1063/1.91445
http://dx.doi.org/10.1785/0220220022
http://dx.doi.org/10.1029/2006JB004396
http://dx.doi.org/10.1046/j.1365-246X.1999.00876.x
http://dx.doi.org/10.1115/1.4035179
http://dx.doi.org/10.1029/2022GL098872
http://dx.doi.org/10.1038/s41467-019-09125-w
http://dx.doi.org/10.1145/3406835
http://dx.doi.org/10.1190/1.1471602
http://dx.doi.org/10.1785/BSSA0720020345
http://dx.doi.org/10.1785/0120220205
http://dx.doi.org/10.1103/PhysRevE.97.022906
http://dx.doi.org/10.1190/geo2022-0180.1
http://dx.doi.org/10.1093/gji/ggu308
http://dx.doi.org/10.1190/1.1443047


20 S. Wolf et al . 

A = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
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ρ1 
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ρ2 
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ρ2 
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ρ2 
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⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A2) 

B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
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Here, we have added the auxiliary variables 

ρ = φρF + (1 − φ) ρS , 

m = ρF T /φ, 

ρ1 = ρ − ρ2 
F /m, 

ρ2 = ρF − mρ/ρF , 

β1 = ρf /m, 

β2 = ρ/ρF . 

(A6) 

A P P E N D I X  B :  D E TA I L S  O F  T H E  P O RO E L A S T I C  DY NA M I C  RU P T U R E  S O LV E R  

We follow the ideas of de la Puente et al. ( 2009 ), Duru et al. ( 2021 ) and Uphoff ( 2020 ), who studied dynamic rupture in ADER-DG schemes, 
to derive the equations for dynamic rupture sources in poroelastic media. An even more detailed derivation can be found in (Wolf 2024 ). 

The first task is to compute the state � Q 

∗ at the interface, based on the solution of a Riemann problem, that is, the states ˜ Q 

− and ˜ Q 

+ are given 
as initial values on the left and the right, respecti vel y. In the poroelastic case, we observe three wave types ( P wa ve, S Wa ve slow P wave). 
Therefore, we observe a solution structure as in Fig. B1 . The states � Q 

a , � Q 

b , � Q 

c , � Q 

d , � Q 

e and � Q 

f can be computed from the Rankine–Hugoniot 
relations, if we assume continuity of the normal stress, the fluid pressure, the solid velocities and the relative fluid velocity in normal direction 
at x = 0 . The states at the interface are expressed as 

� Q 

c − ˜ Q 

− = α1 � r −1 + α2 � r −2 + α3 � r −3 + α4 � r −4 
˜ Q 

+ − � Q 

d = α10 � r + 10 + α11 � r + 11 + α12 � r + 12 + α13 � r + 13 , 
(B1) 

where α are coefficients and � r are eigenvectors of the flux matrix A . The eigenvectors � r 5 , � r 6 , � r 7 , � r 8 and � r 9 do not contribute to the solution 
of the Riemann problem, since their respecti ve eigenv alues are all 0. We write down the eigenvectors in a 13 × 13 matrix and slice out four 
4 × 4 matrices: 

Here a ∗ denotes a non-zero entry. The matrices and correspond to the traction values � T = 

(
σ11 σ12 σ13 p 

)T 
, whereas the 

matrices and correspond to the velocity values � V = 

(
u v w u f 

)T 
. In addition, we define � α− = 

(
α1 α2 α3 α4 

)T 
and � α+ = (

α10 α11 α12 α13 

)T 
. Now, we can write eq. ( B1 ) as: 

� T c − ˜ T − = R 

−
T � α−, � V 

c − ˜ V 

− = R 

−
V � α−, 

˜ T + − � T d = R 

+ 
T � α+ , ˜ V 

+ − � V 

d = R 

+ 
V � α+ . 

(B3) 

At a dynamic boundary interface, the traction parts are continuous: � T ∗ = 

� T c = 

� T d , but the tangential velocities can be discontinuous. Fault 
opening is not allowed in our model, thus u 

∗ = u 

c = u 

d and u 

∗
f = u 

c 
f = u 

d 
f . Based on the jump conditions, we can establish a relation that the 
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Figure B1. Solution structure of the poroelastic Riemann problem. In addition to the P and S wa ves, w e also observe the slow P wave (subscript b for Biot). 
We observe left and right-hand states ( ̃  Q 

−, ˜ Q 

+ ) and six intermediate states � Q 

a , � Q 

b , � Q 

c , � Q 

d , � Q 

e , � Q 

f , separated by the slow and fast P and the S waves. 

traction at the interface and the slip rate have to fulfill. Uphoff ( 2020 , eq. 4.50) has derived the formula for the elastic case. If we follow the 
same steps for the poroelastic case, we find: 

� 

� V 

∗
� 

= 

� V 

d − � V 

c 

= 

(
˜ V 

+ − R 

+ 
V � α+ ) − (

˜ V 

− + R 

−
V � α−)

= 

˜ V 

+ − ˜ V 

− − R 

+ 
V 

(
R 

+ 
T 

)−1 
(

˜ T + − � T d 
)

− R 

−
V 

(
R 

−
T 

)−1 
(

� T c − ˜ T −
)

= 

˜ V 

+ − ˜ V 

− − R 

+ 
V 

(
R 

+ 
T 

)−1 ˜ T + + R 

−
V 

(
R 

−
T 

)−1 ˜ T −

+ 

(
R 

+ 
V 

(
R 

+ 
T 

)−1 − R 

−
V 

(
R 

−
T 

)−1 
)

� T ∗. 

(B4) 

We define the matrices 
(
Z 

±)−1 
: = R 

±
V 

(
R 

±
T 

)−1 
and η−1 : = R 

−
V 

(
R 

−
T 

)−1 − R 

+ 
V 

(
R 

+ 
T 

)−1 
. In analogy to eq. 4.50 in Uphoff ( 2020 ), we write: 

� 

� V 

∗
� 

= 

� 
˜ V 

� − (
Z 

+ )−1 ˜ T + + 

(
Z 

−)−1 ˜ T − + η−1 � T ∗. (B5) 

The structure of the involved matrix only couples u and u f , but the tangential velocity components v and w are still independent as in the 
elastic case. Similar to the elastic case, we define 

� � : = η
(� 

˜ V 

� − (
Z 

+ )−1 ˜ T + + 

(
Z 

−)−1 ˜ T −
)

. (B6) 

This allows us to relate the tractions and velocities at the fault: 

η
� 

� V 

∗
� 

+ 

� T ∗ = 

� � . (B7) 

Now, the task is to find velocities and tractions � V 

DR and � T DR , which are consistent with the friction law and eq. ( B7 ). We already have 
established continuity of u and u f , thus � u 

DR � = 0 and 
� 

u 

DR 
f 

� = 0 . As a direct consequence, we obtain σ DR 
11 = � 1 and p DR = � 4 . For the 

tangential parts of the traction, we have to solve a system of linear equations: 

τ
� 

V 

DR 
2 

� = T DR 
2 ‖ � s ‖ , η22 

� 
V 

DR 
2 

� + T DR 
2 = � 2 , 

τ
� 

V 

DR 
3 

� = T DR 
3 ‖ � s ‖ , η33 

� 
V 

DR 
3 

� + T DR 
3 = � 3 , 

(B8) 

where η22 and η33 are coefficients of the matrix η. The fault strength τ ( ‖ � s ‖ , φ) = μ f ( ‖ � s ‖ , ψ) · σn depends on the friction parameter μ f and 
the ef fecti ve normal stress σn . Depending on the choice of friction law, the friction parameter depends on the slip rate ‖ � s ‖ and the state 
variable φ. In the isotropic poroelastic case, the values η22 and η33 coincide. We define η : = η22 = η33 . In the isotropic poroelastic case, the 

values η22 and η33 coincide. We recall that ‖ � s ‖ = 

√ � 
V 

DR 
2 

� 2 + 

� 
V 

DR 
3 

� 2 
and obtain the equation 

τS ( ‖ � s ‖ , φ) + η‖ � s ‖ = 

√ 

� 

2 
2 + � 

2 
3 , (B9) 

which has to be solved for the slip rate ‖ � s ‖ . 
We recall that the fluid pressure has a weakening effect on the fault: When computing the fault strength τ = max 

(
0 , −μ f ˜ σn − C 

)
, we 

have to consider the augmented normal stress ˜ σn = T 1 − p. We use a Newton–Raphson solver to calculate the slip rate based on eq. ( B9 ). 
Once the slip rate ‖ � s ‖ is known, we compute its two components and the two tractions from eq. ( B8 ). Now, the imposed state � T DR and the 

slip rates 
� 

� V 

DR 
� 

are known. We use eq. ( B4 ) to compute � V 

c and � V 

d . From eq. ( B1 ), we conclude that we can compute � V 

c and � V 

d from 

˜ V 

−, 
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˜ V 

+ and � α±. The coefficients � α± solely depend on the traction values � T c , � T d , ˜ T − and ˜ T + , which are known at this time already. We conclude 

� V 

c = 

˜ V 

− + R 

−
V � α−

= 

˜ V 

− + R 

−
V 

(
R 

−
T 

)−1 
(

� T c − ˜ T −
)

= 

˜ V 

− + 

(
Z 

−)−1 
(

� T c − T −
)

� V 

d = 

˜ V 

+ − R 

+ 
V � α+ 

= 

˜ V 

+ − R 

+ 
V 

(
R 

+ 
T 

)−1 
(

˜ T + − � T d 
)

= 

˜ V 

+ − (
Z 

+ )−1 
(

˜ T + − � T d 
)

. 

(B10) 

With this equation, the states � Q 

c and � Q 

d are known. They are consistent with the Rankine–Hugoniot jump conditions as well as with the 
friction law. These states can now be used as imposed states at the interface to compute the upwind flux. 
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A P P E N D I X  C :  D E TA I L E D  S NA P S H O T S  F O R  T H E  FAU LT  B R A N C H I N G  S C E NA R I O  

In this section, we show additional snapshots extending the information shown in Fig. 11 . 

Figure C1. Time-series of the friction coefficient and wave field in the fault branching scenario for the poroelastic case with α = 0 . 9 . A more detailed movie 
of the rupture process is added as electronic supplement. 
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3D poroelastic waves and dynamic rupture 25 

Figure C2. Time-series of the friction coefficient and wave field in the fault branching scenario for the Gassmann equivalent with α = 0 . 9 . A more detailed 
movie of the rupture process is added as electronic supplement. 
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A P P E N D I X  D :  M I S F I T  TA B L E S  F O R  T H E  H O M O G E N E O U S  F U L L - S PA C E  T E S T  C A S E  

Table D1. Misfits at all receiver positions for the homogeneous full space, when the pores are filled with an inviscid 
fluid (all values in % ). 

Receiver EM u PM u EM w PM w EM u f PM u f EM w f PM w f 

1 0.05 0.0 0.71 0.11 0.47 0.0 0.84 0.11 
2 0.06 0.0 0.71 0.10 0.58 0.0 0.78 0.11 
3 1.12 0.11 0.82 0.11 0.81 0.14 0.81 0.16 
4 1.15 0.12 0.96 0.11 1.52 0.41 1.60 0.45 
5 0.35 0.06 0.70 0.14 1.20 0.12 0.88 0.11 
6 0.34 0.06 0.69 0.14 1.10 0.20 0.86 0.17 
7 0.08 0.0 0.68 0.10 0.43 0.0 0.71 0.10 
8 0.06 0.0 0.65 0.10 0.58 0.0 0.66 0.10 
9 1.28 0.21 1.22 0.22 4.22 1.31 4.71 1.43 
10 1.52 0.35 1.47 0.36 7.86 2.47 7.91 2.45 
11 0.34 0.07 0.65 0.14 4.56 1.43 2.12 0.66 
12 0.36 0.09 0.63 0.14 6.83 2.19 2.76 0.87 

Table D2. Misfits at all receivers for the homogeneous full space scenario, when the pores are filled with a viscous 
fluid (all values in % ). 

Receiver EM u PM u EM w PM w EM u f PM u f EM w f PM w f 

1 0.05 0.0 0.72 0.10 0.08 0.0 0.82 0.12 
2 0.06 0.0 0.71 0.10 0.09 0.0 0.81 0.12 
3 1.16 0.11 0.84 0.10 1.71 0.15 1.31 0.12 
4 1.19 0.11 1.05 0.09 1.80 0.14 1.78 0.12 
5 0.34 0.06 0.70 0.13 0.34 0.07 0.78 0.16 
6 0.33 0.06 0.69 0.14 0.36 0.06 0.76 0.15 
7 0.08 0.0 0.68 0.10 0.14 0.0 0.77 0.12 
8 0.07 0.0 0.66 0.10 0.11 0.0 0.76 0.13 
9 1.16 0.10 1.04 0.10 1.76 0.14 1.63 0.13 
10 1.13 0.10 1.01 0.10 1.80 0.13 1.51 0.14 
11 0.31 0.06 0.65 0.14 1.87 0.15 1.60 0.22 
12 0.30 0.06 0.63 0.14 0.46 0.05 0.77 0.15 
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article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/2/ggaf184/8140063 by C

om
enius U

niversity user on 16 July 2025

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHODS
	3 RESULTS
	4 DISCUSSION
	5 CONCLUSIONS
	ACKNOWLEDGMENTS
	SUPPORTING INFORMATION
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: FLUX AND SOURCE MATRICES FOR THE POROELASTIC WAVE EQUATION
	APPENDIX B: DETAILS OF THE POROELASTIC DYNAMIC RUPTURE SOLVER
	APPENDIX C: DETAILED SNAPSHOTS FOR THE FAULT BRANCHING SCENARIO
	APPENDIX D: MISFIT TABLES FOR THE HOMOGENEOUS FULL-SPACE TEST CASE

