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ABSTRACT
It is well known that higher-order and thus longer-stencil finite-difference operators
(FDOs) can be advantageously used for evaluating spatial derivatives in the finite-differ-
ence schemes applied to smoothly heterogeneous media. This is because they reduce spa-
tial grid dispersion. However, realistic models often include sharp material interfaces. Can
high-order long-stencil FDOs be applied across such material interface? We address this
question by comparing exact spatial derivatives against derivatives approximated by
FDOs with respect to the interface representation, velocity contrast, and order of the
FDO. The interface is considered in an arbitrary position with respect to the spatial grid.
The material interface exactly represented by the Heaviside step function causes a large
error of the FDO spatial derivative near the interface. The maximum error near the inter-
face practically does not depend on the order of the FDO. There are only small differences
in errors among FDOs of different orders elsewhere. The larger the velocity contrast, the
larger the error. If the material interface is represented using a wavenumber band-limited
Heaviside function, the error is smoothed and several times smaller. The error in the wave-
number band-limited model decreases with an increasing order of the FDO. Our findings
combined with those by Moczo et al. (2022) lead to the important conclusion: The wave-
number band-limited representation of the material interface is not only a necessary con-
sequence of discretization of the original physical model but also significantly reduces the
error in evaluating a spatial derivative using the FDO.

KEY POINTS
• We address the problem of accuracy of the spatial finite-

difference operators across a material interface.

• Accuracy is analyzed with respect to the order of operator,
velocity contrast, and interface representation.

• The wavenumber band limitation significantly reduces the

error of the spatial derivative by the operator.

INTRODUCTION
Reduction of grid dispersion
In the finite-difference (FD) method, temporal and spatial
derivatives of field variables are replaced by FD operators
(FDOs). In most cases, the temporal derivatives are
replaced by the centered 2nd-order FDO. The FD schemes
mostly differ from one another in FDOs used for spatial deriv-
atives.

The simplest but, at the same time, the least efficient way to
approximate a spatial derivative by the FDO is to use the
Taylor series. The Taylor series makes it formally possible
to obtain FDO of a chosen order, but there are two principal
limitations of the implied FD schemes. They are 2nd-order
accurate in time, causing a non-negligible temporal dispersion.

A higher order in space reduces spatial dispersion, but this
reduction is relatively far from the best possible.

Many approaches have been developed to reduce grid
dispersion. Certainly, we should mention the pioneering work
by Holberg (1987), who developed optimized spatial FDOs by
minimizing peak relative error in group velocity. For recent con-
cise reviews, we refer to Etemadsaeed et al. (2016) and Zhou, Liu,
and Wang (2022). The latter article provides an overview of a
remarkable effort focused on finding optimal FD approximations
of the spatial derivatives. The goal of the development is to find
FD approximations with (1) the same optional high-order accu-
racy in space and time in all propagation directions and in a wide
range of wavenumbers and (2) optimal balance between increas-
ing order of accuracy and computational demands.
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Important findings on the possibilities to reduce grid
dispersion have been recently presented by Zhou et al.
(2022). They have emphasized the influence of the spatial grid
spacing and time step and demonstrated that without appro-
priate setting of these parameters, even though the pseudospec-
tral method (equivalent to the infinite-order FD method in
space) or k-space method (equivalent to the infinite-order
FD method in time and space) is adopted, the simulated acous-
tic and elastic wavefields in homogeneous media still deviate
from the analytical solutions.

With respect to the principal aspect of the approach by Zhou,
Liu, and Wang (2022) and important findings by Zhou et al.
(2022), let us mention a comprehensive alternative approach
developed by Masson (2023)—a distributional FD method.
Masson (2023) derived differential operators using a variational
approach, independently of the governing equation. One advan-
tage of the approach is that it can be used as an FDmethod using
a few large elements, or as a finte- or spectral-element method in
which complex structures in the velocity model are meshed using
small elements. Being based on the variational approach, the
computational scheme does not include a problem of application
of a spatial FDO across the interface.

We should especially mention the approach by Mora (1986)
and Igel et al. (1995). They realized that the spatial grid spacing
imposes a limit in the wavenumber domain, and the wavenum-
ber band-limited spatial derivative takes a form of a continuous
spatial convolution. This convolution should be approximated
by a discrete convolution.

In general, and simply said: (a) With a properly chosen spa-
tial grid spacing, the optimized FDOs considerably reduce grid
dispersion in homogeneous or smoothly and weakly hetero-
geneous media; some of the most recent FDOs also reduce
temporal dispersion, and (b) a more accurate FDO means a
higher order and a larger stencil size.

Material interfaces
Realistic models of the Earth’s interior, at all scales, often
include material interfaces. Mittet (2017) pointed out cases
in seismic exploration in which an accurate description of
interface is important (the seabed being a good example).
Moczo et al. (2018), based on extensive numerical investigation
of an earthquake ground motion in a set of typical sedimentary
valleys, demonstrated that the key structural parameters are
the shape ratio and overall geometry of the sediment–bedrock
interface, impedance contrast at the sediment–bedrock inter-
face, and attenuation in sediments.

Obviously, the legitimate question is: Are the higher-order
large-stencil FDOs applicable with the same dispersion-reduc-
tion effect also inmedia withmaterial interfaces, especially sharp
high-contrast material interfaces? Can the FDO be applied
across the material interface? As far as we know, the relation
between the high-order large-stencil FDO and the material
interface has not been comprehensively analyzed.

Partial aspects of the problem were probably first men-
tioned by Cunha (1993). Mittet (2017) explicitly formulated
the important question: “What order do we need for the
derivative operators to keep dispersion errors less than the
errors induced by the interface implementation?” Jiang and
Zhang (2021) and Koene et al. (2022) also addressed partial
aspects of the problem.

Cunha (1993) pointed out that a long, higher-order FD spa-
tial operator is appropriate for computing a derivative of a con-
tinuous function, whereas a short, 2nd-order operator is more
suitable for piecewise continuous function. His interest was
specific in a sense that he addressed the 2nd-order displace-
ment formulation of the equation of motion that includes spa-
tial derivatives of elastic coefficients.

Mittet (2017) performed an extensive series of numerical
tests to answer the question that he formulated. He used a
1D model of two half-spaces and FDOs of different orders
for the band-limited Heaviside representation of the interface.
Based on the tests, he concluded that a 12th-order Taylor oper-
ator is required to keep dispersion errors smaller than the
errors due to the interface implementation.

Recently, Jiang and Zhang (2021) applied 14th-order opti-
mal staggered-grid FDOs (Liu, 2014) in their numerical testing
of the accuracy of discrete representations of material interfa-
ces. The reason for using the 14th-order FDO was to suppress
the dispersion error so that the “interface error” can dominate
the overall error even when coarse grids are used.

Similarly, Koene et al. (2022) used high-order FD spatial
operators up to 40th order with large stencil sizes to ensure
that no spatial dispersion errors are introduced by the model-
ing scheme in their numerical testing of the accuracy of dis-
crete representations of material interfaces. In other words,
they wanted to isolate errors due to an implementation of
the material interface. They compared results obtained using
different orders of FDOs and concluded that their findings
are not necessarily biased by the large stencil size and the order
of the FDO. We refer the reader to the article by Koene et al.
(2022), to see the specific way of evaluating accuracy of various
implementations of the material interface.

At this stage, we can and, in fact, we have to preliminarily
point out that a result of an application of the FDO across the
material interface obviously depends on both the FDO itself
and the way that the material interface is represented in the
FD grid and scheme.

Representations of the material interface in
heterogeneous FD schemes
In the heterogeneous FD schemes, FD spatial operators are
applied in all interior grid points to calculate spatial derivatives
of the wavefield variables. This means that one and the same
scheme is used for any interior grid point, no matter what
the position of the grid point with respect to the material
interface is.
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One scheme for any grid point should be a discrete approxi-
mation of one formulation (say, a heterogeneous formulation)
of the equations of motion and constitutive law for any spatial
position in the considered medium. This also means the same
form of the equations for a position away from the material
interface and a position directly at the material interface.
Clearly, the heterogeneous formulation of equations must
account for the boundary conditions at the material interface.

Consider a 1D problem in a model of two homogeneous
half-spaces with a welded material interface at z � zMI.
Material parameters are discontinuous at the material inter-
face. The boundary conditions at the material interface are
continuity of the particle velocity v and continuity of stress
σ. Spatial derivatives ∂v=∂z and ∂σ=∂z are discontinuous at
the material interface. The velocity–stress heterogeneous
formulation may be written as (e.g., Moczo et al., 2022):

hρiz ∂v
∂t

�
�
∂σ

∂z

�
z
, hCiz ∂σ

∂t
�

�
∂v
∂z

�
z
: �1�

Here, ρ is density, C is compliance, t is time, and hiz indicates
the arithmetic averaging. Equation (1) properly (Backus, 1962)
average discontinuous quantities at the material interface,
whereas they take the correct forms in each of the two half-
spaces.

In most (or all?) FD schemes, the averaging of discontinu-
ous spatial derivatives of the field variables is not explicitly
addressed. The so far developed FD schemes differ from each
other by evaluating average material parameters.

Evaluation of the average material parameters is relatively
easy in the considered 1D problem in which the material inter-
face is parallel with a grid plane. In the staggered grid, an arith-
metic average of density is evaluated at a grid point of the
particle velocity, and a harmonic average of the elastic modulus
(equivalent of the arithmetic average of the compliance) is
evaluated at a grid point of stress (Moczo et al., 2002). In this
case, the averaging corresponds to the averaging by Schoenberg
and Muir (1989) and Muir et al. (1992), and to the orthorhom-
bic averaging by Moczo et al. (2014) and Kristek et al. (2017)—
both approaches applicable in the case of a general position of
the interface in the grid.

In the considered 1D case, Mittet’s (2017, 2021a,b) repre-
sentation of the interface using a wavenumber band-limited
Heaviside step function is also applicable.

Several FD schemes still use a local pointwise representation
(sampling at coarse resolution in the reasonable terminology
by Koene et al., 2022). This representation in principle cannot
explicitly account for the boundary conditions.

Spatial discretization and implied wavenumber band
limitation
Recently, Moczo et al. (2022) have analyzed consequences of
the heterogeneity of the medium, spatial discretization, and the

Nyquist-wavenumber band limitation for the FD modeling of
seismic wave propagation and earthquake ground motion.
They have found that (1) the grid representation of the
material interface must be limited by the Nyquist wavenumber;
(2) the wavenumber band limitation replaces spatial deriva-
tives both in the homogeneous medium and across a material
interface by continuous spatial convolutions; and (3) the con-
tinuous convolution of an infinite spatial extent must be
replaced by a finite-extent discrete convolution, that is, by a
proper spatial FDO.

Let us mention that Mittet (2017), based on his investiga-
tion of the implementation of the sharp material interface
using band-limited Heaviside function, concluded that the grid
representation of the material interface must be limited by the
Nyquist wavenumber. Mittet in his article (Mittet, 2017) and
the follow-up studies (Mittet, 2021a,b) anticipated several
aspects of the analysis by Moczo et al. (2022).

Goal of this article
In the follow-up of the analysis by Moczo et al. (2022), in this
article we aim to answer the following questions:

1. May the FDO, which is commonly used for evaluating spa-
tial derivative in a smoothly heterogeneous medium, be also
applied across a material interface?

2. How accurate is the FDO derivative in relation to the inter-
face representation? How does it depend on velocity con-
trast at the interface and the order of the FDO?

3. What are implications for the representation of the material
interface?

We compare errors of spatial derivatives obtained using the
spatial FDOs of the 4th, 6th, 8th, 10th, and 12th orders across
the material interface for two interface representations. In the
first one, a sharp material discontinuity is represented using an
exact Heaviside step function. In the second one, the same
material discontinuity is represented using a wavenumber
band-limited Heaviside step function.

Based on the numerical investigations, we formulate impli-
cations for the FD modeling of seismic waves and earthquake
ground motion in media with material interfaces.

1D PROBLEM FOR A MODEL OF A STACK OF
LAYERS BETWEEN TWO HOMOGENEOUS HALF-
SPACES: AN EXACT SOLUTION
In this section, we will use the Thomson–Haskell (Thomson,
1950; Haskell, 1953) propagator matrix method to obtain the
exact solution in the 1D multilayered model of medium.

Consider n − 1 homogeneous isotropic elastic layers
between two homogeneous isotropic elastic half-spaces as
shown in Figure 1. A coordinate axis z is oriented positive
downward. A thickness of the jth layer is hj, and velocity and
density in the jth layer are cj and ρj, respectively.
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Consider 1D harmonic wavefield due to a harmonic plane
wave with a unit amplitude propagating in the negative z direc-
tion in half-space n + 1 with displacement in the form:

u�n�1��z,t� � exp

�
−i

�
ωt � z

cn�1

��
, �2�

with angular frequency ω � 2πf . Correspondingly, the Fourier
transform and its inverse are defined as

φ�f � :� Ffφ�t�g :�
Z

∞

−∞
φ�t� exp�i2πf t�dt, �3�

and

φ�t� :� F−1fφ�f �g :�
Z

∞

−∞
φ�f � exp�−i2πf t�df : �4�

Assume also a transient wave propagating in half-space
n + 1 in the negative z direction and entering the stack of
layers and half-space 1. Denote a Fourier spectrum of this
input wave by S(f).

Displacements in the half-spaces 1 and n + 1 are

u�1��z,t� � F−1fS�f �H�1��z,f �g; z ≤ 0, �5�

u�n�1��z,t� � F−1fS�f �H�n�1��z,f �g; z ≥ zn, �6�

in which H�1��z,f � and H�n�1��z,f � are the transfer functions:

H�1��z,f � � 2ωqn�1

ω�q1A22 � qn�1A11� � i�A21 − ω2q1qn�1A12�

× exp

�
−iωz
c1

�
, �7�

H�n�1��z,f ��
�
−
BN
BD

exp

�
iω
cn�1

�z−zn�
�
�exp

�
−

iω
cn�1

�z−zn�
�	

,

�8�

with the wave impedance qj � ρjcj, matrix A � AnAn−1…A2,
layer matrix,

Aj �
�

cos bj
sin bj
ωqj

−ωqj sin bj cos bj

�
, �9�

expressions

BN � A21 � ω2q1qn�1A12 � iω�qn�1A11 − q1A22�,
BD � A21 − ω2q1qn�1A12 − iω�qn�1A11 � q1A22�, �10�

and bj � ωhj=cj.
Spatial derivatives in the two half-spaces are

∂

∂z
u�1��z,t� � F−1

�
S�f � ∂

∂z
H�1��z,f �

	
; z ≤ 0, �11�

∂

∂z
u�n�1��z,t� � F−1

�
S�f � ∂

∂z
H�n�1��z,f �

	
; z ≥ zn, �12�

in which

∂

∂z
H�1��z,f � � −iω

c1

2ωqn�1

ω�q1A22� qn�1A11�� i�A21 −ω
2q1qn�1A12�

× exp

�
−iωz
c1

�
, �13�

Figure 1. One-dimensional model of a stack of homogeneous isotropic elastic
layers between two homogeneous isotropic elastic half-spaces.
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∂

∂z
H�n�1��z,f � � −

iω
cn�1

�
BN
BD

exp

�
iω
cn�1

�z − zn�
�

� exp

�
−

iω
cn�1

�z − zn�
�	

: �14�

Displacement in layer j is

u�j��z,t� � F−1fS�f �H�j��z,f �g; zj−1 ≤ z ≤ zj; 2 ≤ j ≤ n: �15�

Here,

H�j��z,f � �
�
B� exp

�
iω
cj
�z − zj−1�

�
− B− exp

�
−
iω
cj
�z − zj−1�

�	

×
2ωqn�1

B�D− − B−D� , �16�

with

B� � A�U�
21 � ω2q1qjA

�U�
12 − iω�q1A�U�

22 ∓qjA
�U�
11 �,

D� � ω�qn�1A
�L�
11 � qjA

�L�
22 � � i�A�L�

21 ∓ω2qjqn�1A
�L�
12 �, �17�

and

A�L� � AnAn−1…Aj; 2 ≤ j ≤ n,

A�U� � Aj−1Aj−2…A2; 3 ≤ j ≤ n,

A�U� � I; j � 2, �18�

in which I is an identity matrix.
Spatial derivative in layer j is

∂

∂z
u�j��z,t� � F−1fS�f � ∂

∂z
H�j��z,f �g; zj−1 ≤ z ≤ zj; 2 ≤ j ≤ n,

�19�
in which

∂

∂z
H�j��z,f ��iω

cj

�
B�exp

�
iω
cj
�z−zj−1�

�
�B−exp

�
−
iω
cj
�z−zj−1�

�	

×
2ωqn�1

B�D−−B−D� : �20�

1D PROBLEM FOR A MODEL OF A PLANAR
MATERIAL INTERFACE: AN EXACT SOLUTION
The case of two half-spaces can be obtained as a limit case from
the previous section for n + 1 = 2. We show here the explicit
formulas because we will numerically evaluate them.

Displacements in the upper half-space 1 and the lower half-
space 2 are

u�1��z,t� � F−1fS�f �H�1��z,f �g; z ≤ 0, �21�

u�2��z,t� � F−1fS�f �H�2��z,f �g; z ≥ 0, �22�

in which

H�1��z,f � � 2q2
q1 � q2

exp

�
−iωz
c1

�
, �23�

H�2��z,f � � q2 − q1
q2 � q1

exp

�
iωz
c2

�
� exp

�
−iωz
c2

�
: �24�

The spatial derivatives are

∂

∂z
u�1��z,t� � F−1

�
S�f � ∂

∂z
H�1��z,f �

	
; z ≤ 0, �25�

∂

∂z
u�2��z,t� � F−1

�
S�f � ∂

∂z
H�2��z,f �

	
; z ≥ 0, �26�

in which

∂

∂z
H�1��z,f � � −iω

c1

2q2
q1 � q2

exp

�
−iωz
c1

�
, �27�

∂

∂z
H�2��z,f � � iω

c2

�
q2 − q1
q2 � q1

exp

�
iωz
c2

�
− exp

�
−iωz
c2

��
: �28�

FDOS APPROXIMATING SPATIAL DERIVATIVES
ON A STAGGERED GRID
In a 1D displacement-stress staggered grid, we assume a grid
position of stress midway between two grid positions of dis-
placement, and vice versa. Let a grid spacing between two
neighboring positions of stress (or two neighboring positions
of displacement) be h. For obtaining FDOs of order
M ∈ f 4, 6, 8, 10, 12 g, we can use formula presented by
Crase et al. (1992). Consider function ψ�z� approximated by

ψ�z� ≈
XM
i�1

Li�z�ψ�zi�; Li�z� :�
YM

j�1,j≠i

z − zj
zi − zj

: �29�

Its derivative at z � z0 is then

∂ψ�z�
∂z






z0

≈
XM
i�1

∂Li�z�
∂z






z0

ψ�zi�

�
XM
i�1

� XM
k�1, k≠i

1
zi − zk

YM
j�1,j≠i,k

z0 − zj
zi − zj

�
ψ�zi�: �30�

1928 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 113 Number 5 October 2023

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/113/5/1924/5960346/bssa-2023037.1.pdf
by 14217 
on 05 October 2023



Denoting

ai :�
∂Li�z�
∂z






z0

, �31�

and

zi,zj,zk ∈
�
z0 �

1
2
h,z0 �

3
2
h,…,z0 �

M − 1
2

h

	
, �32�

we obtain for even M:

ai �
1
h

X
k∈IM ,k≠i

1
i − k

Y
j∈IM ,j≠i,k

j
i − j

, i ∈ IM , �33�

for

IM :�
�
� 1

2
,� 3

2
,…,�M − 1

2

	
: �34�

Eventually, define an FDO operator of Mth order applied to
displacement u(z,t) for obtaining its spatial derivative as

D̂M
z u�z,t� :�

X
i∈IM

aiu�zi,t�; zi � z � ih: �35�

RELATIVE AND ABSOLUTE ERRORS OF FDOS
WITH RESPECT TO THE EXACT DERIVATIVES
Denoting spectrum of the transient input signal as S(f) and the
transfer function as H(z,f), we may write

u�z,t� � F−1fS�f �H�z,f �g: �36�

A spatial derivative of the exact displacement is

∂

∂z
u�z,t� � F−1

�
S�f � ∂

∂z
H�z,f �

	
: �37�

An approximate FDO derivative of the exact displacement is
obtained using the FDO defined by relation (35).

Let us point out that in the following, we assume that the
FDO is at any time applied to the exact displacement.
Consequently, an error of the FDO derivative at any time arises
only from a single application of the operator.

Errors of the FDO derivative of displacement
Consider an absolute error of the FDO derivative of displace-
ment, that is, a difference between the FDO derivative of dis-
placement and the exact derivative of displacement:

AEMu�z,t� :� D̂M
z u�z,t� −

∂

∂z
u�z,t�: �38�

Let us emphasize that both the FDO derivative and the exact
derivative relate to the same representation of the material
interface. This is in agreement with our goal to investigate
how accurate the FDO derivative is in relation to the interface
representation.

The error of the FDO derivative of displacement can
depend on the propagating signal and its frequency content.
Therefore, we will derive a relation between the error of the
FDO derivative of displacement and an error of an FDO
derivative of the transfer function. Then, we will investigate
the error of the FDO derivative of the transfer function.

Relation between the error of the FDO derivatives
of displacement and transfer function
Using relations (35)–(38), we have

AEMu�z,t� �
X
i∈IM

aiF−1fS�f �H�zi,f �g −
∂

∂z
F−1fS�f �H�z,f �g:

�39�

Because the order of differentiation and integration can be
interchanged, and the inverse Fourier transform is linear,
we can write

AEMu�z,t� � F−1

�
S�f �

�X
i∈IM

aiH�zi,f � −
∂

∂z
H�z,f �

�	
: �40�

Denote

D̂M
z H�z,f � :�

X
i∈IM

aiH�zi,f �, �41�

and

AEMH�z,f � :� D̂M
z H�z,f � − ∂

∂z
H�z,f �: �42�

Then, rewriting equation (40), we obtain a relation between the
error of the FDO derivative of displacement and an error of an
FDO derivative of the transfer function:

AEMu�z,t� � F−1fS�f �AEMH�z,f �g: �43�

Consider a narrowband signal centered at frequency f̃ with an
effective width δf . Its amplitude spectrum consists of two iden-
tical peaks at frequencies f̃ and −f̃ . Because the signal is real, its
spectrum has a Hermitian symmetry S�−f � � S��f �. The
transfer function and its derivative are also Hermitian.
Therefore, H�z, − f � � H��z,f � and ∂

∂z H�z, − f � � ∂
∂z H

��z,f �,
respectively.

Let us explicitly write the inverse Fourier transform in
relation (43):

AEMu�z,t� �
Z

∞

−∞
S�f �AEMH�z,f � exp�−i2πf t�df : �44�
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Accounting for the two spectral peaks, the integral can be
approximated by

AEMu�z,t� ≈ S�f̃ �AEMH�z,f̃ � exp�−i2πf̃ t�δf
� S�−f̃ �AEMH�z, − f̃ � exp�i2πf̃ t�δf : �45�

Considering the Hermitian symmetry, we have

AEMu�z,t� ≈ S�f̃ �AEMH�z,f̃ � exp�−i2πf̃ t�δf
� S��f̃ �AEMH��z,f̃ � exp�i2πf̃ t�δf : �46�

Since both S�f � and AEMH�z,f � are complex, we can write

S�f̃ � � AS�f̃ � exp�iφS�f̃ �	,
AEMH�z,f̃ � � A�z,f̃ � exp�iφ�z,f̃ �	, �47�

and, considering the Hermitian symmetry,

S��f̃ � � AS�f̃ � exp�−iφS�f̃ �	,
AEMH��z,f̃ � � A�z,f̃ � exp�−iφ�z,f̃ �	: �48�

Using relations (47) and (48) in equation (46), we obtain

AEMu�z,t� ≈ 2AS�f̃ �A�z,f̃ � cos�2πf̃ t − φS�f̃ � − φ�z,f̃ �	δf : �49�

Obviously, there is a time tm at which AEMu�z,t� reaches its
maximum value:

max
t
fAEMu�z,t�g � 2AS�f̃ �A�z,f̃ � δf : �50�

Both jφ�z,f̃ �j and jφS�f̃ �j are at most equal to π. Thus,
tm ∈ h0,1=f̃ i⊆h0,Ti, in which T is a duration of the signal.

We see that the maximum absolute error of the displace-
ment derivative is proportional to the amplitude of the abso-
lute error of the transfer function derivative. Therefore, we can
investigate the error of the transfer function derivative instead
of the error of the displacement derivative.

Finally, a broadband signal can be viewed as a signal com-
posed of many narrowband signals centered at different
frequencies. Therefore, the maximum absolute error of the dis-
placement derivative is bounded by

max
t
fAEMu�z,t�g ≤ 2δf

X
j

AS�f̃ j�A�z,f̃ j�, �51�

in which f̃ j is the central frequency of the individual narrow-
band signal of width δf . The inequality is a consequence of a
dependence of time tmj at which the maximum is achieved for
different frequencies f̃ j due to a presumed dependence of
phases φ�z,f̃ j� on frequencies.

MODELS FOR NUMERICAL INVESTIGATION
In the subsequent section, we present results of investigation of
application of the FDOs on the exact values of displacement of

the 1D wavefield in the model of two homogeneous half-spaces
with a planar interface being a contact of two half-spaces. We
are interested in comparing the derivative obtained using the
FDO with the exact spatial derivative at and near the material
interface.

We consider four models of two homogeneous half-spaces,
symbolically 100/200, 100/300, 200/100, and 300/100. The
value in the nominator indicates a wavespeed in the upper
half-space, and the value in the denominator indicates the
wavespeed in the lower half-space. All values are given in
meters per second.

For each model, we consider two representations of the
material interface assumed at z � zMI:

1. An exact Heaviside step function,

p�z� � p−H�zMI − z� � p�H�z − zMI�, �52�

in which H�z� denotes a Heaviside unit step function, and
p� represents a material parameter.

2. A wavenumber band-limited model,

pkN �z� �
1
2
�p− � p�� � �p� − p−� 1

π

Z
kN �z−zMI�

0

sin u
u

du,

�53�

in which kN denotes the Nyquist wavenumber.
For a detailed explanation of the corresponding theory, we

refer to Moczo et al. (2022).
In the wavenumber band-limited models, relation (53) is

applied to compliances and densities. Wavespeeds are
calculated from the band-limited compliances and densities.
The density of 2000 kg=m3 is constant in the entire model,
which means there is no difference between an exact and
band-limited representation of the density.

In the exact matrix-method calculations, the band-limited
model is represented by a layered model consisting of many very
thin layers up to distance 8.5h to both sides from the interface.
At the larger distances, all quantities are constant, being equal to
those in the exact model. The configurations with a smaller
wavespeed in the upper half-space are shown in Figure 2. The
other four configurations are just their mirror images.

NUMERICAL RESULTS
We evaluated approximate derivatives using FDOs of orders 4,
6, 8, 10, and 12. It is sufficient, however, to show results for
orders 4, 8, and 12.

Exact and approximate derivatives
Figure 3a,b shows amplitudes of the spatial derivatives of the
transfer function H�z,f � as a function of frequency (horizontal
axis) and distance from the interface located at z � 0 (vertical
axis). Though the Nyquist frequency in the slower half-space is
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50 Hz, from the practical point of view, it is enough to consider
frequencies up to 40 Hz. The distance from the interface is nor-
malized with respect to the grid spacing h. For example, z=h � 0
means that the FDO derivative is evaluated at a grid point
of stress directly at the interface, that is, using a grid in which
the grid point of stress is directly at the interface, and the FDO
uses values of displacement at grid points �h=2;�3h=2,….
Distance z=h � −0:4, for example, means that the FDO deriva-
tive is evaluated at a grid point of stress in the upper half-space at
a distance of 0.4h away from the interface, that is, using a grid in
which the grid point of stress is at the distance of z=h � −0:4
from the interface, and the FDO uses values of displacement at
grid points 0:1h, − 0:9h,1:1h, − 1:9h,….

We present colormaps only for the 100/200 and 200/100
models because the colormaps for the 100/300 and 300/100
models have analogous structures and differ mainly by a mag-
nitude of amplitudes. Figure 3a relates to the 100/200 model,
Figure 3b to the 200/100 model. The upper panels of both
figures show derivatives for the exact representation of the
interface, and the lower panels show derivatives for the wave-
number band-limited representation.

In the case of the exact representation of the interface, there
is a sharp transition between half-spaces in the colormaps
of the exact derivatives, whereas the pictures of the FDO

derivatives are blurred. This is a consequence of the fact that
an FDO naturally implicitly averages the derivative. The color-
maps indicate differences in magnitude of amplitudes of deriv-
atives calculated by FDOs of different orders. This will be
better visualized in Figure 4 showing derivatives along the dot-
ted lines, that is, at selected frequencies.

Observe the obvious increase of the amplitude of the spatial
derivative with frequency, which is due to the fact that a higher
frequency means a shorter wavelength.

We can see the effect of the wavenumber band limitation
in Figure 3. The effect can be easily understood. The band
limitation removes the discontinuity in material parameters.
Consequently, there is no jump in the exact derivative (rep-
resented by the sharp transition in the colormaps for the
exact representation of the interface), and thus the error
of the FDO derivative is reduced near the interface. On
the other hand, the band limitation causes variations of
the transfer function derivative as a function of distance from
the interface. This can be observed well in the upper half-
space, in which the transfer function derivative was originally
constant from a certain distance away from the interface.
This effect is less evident in the lower half-space, because
it has an oscillatory character even without band limitation.
The oscillatory character of the transfer function in the lower
half-space is due to a superposition of the incident and
reflected waves.

Let us look at the derivatives at selected frequencies 10, 20,
and 30 Hz, indicated by dotted lines in Figure 3a,b. In Figure 4,
we can see that there is no large difference among derivatives
computed by the FDOs of different orders at lower frequencies.
However, we can see that there are differences in the half-space
with a lower wavespeed at 30 Hz, and that the accuracy
increases with the order of FDO. We will discuss the errors
of the FDOs of different orders in detail using the following
figures. We can also notice oscillations of the derivative in the
upper half-space in the case of the wavenumber band-limited
model, and their absence in the case of the exact representation
of the interface.

Errors of the FDO derivatives
Figure 5a,b shows amplitudes of the absolute error of the FDO
approximations of the transfer function derivatives. The ampli-
tudes are shown as a function of frequency (horizontal axis)
and distance from the interface (vertical axis). We can think
about the amplitude of the absolute error as of a maximum
absolute error over time of a displacement derivative of a nar-
rowband wave with the corresponding central frequency.

Let us observe that the absolute error for a wavenumber
band-limited model is defined as a difference of the FDO
derivative for the band-limited model and the exact derivative
for the same model.

As in Figure 3a,b, we present colormaps only for the
100/200 and 200/100 models because the colormaps for the

Figure 2. Exact and wavenumber band-limited compliances and correspond-
ing wavespeeds in the models with a lower speed in the upper half-space.
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100/300 and 300/100 models have analogous structures and
differ mainly by a magnitude of amplitudes.

The first and most important observation is that there is a
significant error in the vicinity of the interface in the case of the
exact interface representation, which was already indicated in
Figure 3a,b. The band limitation significantly (several times)
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Band-limited Heaviside

4th order

Amplitude of the spa�al deriva�ve of transfer func�on

z h 8th order 12th order
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Figure 3. Amplitude of the spatial derivative of the transfer function of (a) the
100/200 model and (b) the 200/100 model. The upper panel relates to the
exact representation of the material interface, and the lower panel relates to
the wavenumber band-limited representation. The interface representations
and velocity as function of position are indicated at the leftmost subplots.
The exact derivative is compared with approximate derivatives obtained
using the finite-difference operators (FDOs) of order 4, 8, and 12.
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reduces the absolute error, though the errors are nonzero also
at larger distances from the interface. The latter is related to the
observed oscillations of the amplitude of the transfer function
derivative. Now, we can clearly see that the errors are present
on both sides of the interface, not only in the upper half-space.
More details can be revealed by looking at the errors at the
selected frequencies.

Figure 6a,b shows the amplitude of the absolute error of the
transfer function derivative computed by FDOs of different
orders at the selected frequencies. Here, we present results
for all investigated configurations. Figure 6a shows the ampli-
tude of the absolute error for the 100/200 and 100/300 models,
and Figure 6b shows the errors for the 200/100 and 300/100
models. We can immediately see that the larger the velocity
contrast, the larger error. The figures well visualize dependence
of the errors on the distance from the interface.

First, look at lower frequencies.
Let us start with the exact representation of the interface.

The interesting feature is that there is no, or negligible, error
directly at the interface. This is because the FDOs properly

implicitly average approximate derivatives directly at the inter-
face. Away from the interface to both sides, the error jumps
and reaches its largest values. This is because the FDO asym-
metrically accounts for displacement values from both sides of
the interface.

Subsequently, the error falls linearly to the minima at
z=h � �0:5. The differences among individual FDO orders
are negligible compared to the error magnitude at these distan-
ces. Then, the error sharply rises again, though to much lower
magnitudes. The larger order of the FDO, the larger error near
these local maxima. Furthermore, t error linearly decreases to
the minima at z=h � �1:5. This pattern of alternating maxima
and minima continues at larger distances, however with lower
and lower magnitudes, which are practically negligible. The

Figure 4. Amplitudes of the exact and FDO spatial derivatives of the transfer
function at selected frequencies of 10, 20, and 30 Hz. A black circle in the
figure indicates the average of the exact derivatives at both sides of the
interface.
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(a)

(b)

Figure 5. Amplitude of the absolute error of the FDO derivative of the transfer
function defined in equation (42). The upper panel relates to the exact

representation, and the lower panel relates to the wavenumber band-limited
representation (a) of the 100/200 model and (b) of the 200/100 model.
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(a)

(b)

Figure 6. Amplitude of the absolute error of the FDO derivative of the transfer
function at selected frequencies (a) for the 100/200 and 100/300 models

and (b) for the 200/100 and 300/100 models.
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pattern ends for the 4th-order FDO at the distances
z=h � �1:5, for the 8th-order FDO at z=h � �3:5, and for
the 12th-order FDO at z=h � �5:5. This can be easily under-
stood because the mentioned distances are the largest distances
at which the FDO stencil reaches the interface.

The absolute error in the case of the band-limited represen-
tation of the interface is smoothed, compared to the error in
the case of the exact interface representation, and is nonzero in
the entire model. However, and most important, the error is
much smaller at distances in which the error for the exact
interface representation is significant, and it is either small
or negligible at distances in which the error for the exact rep-
resentation is negligible or zero. The error decreases with
increasing order of the FDO.

Recall that the error is calculated for a single application of
the FDO to the exact values of the transfer function. The error
is proportional to the maximum error of a single application of
the FDO to the exact displacement at the corresponding time.
In an FD simulation, the error near the interface would spread
over the entire model with time even in the case of the exact
interface representation.

Look now at higher frequencies.
As we can see in Figure 5a for the exact interface represen-

tation and the 4th-order FDO, there is an error in the upper
half-space at distances at which the FDO cannot sense the
interface. A similar situation is in Figure 5b for the lower
half-space. This error is visible only at higher frequencies. It
must be a dispersion-related error.

It can be assumed that the dispersion-related error is
present at all other examined FDOs. This means that if we
want to investigate only the error due to the interface, we must
separate it from the dispersion-related error somehow. For this
purpose, we computed the dispersion-related error as the error
of the FDO in the homogeneous unbounded model.

In the model with the interface, a transmitted wave
propagates in the upper half-space. Therefore, the obtained
dispersion-related error must be scaled by the coefficient of
transition. The scaled error in the upper half-space is indicated
in Figure 6a,b by tri-down symbols placed at the top of the
individual subplots. The dispersion-related error decreases
with an increasing order of the FDO. We can see that it
matches the observed error at larger distances away from
the interface. This means that the relatively large error of
the FDOs present at high frequencies is the dispersion-related
error, not the error due to application of the FDO across the
interface. Consequently, we can now understand the error in
the case of the exact interface representation. The higher-order
FDOs are more accurate at higher frequencies because their
dispersion-related error is smaller than that in the lower-order
FDOs.

In the lower half-space, the transfer function corresponds to
a superposition of the incident and reflected waves. Therefore,
both the derivative of the transfer function and the error of the

FDO are not constant. Thus, the error due to the application of
the FDO across the interface cannot be separated by sub-
tracting the dispersion-related error. Despite this, we indicate
the dispersion-related error by the tri-up symbols placed at
the bottom of the individual subplots. We can see that the
dispersion-related error gives a good rough estimate of the
error of the 4th-order FDO at distances in which the FDO can-
not sense the interface. Therefore, we can use the respective
dispersion-related error as a reference also for the FDOs of
other orders.

Finally, let us comment on the dispersion-related error. It
increases with frequency and decreases with an increasing
order of the FDOs. It is significant in principle only in the
half-space with lower wavespeed. For a fixed frequency of
source, and with proper values of the spatial grid spacing and
time step, the dispersion-related error is practically negligible
for the 12th-order spatial FDO. We assume that this is consis-
tent with the statements by Jiang and Zhang (2021) and Koene
et al. (2022) in their investigations of discrete representations
of the material interface. They used the high-order FDOs to
minimize the effect of the grid dispersion in space. Moreover,
Koene et al. (2022) applied the time-dispersion transform to
reduce the error due to the discretization in time.

CONCLUSIONS
A jump in a value of a wavespeed at a material interface exactly
represented by the Heaviside step function causes a large error
of the spatial derivative evaluated by an FDO near the interface
—at distances up to a half grid spacing to both sides from the
interface. Recall that the distance here means the distance of a
grid point of stress away from the interface at which (the grid
point) a spatial derivative is evaluated. The error directly at the
interface is negligible.

The maximum error near the interface practically does
not depend on the order of the FDO. There are only small
differences in errors among FDOs of different orders else-
where. Whereas a higher-order FDO is more accurate in
approximating spatial derivative in a smoothly heterogeneous
medium, a higher-order FDO derivative is not in general more
accurate compared to a lower-order FDO derivative across the
exactly represented material interface. At higher frequencies, in
a half-space with a lower wavespeed, a higher-order FDO
derivative is more accurate than a lower-order FDO derivative
due to a lower dispersion-related error. It is not due to appli-
cation of the FDO across the interface.

The error increases with increasing velocity contrast at the
interface.

The wavenumber band limitation significantly (several
times) reduces the error near the interface. It also smooths
the spatial dependence of the error. On the other hand,
whereas the spatial extent of the error in the case of the exact
interface representation is limited only up to a certain distance
from the interface, the error in the case of the band-limited
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representation spatially extends to the entire model.
Fortunately, the error introduced due to the wavenumber band
limitation is either small or negligible.

The error in the wavenumber band-limited model decreases
with an increasing order of the FDO.

The main conclusion for the FD modeling of seismic waves
is: The wavenumber band limitation of the heterogeneous
model is not only a necessary consequence of discretization
of the original physical model, as anticipated by Mittet
(2017) treatment of a material interface and shown by
Moczo et al. (2022) analysis of the entire equation of motion,
but also significantly reduces the error in evaluating a spatial
derivative using the FDO across the material interface. A
proper band limitation is a necessary condition for obtaining
good simulation results.
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