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Summary: Stability and grid dispersion in the P-SV 4th-order in space, 2nd-order in time,
displacement-stress staggered-grid finite-difference scheme is investigated in the case of
a homogeneous unbounded medium. All results, however, also apply to the velocity-stress and
displacement-velocity-stress finite-difference schemes.

Independent stability conditions for the P and S waves are obtained by exact separation of
equations for the two types of waves.

Since the S-wave group velocity can differ from the actual velocity as much as 5% for the
sampling ratio 1/5, commonly used in numerical modelling, the sampling of the minimum
S wavelength by 6 grid spacings (with the velocity difference not larger than 2.5%) is recommended.

Grid dispersion is strongest for a wave propagating in a direction of a coordinate axis and
weakest for a wave propagating along a plane diagonal.

Grid dispersion in the 4"-order scheme for the sampling ratios s =1/5 and s = 1/6 is smaller
than grid dispersion in the 2M_order scheme for s = 1710 and s = 1/12, respectively.
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1. INTRODUCTION

The 4™-order staggered-grid finite-difference (FD) schemes have been recently used in many
numerical studies of earthquake ground motion and seismic wave propagation. Therefore, Moczo
et al. (2000b) investigated stability and grid dispersion in the 3D 4"%-order staggered-grid
displacement-stress, velocity-stress and displacement-velocity-stress FD schemes. Since 2D P-SV
simulations still have not lost their importance and are frequently used in seismological studies, we
present herc systematic and detailed treatment of stability and grid dispersion in the P-SV 4" order
displacement-stress staggered-grid FD scheme (4"-order version of the scheme suggested by Luo
and Schuster, 1990). Similarly as in the 3D case, all results arc also valid for the velocity-stress
(Levander, 1988) and displacement-velocity-stress (Moczo et al., 2000a) schemes.

Partial information on stability and grid dispersion in the P-SV FD schemes can be found in
papers by Viriewux (1986), Levander (1988) and Crase et al. (1992). Virieux (1986) shows stability
condition and phase-velocity dispersion curves for his 2nd-order velocity-stress scheme. Levander
(1988) presents stability condition and phase-velocity dispersion curves for his 4th-order velocity-
stress scheme. Levander, however, did nol obtain two simple independent equations leading to the
P- and S-wave stability conditions. Crase et al. (1992) derived stability conditions for the P-SV casc
of an arbitrary order of approximation using a decomposition ol the matrix scheme and a Fourier
transform. They, however, do not show grid dispersion. Let us also mention the stability and grid
dispersion analysis performed by Rodrigues (1993) for the 3D 8th-order displacement-stress
scheme.
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Since we investigated the case of a homogeneous unbounded medium, the results and
conclusions cannot be dircctly applied to media with free surface and material discontinuities.
A separate additional analysis or numerical tests for such media is nceded.

2. EQUATION OF MOTION AND THE P-SV 4™M_ORDER DISPLACEMENT-STRESS FINITE-
DIFFERENCE SCHEME

Consider Cartesian coordinate system (x,z). Let density p and Lamé elastic
coefficients 4 and u be functions of spatial coordinates x, z. Let displacement vector
ii(1,0,w), stress lensor 7€,k € {x,z}, and body force per unit volume f(fx,fz) be
functions of x, z and time 7. The equation of motion and Hooke’s law for a perfectly
elastic, inhomogeneous, isotropic medium are

Py =T oo+ T2+ fy

PWy =T yzsxH Tz -+
and

Ty =(A+ 201, + Aw,
Ty, = Al + (A + 200w,

Ty, = MU, +w,) (D

where u,, =0%u10r*, Topoy =0T/ Ox, u, =ulx and so on. We can call equations
(1) the displacement-stress formulation of the equation of motion.
Consider a 2D regular rectangular staggered spatial grid with a grid spacing A. Denote

At a time step and a = —%4 and b =% coefficients of the 4"™-order approximation of the

first derivative. Let UJ' be a discrete approximation to uj'; =u(x;,z1,1,,) where I, L arc

spatial indices and m is a time index. Similarly, let W, %, 7%, T%, F¥, and F* be discrete
approximations to W, Tyy, Tz Txz fr, and f;. For equations (1) we can construct an cxplicit,
4" order in space, 2™-order in time, displacement-stress staggered-grid FD scheme (see
also Fig. 1):

2
m+l1 . m m—1 2 - X, A<t !
Ul't2=20 w2 =UlLv2 + A7t py ) e * W prii X
,L+1

XX, n _ XX, XX, Xx,m

% [“(Tl+3/2,1,+1/2 1—3/2,L+l/2)+b( 1417204112~ I~l/2,L+1/2)
XZ,01 xz,m Xz,m xXz,m

+ “( iiv2 =T )’* b(Tl,L+1_ T )]
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2
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The 2™-order scheme is obtained from the 4™-order scheme by insertinga =0 and b= 1.

3. STABILITY CONDITION FOR AN UNBOUNDED HOMOGENOUS MEDIUM

The von Neumann (1943) method can be used to analyze stability of the FD scheme.
Assume errors in U, W, 7%, T% and T at x = [h, z = Lh and t = mAt in the form

e(U)=AE | e(W)=BE

e(TY=QFE , (T =CrFE e(T*) =CE
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E = expi(—wmAt +k [h+k, Lh) (3)
where @ is an angular frequency, ky and k; are the components of the wavenumber
vector k ,

ky =ksiné k, =kcosd k= k| )

and &, an angle of the plane wave with respect to the z-axis (oriented vertically
downward), is from interval

0<6<nm

Investigate propagation of the errors (3) in the grid. Inserting (3) into the FD scheme (2)
leads, after some algebra that is analogous to that for the 3D case (Moczo et al., 2000Db), to
two independent cquations

. At 3
sm%a)At:i—h—a(inLZz)“ (s)

I+1/2

! I+1/2

Fig. 1.  Field variables entering the fourth-order displacement-stress finitc-ditference scheme.
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At 3
| _ 2 2\2
sin> oAt =+ P ,B(X +Z ) (6)

where « and S are the P- and S-wave velocitics

A+2
a2:_+_‘1_l, ﬂzzﬁ
p P

respectively, and

X =asink, %h+bsin k, %h

— adi 3 : 1
Z = asin k23h+bsmkzih ¢
Equation (5) implies a stability condition for the P wave:

At <——=— (8)

Similarly, equation (6) implies a stability condition for the S wave:

U

72 B

If both types of waves are generated and propagate in a medium, condition (8) for the P
wave has to be taken as the joint stability condition since > f. Let us define a stability
parameter p

V2 Ar
5 - ®
{

Then
p <l

It is easy to check, by inserting the errors given by egs. (3) into the velocity-stress and
displacement-velocity-stress schemes, that the obtained eqs. (5) and (6) as well as stability
conditions are the same for the three schemes.

4. GRID DISPERSION
Both equations (5) and (6) can be (omitting the - sign) rewritten in the form
1 [ Ar 1
S = arcsm{—l—c(X 2.z } (10)
g

where ¢ is either the P-wave velocity a or S-wave velocity g for the P or S wave,
respectively. Since @ is the angular frequency in the grid,
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Cgrid

(rh

® =127 igrid
where ¢ and 28" are the phase velocity and wavelength in the grid, equation (10)
represents grid-dispersion relations for the P and S waves propagating in the grid.

Define, at a given frequency, a spatial sampling ratio s for the S wave and spatial
sampling ratio sp for the P wave as

h h
§=—— and Sp=——r (12)
srid erid
Aé‘ll lz;)ll

If both types of waves are gencrated and propagate in a medium we have to adopt one
joint spatial sampling ratio in order to compare the P- and S-wave dispersions. Due to
Ag < Ap at a given frequency, s has to be taken as an argument in relations for both the P
and S waves. Obviously, a spatial sampling ratio sp for the P wave is

s,):% (13)

where r is a velocity ratio
a
r=— (14)

Dividing equation (10) for the P wave and S wave by « and f, respectively, and inserting
relations (4, 7, 11-14 ) we obtain the normalized grid-dispersion relations for the P and S

waves in the form

as 2y s 1 F (15)
=g— arcsin 2
o q Z ps L]‘/E] a .
perd Vo or (Ut p
=q arcsin F 16
B A ops g2’ e
where
_7
1 6

L
F, = {[asin(Brgsin &)+bsin(zgsin J)] 2 Hasin(3rgcos &)+bsin(mgcos 5)] 2 }?

and
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The grid-dispersion relations for the 2™-order scheme are obtained by inserting a =0,
b =1and g = 1. The stability parameter p in the 2"-order scheme is defined as

pzﬁ%a, p=I.
h

Note that both the P- and S-wave grid dispersions now depend on the velocity ratio
r - (and thus on the Poisson’s ratio o = (2—r2)/[2(l —rz)] ). The dependence of the

S-wave dispersion on the velocity ratio r was introduced by considering the P-wave
stability condition (8) as a joint condition for both types of waves. The dependence of the
P-wave dispersion on the velocity ratio r was introduced by considering the spatial
sampling ratio s (for the S wave) as a joint argument for both types of waves.

The existence of the grid dispersion of the phase velocity implies the existence of the

grid group velocity 8 — 5e/ Sk and its dispersion. We obtain

group
srid . orid .
ai:;‘([)[up _ 2(f1F1 + fzrz) ﬂ«é”rlfl’uﬂ _ 2(flrl + f2r2) (17
a 6 sl/2 B 6 2l/2 )
p
P pr) RN
)| s
where
fi = asin(3zgsin &)+bsin(zgsin §)
fo = asin(3zgcos 8 )+bsin(gcos 5)
. 3 . 1 .
I =sind[ agcos(37rgsm 5)+b§cos(7rgsm o)]
3 1
I, :cosé[aEcos(B'frgcos§)+I)Ecos(7rgcos ]
F=ft+f7
and
grid g{‘id
¢ = 2 in the case of —"2 or ¢ =s in the case L
r a
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GRID DISPERSION FOR P WAVE, 4"_ORDER P-SV DISPLACEMENT-STRESS
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Fig. 2a. Grid-dispersion curves for the P wave propagating in 10 directions in a plane. Dispersion
curves are shown for three values of the Poisson’s ratio o and three values of the stability parameter
p. The three values of o, 0.25, 0.45 and 0.495, correspond to o/ ratios of */5, 3.317 and 10,
respectively. Two vertical lines indicate two values of the spatial sampling ratio (s = h/Ay), s = 1/6
and s=1/5, that are commonly used in numerical simulations. The horizontal line a8 = |
indicating the case of no grid dispersion is also shown for convenience.
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GRID DISPERSION FOR P WAVE, 4"-ORDER P-SV DISPLACEMENT-STRESS
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Fig. 2b. The same as in Fig. 2a but for the group velocity.
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GRID DISPERSION FOR S WAVE, 4" ORDER P-SV DISPLACEMENT-STRESS

GRID
/

p

115
1.04
0.9

0.8

p

c=025

=045

o =0.495

HIRBEESE Iy

858

p=1.0

07
1.1+

1.0

0.9+

0.8

07
1.1,

1.0

0.9+

0.8

p=0.1

p=0.1 |

p=0.1

0.7

0.1

0.2

03

0.0

01

02

h/x

S

03

0.0

01 02 03 04

Fig. 3a. Grid-dispersion curves for the S wave propagating in 10 directions in a plane. Compare
with Fig. 2a for the P wave.
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GRID DISPERSION FOR S WAVE, 4"_ORDER P-SV DISPLACEMENT-STRESS
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Fig. 3b. The same as in Fig. 3a but for the group velocity.
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5. GRID DISPERSION - NUMERICAL RESULTS

Propagation in plane

In order to investigate scatter of the dispersion curves for different possible directions
of propagation in plane we show first dispersion curves for the P and S waves propagating

in ten directions defined by angle &
e {45°,50°,55°,60°,65°,70°,75°,80°,85°,90°}

Fig. 2a shows the phase-velocity dispersion curves for the P wave for three values of the
Poisson’s ratio o and three values of the stability parameter p. Analogously, Fig. 3a shows
dispersion curves for the S wave. Two vertical lines shown for each set of the curves
indicate two values of the spatial sampling ratio, s = 1/6 and s = 1/5, that are commonly
used in numerical simulations. It is important to show dispersion for p values as low as 0.5
and 0.1. This is because in practical simulations a model of medium often consists of
several layers and the maximum P-wave vclocity in the model is 2 or more times,
sometimes even 10 times, larger than the minimum P-wave velocity. Since the time step is
determined by the maximum P-wave velocity, it is, say, 2 to 10 times smaller than that
required by the layer with the minimum velocity. Correspondingly, an effective stability
parameter p for a layer with the minimum velocity is as low as 0.5 to 0.1.

As expected, and similarly with the 3D case, due to a longer wavelength of the P wave
propagation of the P wave is modeled by the FD scheme better than that of the S wave.
Compared to the P wave, there is relatively considerable grid-dispersion anisotropy of the
S wave.

For a given Poisson’s ratio ¢ and direction of propagation, both a8"/a and Brid/p
decrease with a decreasing value of the stability parameter p. Sensitivity of "4/ to the
stability parameter p decreases with an increasing value of the Poisson’s ratio o. For
a given direction of propagation and stability parameter p, 4/ decreases with an
increasing Poisson’s ratio o.

For a given direction of propagation, the S-wave dispersion curves for all values of the
Poisson’s ratio o are very close to each other in the case of the stability parameter p = 0.1.
This, similarly as in the 3D case, is understandable if we examine a limit of 8%/ for
p — 0. Dispersion relation (16) can be written as

B8 B = V/Larcsin(z—p—)
p r

where the meaning of = yAs) and y = (s, d) is clear from relation (16). Then

lim (,Bgm[ /ﬂ):w x
p—>0
This explains why the dispersion curves (for a given direction of propagation) for p as low
as 0.1 are so close to each other regardless of the value of the Poisson’s ratio .

Majority of the displayed S-wave dispersion curves exhibit &74/f< 1. Thus, in
majority cases, the grid dispersion causcs delays of the S-wave arrivals. There are,

392 Studia geoph. et geod. 44 (2000)



Stability and Grid Dispersion of the P-SV 4"_Order Staggered-Grid ...

however, some curves, mainly for o= 0.25, that exhibit 1dIB> 1 at certain intervals of
the sampling ratio s.

Table 1 shows minimum 244 in % of S for two values of the sampling ratio s, s = 1/5
and s = 1/6, three values of the Poisson’s ratio o and two values of the stability parameter
p. Itis clear from Table | that for s = 1/5 and s = 1/6, 7 does not differ from the actual
velocity 8 more than, approximately, 0.9% and 0.5%, respectively. Consider, for example,
=300 m/s and travel distance of 10000m that are reasonable values in large sedimentary
basins or valleys. Then, the delays in the S-wave arrival caused by the grid dispersion are
0.303 sec and 0.168 sec for the sampling ratios s = 1/5 and s = 1/6, respectively.

Table 1. Minimum grid S-wave phase velocities /}q"id in % of the actual velocity g

s=1/5
o
p
0.25 0.45 0.495
1.0 99.733 99.150 98.959
0.5 99.132 98.989 98.941
0.1 98.943 98.938 98.936
s=1/6
o
])
0.25 0.45 0.495
1.0 100.031 99.622 99.488
0.5 99.610 99.509 99.476
0.1 99.477 99.473 99.472

s — spatial sampling ratio; o — Poisson’s ratio; p — stability parameter

While there is practically no grid dispersion for the Poisson’s ratio o= 0.495 for the
sampling ratios s < 0.4, a8"/g > 1 at all directions of propagation for the stability
parameter p = 1.0 and Poisson’s ratios o=10.25 and o= 0.45. The latter case means that
the grid dispersion causes unphysical carlicr P-wave arrivals. If nccessary, and given
relatively low sensitivity of 7/ 1o the stability parameter p, the earlier arrivals can be
prevented by taking p as low as 0.5, i.e., by using half-value of the maximum possible
time step At

Fig. 2b shows dispersion curves of the P-wave group velocity for three values of the
Poisson’s ratio o-and three values of the stability parameter p. Analogously, Fig. 3b shows
dispersion curves of the S-wave group velocity. What was said about the phase-velocity
grid dispersion with respect to the Poisson’s ratio o and stability parameter p, is
qualitatively also truc about the group-velocity grid dispersion. An important difference is
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considerably larger grid-dispersion anisotropy. Table 2 shows minimum ﬁﬁ,’.{’fup in % of S
for two values of the sampling ratio s, s = 1/5 and s = 1/6, threc values of the Poisson’s
ratio o and two values of the stability parameter p. It is clear from Table 2 that for s = 1/5

and s = 1/6, ﬂf},’,‘,i[, can differ from the actual velocity B, similarly as in the 3D case, as

much as, approximately, 5% and 2.5%, respectively. Considering again the example with
=300 m/s and travel distance of 10000m, the delays in the S-wave cnergy arrival caused
by the grid dispersion are 1.754 sec and 0.877 scc for the sampling ratios s=1/5 and
s = 1/6, respectively. Clearly, taking 6 grid spacings per minimum wavelength of the S
wave, i.e., s = 1/6, is better than taking only 5 grid spacings.

Finally, let us make a note on the grid dispersion for high values of the Poisson’s ratio.
It is clcar from the figures that the grid velocities do not attain anomalous values for the
Poisson’s ratio approaching 0.5. In other words, they do not degrade. Thus, therc is no
indication of problems with liquids and solid-liquid interface.

Table 2. Minimum grid S-wave group velocities ,B‘f',f}';(ll,l, in % of the actual velocity £
s=1/5
o
1’
0.25 0.45 0.495
1.0 97.205 95.495 94,944
0.5 95.443 95.031 94.894
0.1 94.900 94.883 94.878
s=1/6
g
[)
0.25 .45 0.495
1.0 99.087 97.872 97.476
0.5 97.835 97.538 97.440
0.1 97.444 97.432 97.428

s - spatial sampling ratio; o — Poisson’s ratio; p — stability parameter

Propagation in Two Distinct Directions

There arc two distinct directions of propagation in the considered regular rectangular
spatial grid — along a coordinate axis and coordinate-plane diagonal. Here we consider the
x-axis (6=90°) and the xz-plane diagonal (6= 45°). Figure 4 shows dispersion curves for
the P wave propagating in the two directions for three values of the Poisson’s ratio o and
four values of the stability parameter p. Analogously, Fig. 5 shows the dispersion curves
for the S wave.
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1.1

GRID DISPERSION FOR P WAVE

4" ORDER P-SV DISPLACEMENT-STRESS
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Fig. 4. Grid dispersion curves for the P wave propagating in the two distinct directions — along
a coordinate axis and plane diagonal. Herc we consider the x-axis (5= 90°) and plane diagonal
determined by 8= 45°. The dispersion curves arc shown for three values of the Poisson’s ratio o and
four values of the stability parameter p.
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GRID DISPERSION FOR S WAVE
4".ORDER P-SV DISPLACEMENT-STRESS
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For given values of the spatial sampling ratio s , Poisson’s ratio o, and stability
parameter p, c8’i/c (where ¢ is @ or ) is larger at the direction of the plane diagonal.
Except the case of 0=0.25 and p = 1.0, the scheme better models propagation in the
direction of the plane diagonal compared to the direction of the coordinate axis. For
a given type of wave, direction of propagation and value of the Poisson’s ratio o, c47d/¢
decreases with decreasing value of the stability parameter p. For a given type of wave and
direction of propagation, sensitivity of ¢4"/c (o the value of the stability parameter p
considerably decreases as the value of the Poisson’s ratio ¢ increases.

We can illustrate an cffect of the grid dispersion on a planc S wave propagating in the
direction of the x-axis (8= 90°). Consider a medium with #=300 m/s and a= 1000 m/s,
i.e., 0=0.4505. Let the time function of the wave be Gabor signal

s(t)=exp {~ [a)], t=t)]7y | } cos [a)], (1—t)+0)].

Here, @), =27, t € <0,2t;>, f, = 0.5 Hz is predominant frequency, y = L1 controls the
width of the signal, 0= 772 is a phasc shift, and ¢, = 0.45y,/f,. The predominant frequency
of 0.5 Hz is a typical one in recent seismic ground motion modelling. The amplitude
spectrum of the signal is shown in Fig. 6. The spectrum falls-off by threc orders of
magnitude from its maximum at the frequency of 0.74 Hz. Physically, this cxample is
identical with that shown by Moczo et al. (2000b) for the 3D case. The difference is that
here we do not propagate a planc wave in a 3D grid since we work only with a 2D grid
assuming that propagation in our xz-plane is identical with propagation in any parallel
xz-plane.

In Fig. 7 we show two cases. In the first one, a spatial sampling criterion is applied to
a wavelength A 5 ¢, at the predominant frequency. Two numerical solutions — one for 6
and one for 5 grid spacings per Agsy, — arc shown together with the exact solution
(middle panel in Fig. 7). An cflcct of the grid phase-velocity dispersion is shown on the
left-hand side (signals) while an effect of the grid group-velocity dispersion is shown on
the right-hand side of the figure (envelopes). First, compare the numerical solution for 5
grid spacings per Ag 5 y,, with the exact one. Both the signal and envelope of the numerical
solution are distorted and delayed with respect to the exact solution. The delays of the
maximum amplitudes of the signal and envelope are approximately 10% larger than
delays simply predicted for the predominant frequency from the corresponding values of
the grid phase and group velocities for a given travel distance. This is due to the effect of
the spectral content of the Gabor signal at frequencies higher than the predominant
frequency (sec Fig. 6).

Compare now the two solutions with the numerical onc for 6 grid spacings per Ag s Hy-
We can sec in Fig. 7 that the delays of the maximum amplitudes of the signal and
envelope (with respect (o the exact solution) are approximately twice smaller compared
with those for 5 grid spacings per Ag s Hz

The lower part of Fig. 7 compares the exact solution with two numerical ones for 5
and 6 grid spacings applied to Ag 74 1. As expected, delays due to the grid dispersion are
much smaller compared with those in the above case.

An important fact in both cases is that using 6 grid spacings per a wavelength instead
of 5 grid spacings decreases delays in phasc and energy arrivals approximatcly twice.
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Effect of the grid dispersion on a plane S wave
PSV 4™.order displacement-stress staggered-grid FD scheme
Medium: g =300m/s, o = 1000 m/s Travel distance: 10 000 m
Direction of propagation: coordinate axis Stability parameter: p=0.3
Wavelength at the predominant frequency of 0.5 Hz: X, ,, =600 m
Wawelength at the fall-off frequency of 0.74 Hz: No 74 =405 M
Spatial sampling criterion applied to Ay, ..
Signals exact solution ~ Envelopes
1 e g> grid spacings per Ay s 1, ~ 1
111 K
— 0
-1 T T ‘|||,1
35 40 45 50 35 40 45 50
Time [s] Time [s]
N Spatial sampling criterion applied to Ay, .
Signals exact solution 2 Envelopes
b q ﬂ ~7 8 grid spacings per Az, 1 1
o4 - 0
B e o e o 0 .. B B ) IR I||\lv‘lv|1§;v||llv|llv—1
35 40 45 50 35 40 45 50
Time [s] Time [s]

Fig.7. Example of an cffect of the grid dispersion on a plane S wave propagation in a grid in two
cases. First, a spatial sampling criterion is applied to the wavelength at the predominant frequency
of the signal. Second, a spatial sampling critcrion is applied to the wavelength at the frequency at
which the amplitude spectrum falls-off by three orders of magnitude from its maximum value (see

Fig. 6). All numerical solutions arc compared with the exact onc.
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The example also indicates that it is not enough to apply a spatial sampling criterion to
a wavelength corresponding to a predominant frequency if the spectral content at higher

frequencies of a signal is non-negligible.
Finally, let us note that the numerical solutions in Fig. 7 are very close to those shown

by Moczo et al. (2000b) for the 3D case.

GRID DISPERSION, P-SV DISPLACEMENT-STRESS

4"-ORDER 2"_ORDER
¢=0.25
GRID GRID
oo P wave BB S wave
11, : .
1.0 e | -
0.9- |
0.8 1 -~ 10
© 07
; 5=90° 5=80° 0.4
0.7 - T 1 T T 0.1
11- 1
1.0 — e
0.9 : [ i
0.8 | |
, ‘ 5=45° ) 5=45°
0. i ‘ . : i , :
00 0.1 02 03 04 00 01 02 03 04
h/)»S h/?xS

Fig.8. Comparison of the grid dispersion in the 4% order and 2™-order FD schemes. The
dispersion curves are shown for the P and S waves propagating in the two distinet directions for the
Poisson’s ratio o= 0.25 and four values of the stability parameter p. Four vertical lines indicatc four
values of the spatial sampling ratio — s = 1/12, s = 1/10 and s = 1/6, s = 1/5 — that are commonly
used in numerical simulations by the 2%-order and 4""-order FD schemes.
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Comparison with the 2"'-order Scheme

Grid dispersion in the 4™ and 2™-order schemes is compared in Fig. 8. Dispersion for
the two distinct directions of propagation is illustrated. Similarly as in the 3D case, the
difference between the two orders of approximation is significant. The 2"order scheme
models both the P- and S-wave propagation much worse than the 4™_order scheme does.

There is one interesting cxception in the 2"_order scheme. It is easy to see from
eq. (15) that for =45° (plane diagonal) and p=1.0, a8"djg =1 for all values of the
spatial sampling ratio §, i.e., there is no grid dispersion of the P wave propagating in the
direction of a plane diagonal at the stability limit. This is illustrated by a missing
dispersion curve in the bottom left sct of the curves in Fig. 8 (the dispersion curve
coincides with the horizontal line a8"/a = 1).

Another interesting feature of the grid dispersion in the 2" order scheme is that
c&rd]e < 1 (where ¢ is ez or f3), i.e., there are no grid-dispersion related earlier arrivals.

6. CONCLUSIONS

Stability and grid dispersion in the P-SV 4" order in space, 2"-order in time,

displacement-stress staggered-grid finite-difference scheme were analyzed in the case of
a homogeneous medium,

Exact separation of equations for the P and S waves leads to the independent stability
conditions for the two types of waves.

Considering the P-wave stability condition as a joint stability condition, and the spatial
sampling of the S wavelength at a given frequency as an argument in both dispersion
relations, we consistently investigated the P- and S-wave grid dispersion.

Due to larger wavelength of the P wave, propagation of the P wave is modeled by the
FD scheme better than that of the S wave. Compared to the P wave, there Is considerable
grid-dispersion anisotropy of the S-wave phase and mainly group velocity. Grid
dispersion is strongest for a wave propagating along a coordinate axis and weakest for
a wave propagating in the direction of a plane diagonal.

The phasc velocity rid does not differ from the actual velocity £ more than,
approximately, 0.9% and 0.5% for the spatial sampling ratios s=1/5 and s=1/6,

respectively. However, the group velocity ﬁi:',’.;’;‘/q, can differ from g as much as 5% for the

spatial sampling ratio s =1/5 while it is 2.5% for s = 1/6. Therefore, we recommend to
sample a minimum S wavelength by 6 grid spacings (instead of 5 that is prevailing
practice).

The 4M-order scheme models wave propagation much better than the 2™_order scheme.
Moreover, grid dispersion of the S wave in the 2".order scheme for the sampling ratios
s=1/10 and s = 1/12 is larger than grid dispersion in the 4"_order scheme for s = 1/5 and

s = 1/6, respectively.
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