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3D Displacement Finite Differences and a Combined Memory Optimization

by Peter Moczo, Madria Luck4, Jozef Kristek, and Miriam Kristekova

Abstract We present a general optimization technique for the three-dimensional
finite-difference (FD) modeling of seismic-wave propagation and earthquake ground
motion. Our combined memory optimization (CDMO) naturally comprises core mem-
ory optimization and disk memory optimization. While core memory optimization
is based on keeping only a limited number of model planes in core memory at a
given time, disk memory optimization is based on data compression in the wavelet
domain. CDMO enables significant reduction of both computer core and disk memory
requirements. CDMO 1is general: It is applicable to any explicit finite-difference
scheme on a conventional or staggered grid.

CDMO is presented on the example of the displacement finite-difference scheme.
Accuracy of the scheme was tested through numerical comparisons with the discrete-
wavenumber method. The scheme was shown to be capable to account for the po-
sition of the material discontinuity more accurately than other recent finite-difference
schemes.

Extensive numerical experiments were carried out in order to find proper param-
eters of the wavelet compression and investigate effects of the compression on syn-

thetics.

Introduction

The finite-difference (FD) method has recently proven
to be a powerful tool for numerical three-dimensional (3D)
modeling of earthquake ground motion. This is documented
by numerous studies presenting simulations of the earth-
quake ground motion due to real or anticipated earthquakes
in major populated areas (see, for example, Olsen and Schus-
ter, 1992; Frankel, 1993; Graves, 1993; Yomogida and Et-
gen, 1993; Olsen et al., 1995; Pitarka et al., 1998; Wald and
Graves, 1998). Most of the recent 3D FD simulations are
based on the velocity-stress formulation of the equation of
motion.

Consider a Cartesian coordinate system (x;, x,, x3). De-
note p(x) density; A(x) and u(x) Lamé elastic coefficients;
u(x, 1) displacement vector; 7,(x, 1), where i, j € {1, 2, 3},
stress tensor; and f(x, f) body force per unit volume. Wave
propagation in a linear isotropic perfectly elastic medium
can be described by equations in the displacement-stress for-
mulation, that is,

Py = Ty + fis
Tp = Awgdy +op(u; +oup),

or velocity-stress formulation, that is,

pi, = Ty + fi
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Tij,l = luk’kéij + ,u(u,J + L'tj’i)

where 1i; denotes the ith particle velocity component. In both
equations, i, j, k € {1, 2, 3}, and the summation convention
for repeated subscripts are assumed. u; , = 9°u,/0f%, T
dt;;/dx;, and so on.

A parsimonious FD scheme based on the displacement-
stress formulation was suggested for the P-SV case by Luo
and Schuster (1990) and extended to the 3D case by Olsen
and Schuster (1992) and Ohminato and Chouet (1997). The
displacement-stress FD scheme uses the stress components
only as temporary quantities that need not be stored. There-
fore, in the 3D case, the displacement-stress scheme requires
only 75% of memory required by the velocity-stress scheme.
Given this advantage, the displacement-stress scheme should
receive more attention in future 3D modeling.

In this article, we present and test the FD scheme that
is based on the displacement formulation of the equation of
motion; that is,

i =

Uiy = (Aup); + (uu;p); + (uug); + fi. (D
While in the two previous cases, it is enough to apply a
standard central-difference formula to approximate the first
spatial derivatives, in the displacement formulation, it is nec-
essary to find a proper approximation of terms with the non-
mixed and mixed second derivatives, such as d(a 9f/dx,)/ox,
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and d(a df/dx,)/dx;. The approximation of the nonmixed de-
rivative is relatively easy. A proper approximation of the
mixed term is not so obvious. Different approximations lead
to schemes with different accuracy. We apply the approxi-
mation suggested by Zahradnik (1995).

It is well known that the displacement schemes (in the
P-SV and 3D cases) have problems with high Poisson’s ratio
and very large velocity contrasts. Velocity-stress and dis-
placement-stress schemes do not have these problems (see,
e.g., Virieux, 1986). We will show, however, that our dis-
placement scheme is in certain media more accurate than the
two other schemes.

Generally, no scheme was shown to be the best in all
possible modeling problems. In other words, no FD scheme
(including ours) can be recommended for really universal
use. We want to stress two things here: (1) The reason why
we present and use the displacement FD scheme is a re-
markable accuracy of the scheme in a certain class of media,
as shown later. (2) The combined memory optimization,
which we present in this article, is in no way restricted to
the particular FD scheme.

One major drawback of the FD method is considerable
computer time and memory requirements as the recent
ground-motion simulations clearly indicate. Obviously, an
improvement can be achieved by progress in computer tech-
nology. It would not be wise, however, to wait for it and
rely only on it. The advance in technology may solve today’s
problems but not necessarily those in future seismological
research. Therefore, developments of optimized computa-
tional algorithms and sophisticated computer codes have
crucial importance for application of the FD method to mod-
eling seismic-wave propagation and earthquake ground mo-
tion.

Several approaches have been developed in order to
make the FD calculations more efficient. Schemes on spatial
grids with varying size of grid spacings (e.g., Moczo, 1989;
Pitarka, 1999) and combined grids (e.g., Jastram and Behle,
1992; Moczo et al., 1996, 1997; Aoi and Fujiwara, 1998)
reduce total number of grid points and thus memory require-
ments and number of operations compared to schemes on
regular grids. Reduction in computer memory and time re-
quirements is also achieved by fourth-order schemes com-
pared to second-order ones (e.g., Levander, 1988; Graves,
1996). Core memory optimization reduces number of grid
points residing at a given time in core memory and makes
use of disk memory (e.g., Olsen and Schuster, 1992; Graves,
1996). Parallel programming allows to reduce computational
time compared to conventional programming (e.g., Olsen et
al., 1995).

Core memory optimization (as described by Graves,
1996, for 3D fourth-order velocity-stress scheme) consists
in keeping only a limited number of grid planes in core mem-
ory at one time and performing a maximum possible number
of time updates for these planes. Core memory requirements
are significantly reduced; however, what had to be stored in
core memory in computation without core memory optimi-
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zation has to be stored in disk if core memory optimization
is applied. It is easy to estimate that while in the case of a
realistic large model, we can keep core memory require-
ments relatively low (say, several hundreds of megabytes),
tens of gigabytes of the hard-disk memory are needed. Disk
storage is cheap now but the time necessary for the input/
output (I/O) operations in the case of the big disk storage is
significant and creates a bottleneck of the computation.
Moreover, subroutines performing the I/O operations cannot
be well parallelized, though a major part of the code can be.
A significant consequence is that hard-disk memory rather
than core memory determines a limit for a model size and
maximum frequency.

Therefore, we suggest a combined memory optimiza-
tion (CDMO) that comprises the above-described core mem-
ory optimization and disk memory optimization based on
data compression in the wavelet domain.

Equation of Motion

The system of the second-order partial differential equa-
tions (1) can be rewritten (replacing x;, x,, x3 by x, y, z, and
uy, Uy, u3 by u, v, w, respectively) in a more readable form

puy = (A + 2uuy), + (uuy), + (uu), + (Avy),
(Aw)e + vy, + (uw), + f,,

—+

PV = (e + (Avy), + 2(uvy), + uv), + (uu),
+ (), + (Aw), + (uwy), + f,, 2)

pwtt = (auwx)x + (auwy)y + (sz)z + 2(luwz)z + (cuuz)x
+ vy, + (duy, + (), + f,

where, for example, (Av,), = 3(4dv/dy)/ox.

Finite-Difference Scheme

Let Uj; be a discrete approximation to ujy; = u(x;, yi.
25 t,,), Where i, k, [ are spatial indices and m is a time index.
Similarly, let Vi, and W}, approximate vj; and wj, respec-
tively. Let & be the spatial grid spacing in all three directions
and At a time step. The approximation of the nonmixed de-
rivative was suggested by Tikhonov and Samarski (e.g.,
Mitchell and Griffiths, 1980), and it has been used since
Boore (1972) introduced it in seismology. Approximation of
the mixed derivative is more problematic. Several ways were
suggested (see, e.g., Kummer et al., 1987; Sochacki et al.,
1991; Zahradnik, 1995) and applied to the P-SV modeling.
Theoretical analysis of consistency on material discontinu-
ities and numerical tests showed very good accuracy of the
P-SV scheme of Zahradnik (Zahradnik, 1995; Zahradnik
and Priolo, 1995; Moczo et al., 1997). Therefore, we apply
Zahradnik’s approach. For equations (2), we can obtain the
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explicit second-order (in space and time) FD scheme. The
scheme is given in the Appendix.

Combined Memory Optimization

Core Memory Optimization

Graves (1996) presented a good example of the core
memory optimization for a fourth-order velocity-stress
scheme on a staggered grid. While only a limited number of
planes (e.g., xz planes) resides in core memory at one time,
a maximum possible number of time updates is performed
for these planes. The subset of planes repeatedly moves
throughout the entire model space until the desired time win-
dow is computed. We apply such a memory optimization to
our displacement scheme.

While the optimization significantly reduces problem
with core memory, it may impose considerable disk memory
requirements. This is because what had to be stored in core
memory in the case with no optimization now has to be
stored in disk. Disk memory requirements can reach easily
tens of gigabytes if realistic large-scale model should be
computed. There is, however, a possibility to reduce also
disk memory requirements significantly by combining the
foregoing core memory optimization with a disk memory
optimization.

Disk Memory Optimization

A considerable amount of disk memory, say NBWF, is
occupied by two time levels of the displacement values in
all grid points: NBWF = p-2-MX-MY-MZ-3, where p is
the number of bytes for the used real-number precision, 2
stands for two time levels, MX, MY, and MZ are the total
numbers of grid points in the x,y, and z directions, respec-
tively, and 3 stands for the three displacement components.
These values are successively (plane by plane) and period-
ically overwritten as the subset of NP xz planes moves
throughout the entire model space. It would be, therefore,
reasonable to store and overwrite not directly 2- MX-MZ-3
displacement values for each plane but only 2 - 3 streams of
zeros and ones that we could obtain as a result of data com-
pression and that would occupy considerably less memory.

A two-dimensional array of the displacement-compo-
nent values in one plane usually has a relatively very large
information entropy, that is, no values are significantly more
common than others. Usual compression methods, for ex-
ample, a well-known adaptive Lempel-Ziv coding (UNIX
command “compress”), in such a case fail. Therefore, we
suggest to use the wavelet transform to decrease an infor-
mation entropy in data and perform compression in the
wavelet domain. We can call such an approach a wavelet
compression.

Two-Dimensional Wavelet Transform

A one-dimensional (1D) continuous wavelet transform
of a real function f(f) with respect to an analyzing wavelet
w(?) is defined as

t— b

1
W(f,w;a,b>=mfw*( .

Parameters a and b are called dilation and translation param-
eters, respectively, and y* is a complex conjugate to . A
set of functions

) fdt. (3)

ab o L (t—b)
y*” (D) MV/ P

differing from one another in a and b values is the wavelet
basis. In other words, the basis is obtained by dilation and
translation of a single function w(#). W(a,b) for given values
of a and b is the wavelet coefficient.

Function f(f) can be reconstructed from its wavelet
transform using the inverse wavelet transform

da db
) = ¢! f f © W, by

where C, = 21 [ dép(E)PIEI™! < o and () denotes

the Fourier transform of w(&).

A discrete wavelet transform (DWT) can be obtained
from definition (3) by restricting parameters @ and b to dis-
crete values a = ag and b = sbyap, where r and s are in-
tegers and ay > 1, by > 0 are some constants. The wavelet
coefficients W, ; are then defined as

W, =a™ f fOwlagt — sbydt

and can be computed by hierarchical and fast scheme, a so-
called subband filtering scheme (see, e.g., Daubechies, 1992;
Press et al., 1992). For most of the applications to the dis-
crete data, the DWT is more convenient than the continuous
transform.

A standard way of how to obtain the wavelet transform
ofa2D array A; i = 1,...,mandj = 1,...,n)is to
apply the 1D DWT twice. First, we apply the DWT to row
vectors Ay, Ay, ..., Ay = 1,..., n). As a result, we
obtain a new array A;/ (i = 1,...,mandj = 1,..., n).
Then we apply the DWT to column vectors AY,
A%, ... A¥ (i = 1,..., m). The resulting array A,
i=1,...,mandj = 1,..., n) is the array of the coef-
ficients of the 2D wavelet transform of the original array A ;.

The subband filtering scheme requires that a length of
an input vector be 2%; K being an integer. In practice, a
spatial FD grid covering a given model of the medium has
dimensions that are not equal to a power of 2. We found that
adding zeros leads to poor compression. It is much better to
divide array A; into M subarrays with dimensions 2% X
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2L:(g¢ = 1,..., M) and to apply the two-dimensional wave-
let transform to each of them separately.

The DWT enables to represent input data by a small
number of the large-value wavelet coefficients that contain
a substantial part of information, and by a large number of
small or zero coefficients.

Thresholding, Quantization, and Encoding

Thresholding. Small coefficients with absolute values be-
low the chosen threshold can be truncated to zero without
any substantial distortion of input data. We choose the
threshold THR as THR = |W,_|/PT, where W,,, is the
wavelet coefficient with the maximum absolute value and
PT is a parameter. The smaller PT, the better compression,
but the more probable data distortion.

Quantization. After thresholding, we can map the real
wavelet coefficients from the interval (— W, ., W, ., into
integers from interval (—2V~1 + 1,2¥=! — 1). Thus, the
number of possible values of the coefficients is restricted.
The maximum number of bits needed to represent any of the
integer coefficients is N.

Encoding. The wavelet transformation, thresholding, and
quantization decrease the information entropy of our data.
Encoding translates the integer representation into a bit
stream consisting of bit patterns. A chain of zeros is repre-
sented by bit value O followed by a bit pattern meaning the
number of zeros in the chain. A bit pattern for any other
number starts with the bit value 1, which is followed by a
bit indicating a sign of the number and N — 1 bits repre-
senting an absolute value of the number.

Decoding. A bit stream is decoded into integer wavelet co-
efficients. If a bit pattern begins with a bit value 0, then the
following bit pattern determines number of zeros in the
chain. If the first bit of a bit pattern has value 1, the next N
bits determine the value of a coefficient.

Dequantization. Integer wavelet coefficients are mapped
into real values within interval { — W, .., Wax)-

Algorithm of the Combined Optimization

The whole computation is performed during a certain
number of passages of the subset of NP planes throughout
the entire model space. One passage consists of three pro-
cedures that may be called (Graves, 1996) the ROLL-IN,
CASCADE, and ROLL-OUT procedures.

ROLL-IN: First NP + 1 planes are read into core memory.
The first time level is updated successively plane by
plane starting from plane NP and ending with plane 1.
The second time level is then updated successively for
planes NP — 1,..., 1. Next, time levels are updated
until the NP — 2nd time level is updated successively
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for planes 3, 2, and 1. Plane 1 (only displacement val-
ues) is then compressed and written into disk.

CASCADE: Displacements of plane 2 are compressed and
written into disk. Displacements of plane NP + 2 in
the compressed form are read in from disk and decom-
pressed. Original displacement values of plane 2 in core
memory are overwritten by decompressed displace-
ments of plane NP + 2. Medium parameters of plane
2 residing in core memory are overwritten by parame-
ters of plane NP + 2 that are read into core memory.
Then, the first time level is updated for plane NP + 1,
the second time level for plane NP, and so on, until the
NP — 2nd time level is updated for plane 4. The subset
of NP planes moves throughout the entire model space,
and the CASCADE computations are performed until
the subset reaches plane MY — 1, where MY is the total
number of xz planes.

ROLL-OUT: This is similar to the ROLL-IN procedure. At
the end of the ROLL-OUT, all xz planes are updated up
to NP — 2nd time level. The sequence of the three
procedures is then repeated until the desired number of
time levels (which has to be a multiple of NP — 2) is
computed.

Compression and Decompression. Compression is applied
to each displacement component separately. While 2D DWT
is applied to each of M subarrays, thresholding, quantization,
and encoding are applied to the whole xz plane. A resulting
bit stream and a wavelet coefficient with the maximum ab-
solute value (W,,,) are written into disk. After a bit stream
and W, are read in from disk, the bit stream is decoded
and dequantizated. An inverse 2D DWT is applied to each
of M subarrays of the wavelet coefficients. As a result, dis-
placement values are obtained.

Memory Requirements

Let the model be inhomogeneous between the free sur-
face (I = 1) and horizontal grid plane with index [ = LIN;
1 < LIN < MZ, and homogeneous between plane LIN and
bottom boundary (I = MZ), | being the spatial index in the
z (downward vertical) direction. Let COREM be the number
of bytes of core memory and DISKM the number of bytes
of disk memory. Then memory needed to store material pa-
rameters plus displacements in two time levels are

No optimization

COREM = p MX MY[7 (LIN — 1) + 6 MZ] (4a)
DISKM = 0 (4b)

Core memory optimization
COREM = p MX NP[7 (LIN — 1) + 6 MZ] (5a)
DISKM = p MX MY[7T (LIN — 1) + 6 MZ] (5b)
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Combined memory optimization
COREM = p MX NP[7 (LIN — 1) + 6 MZ] (6a)
DISKM = p MX MY[7 (LIN — 1) + 6 MZ/CR] (6b)

CR is compression ratio defined as NBWF/NBWFY, where
NBWF = p-2-MX-MY-MZ-3 is the number of bytes of
disk memory occupied by displacement values (without
compression) and NBWE" the number of bytes occupied by
streams of zeros and ones representing displacement values
after the wavelet compression. Because the wavelet com-
pression is applied separately to each displacement compo-
nent at one plane at one time level, the compression ratio
CR in equations (6) represents, in fact, a minimum of com-
pression ratios for all displacement components, planes, and
time levels. Note that formulas (4) to (6) give the upper
estimates since we assume that, theoretically, the medium in
its inhomogeneous part can change point to point.

Test Computations

Accuracy of the Finite-Difference Scheme

First, we tested accuracy of the FD scheme without ap-
plying wavelet compression. We made numerical compari-
sons of the FD synthetics with those obtained by the discrete-
wavenumber (DWN) method (Bouchon, 1981; computer
code by O. Coutant). From numerous computations, we
present here some examples for models of a homogenous
half-space (HH, HP1, HP2, and HP3) and a single layer over
half-space (SL1, SL2, SEN1, and SEN2). Their parameters
are given in Table 1. Source was simulated using a body-
force term and method suggested by Frankel (1993). Gabor

Table 1
Model Parameters
vp Vs P H hs h At fac
Model (m/sec) (m/sec) (kg/m3) (m) (m) (m) (sec) (Hz
HH 4000 2300 1800 © 2511 93 0.018 2.06
SL1 2600 1400 1500 1100 2585 55 0.010 2.12
4000 2300 1800 o
SL2 2600 1400 1500 1100 385 55 0010 212
4000 2300 1800 o
HP1 1600 400 1700 o 128 16 0.008 2.08
HP2 1200 400 1700 o 128 16 0.010 2.08
HP3 800 400 1700 o 128 16 0.005 2.08
SENI 1125 625 1600 200 300 50 0.007 1.04
5468 3126 1800 o
1125 625 1600 225 300 50 0.007 1.04
SEN2 5468 3126 1800 o

vp, P-wave velocity; vg, S-wave velocity; p, density; H, thickness of a
layer; h,, source depth; A, grid spacing; At, time step; f,. (= Vs,min/12h), the
frequency up to which a computation should be sufficiently accurate.

signal, s() = exp { —[w(t — t)/y]*} cos[w(t — t) + O],
was used as a source time function. Here, o = 2xf,, t €
(0,21), f, is predominant frequency, y controls the width of
the signal, 6 is a phase shift, and ¢, = 0.45y/f,. The source
parameters are given in Table 2.

Figure 1 compares velocigrams calculated by the FD and
DWN methods for model HH. Figures 2 and 3 show veloci-
grams for models SL1 and SL2, respectively. While the
source is located in the half-space in the case of model SL1,
it is inside the layer in model SL2. The source inside the

Table 2
Source Parameters
M, Do o A
(kg m¥sec’)  (deg)  (deg)  (deg) y fe 0 t
10'¢ 0 45 90 05 0225 00 1.0

M,, scalar seismic moment; Pg, strike; J, dip; 4, rake; y, fp, 0 and ¢,
parameters of Gabor signal.
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Figure 1.  Comparison of the finite-difference (FD)
and discrete-wavenumber (DWN) velocigrams (verti-
cal-component W) on the free surface of the homo-
geneous half-space (HH). ¢, is the receiver azimuth,
R is the epicentral distance.
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Figure 2.  Similar comparison as in Figure 1 but
for the single layer over half-space (SL1) with the
source located in the half-space.
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layer is efficient in exciting surface waves. Propagation of
relatively intensive Rayleigh waves in model SL2 serves
mainly as a severe test of the free-surface simulation. All
three figures show a very good agreement between the FD
and DWN solutions.

It is well known that the displacement schemes gener-
ally have problems in media with higher Poisson’s ratio.
This is illustrated in Figure 4, which shows the FD and DWN
velocigrams for three models of a homogeneous half-space,
HP1, HP2, and HP3. They only differ in the P-wave velocity
and consequently by Poisson’s ratio. The vp/vg ratios are 4,
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3, and 2 in models HP1, HP2, and HP3, respectively. It is
clear from Figure 4 that accuracy of the FD velocigrams
decreases as the vp/vg ratio increases. These and other cal-
culations show that the FD scheme gives sufficiently accu-
rate results for vp/vg = 2.

The last numerical example demonstrates remarkable
property of our displacement FD scheme—sensitivity to the
position of a material discontinuity. In the first model of a
single layer over half-space, SEN1, the material disconti-
nuity (i.e., interface between the layer and half-space with
the velocity contrast 1:5) lies exactly on the fifth horizontal

T 1T 1T 7

0, R=7095m

SL2 |y v
04 ——\/\\/\/\/\/-

0.2

vel [m/s]

@ = 45, R=10034m

FD
——- OWN

T T v 1 ' 17

. T
2 4 6 8 10 12 time([s] 2 4 6

Figure 3.

T T T T LI IR B BN R B T

T T -
10 12 time([s] 2 4 6 8 10 12 timef[s]

Comparison of the FD and DWN velocigrams on the free surface of the

single layer over half-space (SL2) with the source located inside the layer and exciting
intensive Rayleigh waves. U and V are the horizontal components; W is the vertical

component.
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1HP1 \\ 1 HP2 1 HP3
- I
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FD || FD | FD
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Figure 4. Comparison of the FD and DWN velocigrams (W component) in three
models of a homogeneous half-space (HP1, HP2, HP3) differing in the vp/vg ratio.
Accuracy of the FD velocigrams decreases for vp/vg > 2.
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grid plane (see Fig. 5). The point dislocation source is lo-
cated in the half-space. The FD and DWN synthetics for the
model are shown in Figure 5 by the thick solid and dashed
lines, respectively. The agreement between the two methods
is good. Let us note that the agreement between the two
methods would be better for lower layer—half-space velocity
contrast and slightly worse for a higher contrast.

The second model, SEN2, slightly differs from SEN1:
The thickness of the layer is larger by half grid spacing,
which means that the layer-half-space interface (material
discontinuity) is now located exactly halfway between the
fifth and sixth horizontal grid planes. Without any change
of the spatial grid, our scheme is capable to reflect the new
position of the material discontinuity. The FD and DWN syn-
thetics for model SEN2 are shown in Figure 5 by the thin
solid and dashed lines, respectively. As far as we know, none
of the velocity-stress and displacement-stress schemes was
shown to be capable to distinguish between the two (SEN1
and SEN2) positions of the material discontinuity without
changing the spatial grid. At the same time, it is clear from
Figure 5 that the synthetics for the two models differ con-
siderably.

Wavelet Compression

In numerous numerical calculations, we tested perfor-
mance of the wavelet compression. The effects of the wave-
let compression on synthetics are illustrated on the examples
for model SL1. Figure 6 shows the effect of the wavelet
compression on the synthetics as well as values of compres-
sion ratio (successively for all performed compressions) dur-
ing the computations for two different threshold ratios 1/PT
and fixed number of NP planes in a moving subset of planes.
For example, threshold ratio 1/PT = 1/2000 means that all

wavelet coefficients whose absolute values are smaller than
1/2000 of the maximum absolute value (at a given plane and
time level) are truncated to zero. It is obvious that the min-
imum compression ratio CR for the threshold ratio 1/PT =
1/4000 is smaller than that for 1/PT = 1/2000. It is clear
from Figure 6 that the distortion of the synthetics is smaller
for the smaller threshold ratio.

Figure 7 shows the effect of the wavelet compression
on synthetics in the case of the larger (than in Fig. 6) number
NP of the planes in the moving subset of planes and for four
values of the threshold ratio 1/PT. The larger NP means
smaller number of performed compressions and conse-
quently smaller distortion of the synthetics. Practically no
distortion (in other words, the agreement within thickness of
the line) is reached in the case of 1/PT = 1/16,000. Let us
note, however, that practically the same level of agreement
is also reached with NP = 12 if 1/PT = 1/16,000 (not
shown in Fig. 6).

Reductions of core and disk memory in the foregoing
computations for the simple model of the layer over half-
space, SL1, are clear from the following comparison of core
and disk memory requirements (COREM and DISKM):

No optimization
COREM =310.3 MB
DISKM = 0 MB

Core memory optimization
COREM = 11.3MB (NP = 12),142.5 MB (NP = 152)
DISKM =310.3 MB

Combined memory optimization
COREM = 113 MB (NP = 12),142.5 MB (NP = 152)
DISKM 18.3 MB (minimum CR = 17)
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Sensitivity of the displacement FD scheme
to the position of material discontinuity
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5, MATERIAL DISCONTINUTTY 01| 5 200m capability of the displacement FD scheme to
MATERIAL DISCONTINUTY s account for the position of the material dis-
continuity (layer—half-space interface). In the
6. ———————250m|| 6. 250m SEN2 model, the discontinuity is located half-
way between the two horizontal grid planes.
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. Dimensions of subarrays (2%, 2k, 6 = 1, . ..
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Effects of the wavelet compression on the FD velocigrams. FD veloci-

grams calculated with the wavelet compression (solid line) are compared with the
reference FD velocigrams calculated without the wavelet compression. Variation of the
compression ratio is also shown. Two different threshold ratios (1/PT = 1/2000,
1/4000) led to two different minimum compression ratios CR (36.48 and 28.89).

Results of our tests can be summarized as follows:

, M) should
be larger than 2° in order to achieve a reasonable com-
pression.

. Because compression is performed after every NP — 2

time levels for each xz plane, it is advantageous to use as
large NP as possible.

. Compression is less sensitive to the choice of a wavelet

basis than to parameters PT (which determines threshold)
and N (which determines interval of integers that wavelet
coefficients are mapped into). Assuming not-too-small
NP, PT should be larger than 4000. N has to be larger
than 1 + log, PT; otherwise, an additional thresholding
is introduced.

. Itis important (and useful) that any distortion of the seis-

mograms due to inappropriate choice of the compression
parameters was clearly recognizable in all our numerical
experiments. Moreover, distortion of the synthetics can
be easily removed by filtering. This property is very im-
portant because it allows the use of relatively small NP
and relatively large 1/PT, if necessary.

. The increase of the CPU time due to one passage of the

subset of planes with compression was always smaller
than 0.75% of the time necessary for one passage without
compression. The increase is proportional to the number
of passages, that is, inversely proportional to NP.

Conclusions

1. We presented a 3D finite-difference scheme that is based

on the displacement formulation of the equation of mo-
tion. The scheme is second-order accurate both in time
and space. Accuracy of the scheme was tested through
numerical comparisons with the discrete-wavenumber
method. The scheme gives sufficiently accurate results
for vp/vg < 2. The scheme is capable to account for the
position of the internal material discontinuity more ac-
curately than the recent velocity-stress and displacement-
stress schemes.

. We have developed a combined memory optimization

(CDMO) for the 3D finite-difference modeling of seismic-
wave propagation and earthquake ground motion. CDMO
comprises core and disk memory optimizations and sig-
nificantly reduces both core and disk memory require-
ments. Core memory optimization is based on keeping
only a limited number of model planes in a core memory
at one time and performing the maximum possible time
updates for these planes. Disk memory optimization is
based on data compression in the wavelet domain. CDMO
is in no way restricted to the particular displacement fi-
nite-difference scheme. CDMO is general and applicable
to any second- or fourth-order finite-difference scheme
on conventional or staggered grid.
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Figure 7.  Similar comparison as in Figure 6 but for the larger number of planes
residing in core memory (NP = 152) and four different threshold ratios 1/PT.

3. Application of CDMO to the fourth-order schemes on
nonuniform grids should be, in our opinion, the next step
in order to increase efficiency of the finite-difference

modeling.

4. Because inclusion of realistic attenuation in the finite-
difference simulations requires large additional memory,
CDMO makes such inclusion more affordable.
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Appendix

Finite-Difference Scheme for Interior Grid Points

Ui'l:ll+l = 2Up — z',l:ll_l
At
+ p_[Lx_x(/Ll]) + 2Lx_x(;u’U) + Lyy(;u’U)
ikl

+ LZZ(Iu’ U) + Lyx(i’ V) + Lz)r(is W)

+ Ly, V) + L. (u, W) + F3"l,

Vigtt = 2vig - vi!
A%t
+ — [Ly u, V) + Lyy(/l,V) + 2Lyy(,u,V)
Piki (A1)
+ L, V) + Lyx(,u,U) + Lzy(i,U)
+ L, (4, W) + L, u, W) + Fy",
irl?l+1 = 2Wp — :"1?1_1
A%t
+ p_[Lxx(/l»W) + Lyy(lt9W) + Lzz(isw)
ikl

+ 2L, (u, W) + L, (u, U) + L, u, V)
+ L, (4, U) + L, (4 V) + Fi'l,

where operator L,, (a, ®), (y € {x,y,2},a € {4, ), P €
{U, V, W}), has the form

1
L, (a, ®) = 0 [@ (®F — ®™) — a’ (®" - gF;™)]

and subscripts * stand for i * 1kl, ik = 1l or ikl = 1 if
y = X, y, or z, respectively. No subscript means ikl. The
effective parameters a” and a”_ are defined as

-1 -1

Yn+1 7n
d d
@ hJ—y mdal=hj;y . (A2)
’n Yn—1
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where n stands for i, k, or [ if y = x, y, or z, respectively.
Operator L,,, y # 1 and y, n € {x, y, z}, has the form

1
Ly;y (av q)) = =73 |:a71 ((Dg:_ + q)§n+ - (Dén, - (I)gn..)

4h*

—dl (P, + @ — O — (Dé"_)],

where subscripts 1., 2., and 3. stand for indices as fol-
lows:

Xz Xy ¥z ko4 yx 2y

1. ixlkl=1 ixlk—1 ikxl—-1 i—-1kl*1 i—lkxll ik—1i*1
2, ix1kl ixlk | ikxll i ki1 i kxll ik 1x1
3, ixlkl+1  ixlk+1l  ikxl+1  i+lk+1l i+lkxll ik+1%1

If the interface between two layers/blocks of media lies ex-
actly on a grid plane, the corresponding effective parameters
have to be evaluated according to formulas (A2) for an arith-
metic average of the elastic coefficients in the two layers/
blocks of media. This follows from both theoretical analysis
of consistency of the displacement schemes (Zahradnik et
al., 1993; Zahradnik and Priolo, 1995) and numerical tests
(e.g., Zahradnik and Priolo, 1995; Moczo et al., 1997).
Aboudi (1971) found sufficient stability condition for
the displacement FD scheme in a homogeneous medium:

At = W2 + 28).

As follows from numerical computations of other investi-
gators (e.g., Mikumo and Miyatake, 1987) and ours, stability
is satisfied under less restrictive condition

At = W + B,

that is, stability condition for the P-SV displacement scheme
(Alterman and Loewenthal, 1970).

Second-order schemes on both conventional and stag-
gered grids require at least 10 grid spacings per minimum
wavelength, which is to be propagated without significant
grid dispersion. It follows from our numerical experiments
that 12 grid spacings per minimum wavelength is a good
choice.

Various absorbing boundary conditions can be used
with the FD scheme. Numerical experience suggests that
there is no best absorbing condition, and the user of the FD
method should be ready to use an alternative condition if
some condition does not give good results. In our compu-
tations, we used Higdon’s (1991) condition.

Finite-Difference Scheme for Grid Points
on the Flat Free Surface

Scheme (A1) can be used also for the flat free surface.
Let point ikl be located on the free surface. Then operators

L, L,,, L,,, and L, have the same form as the operators for
the interior grid points. The other operators follow from the
application of the vacuum formalism (A = 0 and x = 0
above the free surface) to the second type of approximation
of the mixed derivative suggested by Zahradnik (1995).

They are

1
L.(a, ®) = 2 @y @iy — Pi),

1
qu(a, D) = W [a" (CDQ’L + ®§"+ - o7 — @57

—al (o7, + ®F — O - D],
and
1 z m m m m
an(a, (D) = W [a ((D3 + (I)3+ - q)z - (I)2+)
+ a (O + @ — Of — D7),

where subscripts 1, 2, 3, 1,, 2, and 3 stand for indices
as follows:

n=x n=y n=x n=y
1 i — 1kl ik — 11 1, i— 1kl +1 ik — 11+ 1
2 i kl ik I 2, i kl + 1 ik I +1
3 i+ 1kl ik + 11 3, i+ 1kl + 1 ik + 11+ 1
Effective parameters are a’ = ajy .1, d. = a1+ 1»
a = aiyipus and @ = ai_jpy, if n = x, and @’ =
Ap+in, AL = gy, @ = Gy, and @ =

Q10> if = y.

As follows from both theoretical analysis of consistency
of the displacement schemes (Zahradnik er al., 1993; Zah-
radnik and Priolo, 1995) and numerical tests (e.g., Zahradnik
and Priolo, 1995; Moczo et al., 1997), only half-values of
density and Lamé’s coefficients along the free surface have
to be considered:

1. Only half-value of density p has to be considered in
schemes (A1) when applied to the grid points on the free
surface.

2. Only half-values of parameters a* and @’ (a being either
Z or u) have to be considered in the operators L,,, L,,,

L,,, and L,, when applied to the grid points on the free

surface.
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