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Amplification and Differential Motion due to an Antiplane 2D Resonance

in the Sediment Valleys Embedded in a Layer over the Half-Space

by Peter Moczo, Peter Labdk, Jozef Kristek, and Franta Hron

Abstract We investigate an antiplane 2D resonance in a certain class of the sed-
imentary structures using the finite-difference modeling. Our models are derived from
the realistic local geologic conditions beneath the colosseum in Rome and are sig-
nificantly different from those investigated in the previous theoretical articles on a
2D resonance. They include a trough at the bottom of the horizontal surface layer as
well as relatively deep sediment valleys embedded in a single layer over the half-
space.

We present the finite-difference algorithm for SH waves on a combined (A X h
and 2k X 2h) rectangular grid. Although being simple, the algorithm allowed us to
save up to 75% of the grid points compared with the regular grid 2 X h that would
cover the same computational region.

A 2D resonance may develop in the valleys that do not satisfy Bard and Bouchon’s
existence condition.

A simple trough at the bottom of the horizontal surface layer can give rise to the
fundamental mode of a 2D resonance whose frequency, spectral amplification, and
the maximum time-domain differential motion are very close to those in the closed
sediment valley.

Our results confirm that the resonance phenomenon is quite robust and that it is

to be expected in many configurations of sediment valleys or basins.

Introduction

In the article by Moczo et al. (1995), an SH seismic
response of the geologic structure beneath the colosseum in
Rome, Italy, was numerically investigated. A 2D resonance
was observed for a particular model of a relatively deep sed-
iment-filled valley that did not satisfy Bard and Bouchon’s
(1985) existence condition. Moreover, the resonance exhib-
ited certain interesting unexpected features. Since these find-
ings were related to realistic geologic conditions and may
have certain implications for the site-effect estimations in
earthquake engineering practice, we have concluded that
they deserve more investigation. This article aims to supple-
ment the above-mentioned article and presents the results of
a parametric study for a certain class of simple models mo-
tivated by the realistic geologic conditions beneath the col-
osseum in Rome.

Resonance in relatively deep two- or three-dimensional
sediment-filled valleys was investigated in several theoreti-
cal articles. A pioneer study by Bard and Bouchon (1985)
addressed the experimental observations made by Tucker
and King (1984) and King and Tucker (1984). It was then
followed by Bard and Gariel (1986), Jiang and Kuribayashi
(1988), Rial (1989), Mossessian and Dravinski (1990),
Ohori et al. (1990), Ling and Rial (1990), Rial et al. (1991,

1992), Rial and Ling (1992), Ling and Rial (1994), Zhou
and Dravinski (1994), and Wirgin (1995). Here we do not
review results of these studies because a concise review is
given in the article by Zhou and Dravinski (1994), and a
detailed critical analysis of the previous investigations is
given in the recent theoretical article by Wirgin (1995). Stud-
ies by Rial and his co-workers as well as the study by Wirgin
provide a systematic deeper insight into the physics of the
resonant phenomena. Later we will compare some of our
results with those obtained by Bard and Bouchon and Rial
and his co-workers.

In all the above-mentioned articles, the medium, in
which the sediment valley was embedded, was either elastic/
viscoelastic homogeneous or rigid. In this article, as well as
in the article by Moczo et al. (1995), a horizontal layer in
the valley surroundings is considered.

Problem Formulation

We consider as a basic model a relatively deep sedi-
ment-filled valley embedded in a medium with a horizontal
surface layer (see Fig. 1). The geometry of the valley-base-
ment interface is given by a parabola z = ax* + bx + ¢,
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MODEL
. -40m . 40m . NOTATION
0.0 A-1-2-8, A-2-3-8
115 E BL2 BL1 BL2 A-1-3-8, A-2-4-8
A-1-7-8, A-2-7-8
230

[m] BL3
A-1-8-8,A-2-8.8

BL1

BL3
A-1-1-8, A-2-2-8

BL3

MECHANICAL PARAMETERS

Velocity B[m/s]| Density [kg/m?] | Quality factor
Model Block Block Block
BL1 BL2 BL3|BL1 BL2 BL3 |BL1 BL2 BL3
A-1-1-8
A-1-2-8 200 1900 40
A-1-3-8| 100 | 300 | 800 | 1800 | 1900|2050 | 10 | 40 | 100
A-1-7-8 700 1900 40
A-1-8-8
A-2-2-8
A-2-3-8 300 1900 40
A-2-4-8 | 200 | 400 | 800 | 1800 | 1900|2050 | 10 | 40 | 100
A-2-7-8 700 1900 40
A-2-8-8
Figure 1. Geometry and mechanical parameters of

the basic valley model and its modifications. The val-
ley is 80-m wide at the free surface and 23-m deep in
the center. The equivalent shape ratio (E.S.R.) is 0.4.
A-1-*-* denote the higher-contrast models; A-2-*-*
denote the lower-contrast models.

where coefficients a, b, and ¢ are determined from the max-
imum sediment thickness and total width at the free surface.
The valley shape ratio, i.e., the ratio of the maximum sedi-
ment thickness £ to the total width over which the sediment
thickness is larger than A/2, is equal to 0.4. Since the model
is derived from that investigated in the article on the Roman
Colosseum, we consider the valley that is 80-m wide at the
surface and 23-m deep at the center.

The thickness of the surface layer is A/2 (i.e., 11.5 m).
The velocity of shear waves inside the valley is either 100
or 200 m/sec, while that in the basement is 800 m/sec in all
considered model variations. The velocity in the layer is
larger than that in the valley but smaller than the velocity in
the basement. The density and quality factor values are given
in Figure 1. The six basic model variations are labeled A-1-
2-8, A-1-3-8, A-1-7-8 and A-2-3-8, A-2-4-8, A-2-7-8 (see
Fig. 1).

Besides the basic model, its two extreme modifications
are investigated as well. In the first of them, the layer
material is the same as in the underlying basement (the
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A-1-8-8 and A-2-8-8 models shown in Fig. 1). In the second
modification, the layer material is the same as in the valley
(A-1-1-8 and A-2-2-8), which gives, in fact, a model of a
trough at the bottom of the horizontal layer.

In this way, we have the higher-contrast models (A-1-
*-8) and the lower-contrast models (A-2-*-8).

The valley is subjected to a plane SH wave incident
vertically from below. We compute translational and differ-
ential motions at the free surface of the valley and its
vicinity.

A Finite-Difference Algorithm on a Combined
Rectangular Grid for SH Waves

In order to solve the above-formulated problem, we use
the finite-difference method. The well-known advantages of
the finite-difference method are its applicability to complex
realistic media, relative simplicity, and the fact that it is easy
to implement in the computer codes. One of its disadvan-
tages is the relatively large computer memory requirement.

Here we present a simple algorithm for SH waves on a
combined rectangular grid that is applicable in case the near-
surface inhomogeneity is underlain by a homogeneous ma-
terial. Although being simple, the algorithm allowed us to
save up to 75% of the grid points compared with the regular
grid that would cover the same computational region. The
test computations performed for the selected models showed
that the absolute value of the difference between the time-
domain response obtained on the combined grid and that on
the equivalent regular grid was below 1%.

Equations of Motion

We consider an attenuating medium in which the atten-
uation is implemented according to Emmerich and Korn
(1987). The rheology of the medium is then that of a gen-
eralized Maxwell body.

Let the computational region be an xz-plane and the
shear modulus 4 and the density p dependent on both x- and
z-coordinates. Then the y-component of the displacement
vector v(x, z, t) is governed by the equations (Moczo and
Bard, 1993)

pV = (uvy), + uv,), — 2 é:Jv’ (M

j=1
&+ ol = olurtv),
+ (:u)/_v;lvz)z], J = 1,. .., N (2)

In a homogeneous medium, x4 and p are constants, and the
equations become simpler:

pv o= Uy + v,) — 21 &, 3)
=

E+ 0f) = ouYtvy +v.), j=1,...,n (4)
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Here, w; (j = 1, ..., n) are the relaxational (angular) fre-
quencies. The coefficients Y¥ (j = 1,..., n) are obtained
from the system of equations

n ~ 28— 1/~
0P+ FO@) b s i
El a”)Z + a)}?‘ J Q/i (@), ey ,

where Qﬂ(cbk) are the desired values of the quality factor at
the specified frequencies ;. In the inhomogeneous medium,
Q/, also depends on x- and z-coordinates.

The coefficients Y# have the following meaning: xY#' is
the elastic modulus, and xY#/w; is the viscosity of the jth
classical Maxwell body. n classical Maxwell bodies are con-
nected in parallel together with a single spring with the elas-
tic modulus equal to u(1 — 2;': Y.

Finite-Difference Schemes on the Rectangular Grids

The computational region is covered by a combined rec-
tangular grid shown in Figure 2. The regular grid & X h is
used for the inhomogeneous part of the model, while the
grid 2h X 2h is employed for the homogeneous one. Equa-
tions (1) through (4) can be solved by the finite-difference
schemes similar to those in Moczo and Bard (1993):

v;7+l — 2‘):;1 _ v;;l—l
2t
+ — [Lu(y; v) + L (u;v) )
Pil
1 n
o2 G+ g ]
2 = 5 s
\_/,!n+l/2 — 2 — w[At y,!n—l/2
ol 2 + wJAt ol
2wAt " "
+ —’—2 oAl (Lo uY?;v) + LY v)], (6)
)j
j = 1,..., n. Here, At is the time step, vj] is the discrete

approximation of the displacement v(x;, z, t,), and &}j" is
the discrete approximation of the function &;(x;, z;, t,,).

In an inhomogeneous medium, on the grid & X h, the
L., and L_, operators have the form

1
L.(a;f) = }7 [afll Tou — fi) — azH—lt(ﬁ';" =2l (D
and

1
L(a;f) = 72 lap(fiey — i) — ai— (i = fiv D), (8)

where aff and a} are the horizontal and vertical effective
parameters:
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1 MX
1
hxh
MZ
MZ+1
MZ+2
2h x 2h
MZZ-1
MZZ

Figure 2. Combined rectangular grid used in the
finite-difference computations. The grid 2 X h covers
the inhomogeneous part of a medium, while the grid
2h X 2h is used for the homogeneous basement.
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In a homogeneous medium, on the grid 24 X 2h, the
L, and L, operators are

L(a; ) = 5 (fu = 26" + f22)

4
an?

and
a m m m
L. (a;f) = an (s — 20 + fis -

Finite-Difference Schemes at the Contact
of the h X h and 2h X 2h Grids

There are two types (say A and B) of the grid points at
the transition grid row (labeled MZ + 1 in Fig. 2). The two
types of grid points are shown in Figure 3.

For the A-type grid point, the schemes (5 and 6) can be
used with the operators

L.(af) = Zai VIR A o )] )

and
L@ ) = 5 (i = 267+ fit). - (10)

In order to avoid interpolation that would decrease the
order of the finite-difference approximation, the B-type grid
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A B
Figure 3. Two types of the grid points at the con-

tact of the grids # X h and 2h X 2h. A special finite-
difference scheme is used for the B type in order to
avoid interpolation that would decrease the order of
approximation.

point requires a special scheme. As it is clear from equations
(3) and (4), it is possible to approximate directly the sum of
both derivatives v,, + v,,. The corresponding operator is

1
Ly () = Eil'i(fi’ilwl + e
+ -+ - — A,

The approximation is of the second order as are the
approximations (7) and (8). Then we will have uL,, ,(v) in-
stead of L.(u;v) + L,(u;v) in scheme (5). Similarly,
uY¥L,, (v) will replace L, (uY#; v) + L, (uY#; v) in scheme
(6).

Although our grid combines the grids & X h and 2h X
2h, its use is not restricted to the cases when the velocity
in the homogeneous basement (f) is twice or more larger
than the minimum velocity in the inhomogeneous medium
(Bmin)- The combined grid can be used even in the case of
1 < Blfmin < 2. It is just necessary to apply the sampling
criterion in the homogeneous basement first in order to de-
termine the grid spacing of the grid 2h X 2h.

Numerical Computations

Due to the symmetry of both the model and wave field,
only a right half of the model was covered by a combined
spatial grid. The total computational area was 420-m long
and 199-m deep for all models, except the model of a trough
at the bottom of the horizontal layer. For the latter, the area
was 2508-m long and 199-m deep. The relatively long area
was used in order to prevent any contamination due to lat-
erally propagating diffracted waves and imperfection of the
Reynolds (1978) transparent boundary.

The parameters of the combined spatial grid (see Fig.
2) were MX = 841 (5017 for the trough model), MZ = 100,
MZZ = 250, and h = 0.5 m. The time step was 0.00036
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sec. The theoretical accuracy of the finite-difference com-
putations was at least up to 15 Hz.

A Gabor wavelet was used as a time function of the
incident wave. It is defined by

s(t) = e~ cos(w,y(t — 1) + w),
with

w, = 2nf,, t;, = 0.45y/f,, andt € (0, 2t).
The free parameters make it possible to simulate signals with
desirable amplitude spectra.

A “6-like” input signal with broad amplitude spectrum
was used to obtain the pseudoimpulse responses. Then the
Fourier transfer function for each site was obtained by di-
viding the Fourier spectrum of the local pseudoimpulse re-
sponse by the Fourier spectrum of the “d-like” signal.

Results

The 2D Resonance. Before we show results for models
with a surface layer, let us recall what is meant by a 2D
resonance in a simple valley model with the homogeneous
basement—e.g., in the A-1-8-8 model. Figure 4 shows the
time-domain representations of the fundamental antiplane
shear mode (a) and the first higher symmetric mode (b).
They are obtained as the time-domain responses to the Gabor
wavelets with relatively narrow amplitude spectra centered
around resonant frequencies 1.25 and 2.41 Hz, respectively.
In the case of the fundamental mode, we can see a charac-
teristic in-phase motion of a major part of the valley surface
with the maximum amplitude at the valley center. The first
higher mode exhibits two nodes at which the surface motion
changes its sign. Spectral amplifications due to both resonant
modes will be shown later.

The Existence Condition. We have found that at least the
fundamental and first higher modes of a 2D resonance can
develop inside the valleys in all investigated models with a
surface horizontal layer, i.e., in the models A-1-2-8, A-1-3-
8, A-1-7-8 and A-2-3-8, A-2-4-8, A-2-7-8. Let us compare
our valley models with those that satisfy Bard and Bou-
chon’s (1985) existence condition for the valleys embedded
in a homogeneous basement. The condition is represented
by a curve in Figure 5. If the valley of a certain velocity
contrast and a shape ratio appears above the curve, the 2D
resonance of the valley takes place. If the valley appears
below the curve, an induced surface-wave lateral propaga-
tion and a vertical 1D resonance should take place in the
valley. (Bard and Bouchon obtained their delimiting curve
with sine-shaped valleys, but, as they noted, the curve is
valid for any valley shape provided that the real shape ratio,
i.e., the maximum sediment thickness to the valley half-
width, be replaced by an equivalent shape ratio, as was de-
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fined in the Problem Formulation section of this article.) As
it is shown in Figure 5, the velocity contrasts at the valley-
layer interface in the A-1-2-8, A-1-3-8 and A-2-3-8, A-2-4-
8 models are well below Bard and Bouchon’s existence
value. In this sense, the four valley models do not satisfy
Bard and Bouchon’s condition. Despite this fact, they can
give rise to the 2D resonance.

The Effect of the Horizontal Surface Layer. In view of the
above finding, it is interesting to see the effect the surface
layer may have on a 2D resonance in the valley. To do so,
we compare the surface motion in the valley models, which
include the horizontal surface layer, with the motion in the

fundamental antiplane shear mode and (b) the
first higher symmetric mode of the 2D reso-
nance in the valley model A-1-8-8. The Gabor
wavelets with parameters y = 4, f, = 1.25 Hz,
v =nl2andy = 9.5, f, = 241 Hz, y = n/2,
respectively, were used as input signals.

valley embedded in a homogeneous medium (i.e., when the
layer material is the same as in the underlying basement).
Comparison of the fundamental and first higher modes in the
lower-contrast models A-2-3-8, A-2-4-8, A-2-7-8 and A-2-
8-8 is shown in Figure 6. The left part of the figure shows
the spatial variations of the amplification (modulus of the
Fourier transfer function) at the resonant frequencies with
respect to the incident wave. The right part of the figure
shows the spatial variations of the moduli of the differential
motion maxima taken over the entire computed time win-
dows of the resonant modes. The differential motion du/dx
is evaluated as a difference between the translational mo-
tions at two adjacent positions (grid points) divided by the
corresponding grid spacing (0.5 m).
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Figure 5. Comparison of the studied valley mod-

els with Bard and Bouchon’s (1985) existence con-
dition represented by the shape ratio—velocity con-
trast curve. Valleys below the curve should not give
rise to a 2D resonance. We observe a 2D resonance
in the four valleys shown in the picture despite the
fact that the valley-layer velocity contrasts are well
below the existence curve.

We can see that the fundamental mode is almost insen-
sitive to the presence of the surface layer and that the first
higher mode is only a little bit affected.

A similar comparison for the higher-contrast models A-
1-2-8, A-1-3-8, A-1-7-8 and A-1-8-8 is shown in Figure 7.
The differences among the surface motions of different val-
ley models are now a little bit larger than in the previous
case, but they still remain relatively small.

Let us note that the differential motion in the higher-
contrast models is evaluated in the same way as in the lower-
contrast models, i.e., using the translational motions at two
adjacent grid points separated by the 0.5-m spacing. In this
sense, the differential motion is not scaled with respect to
the dominant wavelength in the valley. Such an evaluation
of the differential motion is reasonable, however, from the
earthquake-engineering point of view.

The Effect of the Valley-Basement Velocity Contrast.  Fig-
ure 8 shows all the lower- and higher-contrast models to-
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gether. Of course, both groups of models relate to different
resonant frequencies since the difference in the valley-base-
ment velocity contrast is given by the velocity inside the
valley.

Let us first have a look at the fundamental mode. There
is a striking difference between the maximum spectral am-
plification and differential motion in their relation to the
lower- and higher-velocity contrast. As we can see, twice
smaller velocity contrast (i.e., 2:8) implies approximately
twice (viz., 1.8) smaller spectral amplification compared to
that in the higher-contrast (1:8) models. This is not true,
however, about the differential motion. The difference in the
velocity contrast has only a little influence on the maximum
time-domain differential motion: the corresponding ratio be-
tween the two maxima is less than 1.2.

One may find this result surprising at first glance. It is,
however, easy to understand if we compare the maximum
time-domain amplitudes of the fundamental modes at the
valley center in the 1:8 and 2:8 cases. If we take the maxi-
mum amplitude in the 1:8 case (9.27 cm for a maximum
basement displacement of 1 cm) as a reference, the maxi-
mum amplitude in the 2:8 case (8.23 cm) is only 11.2%
lower. As a consequence, the corresponding difference be-
tween the maximum time-domain differential motions is less
than 15% (i.e., the ratio between the two values is less than
1.2).

The situation is different in the frequency domain. The
spectral amplification includes both the effect of the time-
domain amplitudes and the effect of the duration of motion.
While the time-domain amplitude of the fundamental mode
at the valley center decreases from its maximum to 1/10 of
the maximum in 6.3 sec in the 1:8 case, the equivalent de-
crease in the 2:8 case takes only 2.81 sec (i.e., 2.2 times
less). As a consequence, the maximum spectral amplification
as well as the maximum differential motion in the frequency
domain (i.e., the maximum absolute value of the spatial de-
rivative of the Fourier transfer function) in the 1:8 case are
about twice as large as those in the 2:8 case.

The first higher mode behaves in a different manner.
Neither the spectral amplification nor the maximum time-
domain differential motion is much sensitive to the differ-
ence in the valley-basement velocity contrast.

The Effect of the Valley Shape and Shape Ratio. There
should be some other parameters to which the differential
motion due to both resonant modes and the spectral ampli-
fication due to the first higher mode are more sensitive. Let
us now consider only the case of the valley embedded in a
homogeneous medium and consider, for both the higher- and
lower-velocity contrasts, three different valley shape ra-
tios—0.3, 0.4, and 0.5. In the first set of the valley models,
we keep the total width at the surface fixed and vary the
maximum depth of the valley (Fig. 9). In the second set of
the models we keep the maximum depth of the valley fixed
and vary the total width at the surface (Fig. 10). We compare
the amplification and differential motion due to the resonant
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MAX. TIME-DOMAIN
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Figure 6. Effect of a horizontal surface layer in the valley surroundings on the spec-
tral amplification and the maximum time-domain differential motion related to the
fundamental and first higher modes in the lower-contrast valleys. The values of the
differential motion have to be multiplied by 10~ to be scaled for a maximum basement

displacement of 1 cm.

modes, keeping in mind, of course, that the corresponding
resonant frequencies are different in different valleys since
they are determined by the actual valley shape. The com-
putations, including those not shown in the figures, indicate
that the spectral amplification due to the first higher mode
may be much more sensitive to the valley shape ratio and
the shape of the valley than to the valley-basement velocity
contrast if the contrast is large enough. This sensitivity is
even more pronounced in the case of the differential motion
due to both resonant modes.

The Fundamental Mode due to a Trough at the Bottom of
the Horizontal Layer. Let us compare two extreme modi-
fications of our basic model of the valley embedded in the
medium with a horizontal surface layer. In the first one, the
layer material is the same as in the underlying basement, i.e.,
the valley is embedded in a homogeneous medium. The cor-
responding models A-1-8-8 and A-2-8-8 have already been
included in previous comparisons. In the second modifica-
tion, the layer material is the same as in the valley (A-1-1-
8, A-2-2-8; see Fig. 1). The second modification gives, in
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Figure 7.  Similar to Figure 6, but for the higher-contrast valleys.

fact, a model of a horizontal layer with a trough at the bot-
tom. As our computations show, the trough can give rise to
the fundamental mode of a 2D resonance. Moreover, the
resonant frequency, spectral amplification, and maximum
time-domain differential motion due to the fundamental
mode are very close to those for the closed valley embedded
in a homogeneous medium. This is illustrated in Figures 11
and 12. Figure 11 shows a time-domain representation of the
resonant modes in both the higher- and lower-contrast trough
models. Compare the fundamental mode in the higher-
contrast model with that shown in Figure 4a for the closed
valley. Figure 12 shows comparison of the corresponding
spectral amplifications and differential motions with those

for the closed valleys. The resonant frequencies 1.23 and
2.44 Hz in the trough models are very close to the resonant
frequencies 1.25 and 2.52 Hz in the closed valleys.

The above results are actually not surprising in view of
findings made previously by Bard and Bouchon and Rial
and his co-workers. They found that the fundamental mode
is confined to the central part of the valley. Rial demon-
strated that the fundamental mode, its eigenfrequency and
eigenfunction, is determined by a geometry of the central
part of the valley. In other words, the absence of lateral
bounds of sediments at the free surface in our trough model
cannot prevent the fundamental mode to develop.

Let us now compare a resonance in the trough model
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Figure 8.  Comparison of the spectral amplifications and the maximum time-domain
differential motions in the higher- and lower-contrast valley models shown in Figures

6 and 7.

with a vertical 1D resonance in the surface flat layer whose
thickness is equal to the maximum thickness of the sedi-
ments in the trough model. The velocity in the layer is 100
m/sec in the higher-contrast case and 200 m/sec in the lower-
contrast case. The other parameters are the same as in the
trough models. The 1D-resonance frequencies are 0.94 and
1.92 Hz in the higher-contrast and lower-contrast flat layer
models, respectively. It is important that in both cases, the
resonant frequencies in the trough models are significantly
closer to those in the closed valleys than to the 1D-resonance
frequencies in the flat layers. This is also true about the cor-
responding maximum spectral amplifications. In the higher-
contrast case, they are 24.2, 22.3, and 11.1 in the closed
valley, trough model, and flat layer, respectively. In the
lower-contrast case, they are 12.9, 11.5, and 6.8. Another
important difference between the trough and flat layer is that
there is no differential motion du/dx in the flat layer, while
that in the trough model is close to the differential motion
in the closed valley.

Let us note that the trough at the bottom of the layer
does not give rise to the first higher mode. This is under-
standable since the first higher mode is mainly due to lateral
interferences, as was explained by Bard and Bouchon and
later demonstrated by Rial and his co-workers.

Conclusions and Earthquake-Engineering
Implications

Having been motivated by the realistic local geologic
conditions beneath the colosseum in Rome, we have per-
formed a parametric study of an antiplane 2D resonance in
a certain class of relatively deep two-dimensional sediment-
filled valleys embedded in a single layer over the half-space.
We have investigated existence of a 2D resonance, spectral
amplification, and a maximum time-domain differential mo-
tion at the free surface related to the fundamental and first
higher modes. We have shown that an antiplane 2D reso-
nance can develop in the sedimentary structures that are sig-
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Figure 9. Effect of the valley shape ratio on the maximum time-domain differential
motion related to the fundamental and first higher modes in both the higher- and lower-
contrast valleys. The values of the differential motion have to be multiplied by 10~2
to be scaled for a maximum basement displacement of 1 cm.

nificantly different from those investigated in the previous
theoretical studies.

We have presented a finite-difference algorithm on a
combined (h X h and 2k X 2h) rectangular grid. The al-
gorithm allowed us to save up to 75% of the grid points
compared with the regular grid 2 X h that would cover the
same computational region.

Based on the results of the performed numerical simu-
lations, we can draw the following conclusions:

a. A 2D resonance can arise in the valleys embedded in a
medium with a horizontal surface layer (whose thickness
is a half of the maximum valley depth), even in the case
when the valley-layer velocity contrast is well below Bard
and Bouchon’s (1985) existence value. In other words, a
2D resonance can arise in the valleys that do not satisfy
Bard and Bouchon’s existence condition.

b. The fundamental and first higher modes are not much

sensitive to the presence of the surface layer whose thick-
ness is equal to or smaller than half the maximum valley
depth and whose shear-wave velocity is larger than that
in the valley but smaller than the velocity in the under-
lying basement.

. The differential motion due to the fundamental and first

higher modes and the spectral amplification due to the
first higher mode are more sensitive to the valley shape
ratio and the shape of the valley than to the valley-base-
ment velocity contrast if the contrast is high enough.

. Compared to the maximum spectral amplification, the

maximum time-domain differential motion due to the
fundamental mode is much less sensitive to the valley-
basement velocity contrast. The twice smaller valley-
basement velocity contrast implies approximately twice
smaller spectral amplification, at the corresponding res-
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onant frequency, but it affects only little the differential
motion.

e. A simple trough at the bottom of the horizontal surface
sedimentary layer can give rise to the fundamental mode
of a 2D resonance whose frequency, spectral amplifica-
tion, and the maximum time-domain differential motion
are very close to those in the closed sediment valley.

It is obvious that it is very important for the seismic
hazard assessment and earthquake engineering practice to
know under which geologic conditions the significant reso-
nant phenomena can arise. This is especially true if these
phenomena are due to the lateral near-surface heterogenei-
ties and cannot be explained by 1D models. We believe that
our parametric study, though restricted to the SH case, con-
tributes to the knowledge of the local resonant phenomena
since the above-mentioned properties of the 2D resonance
and its existence in the specific sedimentary structures may

not have been obvious without computations such as those
in the present study.

Our computations confirm that the resonant phenome-
non is to be expected in many configurations of valleys or
basins. The likelihood of the resonance is relatively high
since the velocity contrast that determines the occurrence of
the resonance seems to be the contrast between the sediments
and the bedrock below the basin.

Our computations partly confirm predictions made by
Rial et al. (1991, 1992). They stressed that, generally, the
concave upward segments of the sediment-rock boundary
can give rise to localized resonances. They link such reso-
nances with observed pockets of damage in several major
earthquakes.

In conclusion, we point out to the two indications that
are, in our opinion, especially important for an earthquake-
engineering practice, namely, that (1) two valleys with very
different levels of spectral amplification (at the correspond-
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ing resonant frequencies) may be “comparably dangerous”
due to close maximum time-domain differential motions and
that (2) a 2D resonance with significant spectral amplifica-
tion and differential motion can arise in a simple trough at
the bottom of the horizontal surface sedimentary layer.
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