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SUMMARY

The finite-difference method is applied to compute the seismic response of 2-D in-
homogeneous structures for SH-waves. A technique is proposed which uses an irregular grid
(a rectangular grid with varying grid spacing). A geological structure may be composed of
blocks of media inside of which velocity and density vary linearly in horizontal and vertical
directions. The technique allows better adjusted modelling of a medium and, in numerical
examples presented, yields more efficient computations as compared to those with regular
grids. The technique is tested through comparison with a discrete-wavenumber method.

As an example, the seismic response of the sediment-filled Chusal Valley, Garm region,
USSR, is computed. The numerical results are compared with observations.

Key words: finite-difference method, irregular grid, sedimentary basin, seismic response,

theoretical seismograms.

1 INTRODUCTION

The finite-difference method is a universal tool to solve
seismic wave propagation problems. However, the large size
of a model (with respect to the predominant wavelength)
and a large difference between the maximum and minimum
velocity in the model cause enormous compuler memory
and computational time requirements in many types of
problems. This is one of the reasons for the general use of
methods, based on ray theory in structural and exploration
seismology. In solving problems with significant interference
and diffraction phenomena various hybrid methods (e.g.
Mikhailenko & Korneev 1984; Kawase 1988) seem to be the
most promising at present. Nevertheless, the finite-
difference method and efforts to make finite-difference
algorithms more effective are still very important. This is
because hybrid methods are not universally applicable to
arbitrarily complicated structures and, also, because
improving the finite-difference algorithms can be useful also
for hybrid methods (if they imply finite-differencing).

One possibility to make finite-difference computations
more efficient is to use irregular grids. It is known that for
SH-waves in a 2-D medium sufficiently accurate results can
be obtained up to the frequency f,., if the grid spacing A&
satisfies the condition

fac = ﬁmmf(lz‘dg)l

with .. being the minimum velocity in a medium.
According to this condition, in a part of the medium with
larger velocity B’ the same accuracy is obtained with the
larger grid spacing

AE' = (B'/Bmin) AE.

Boore (1970) was probably the first who used an irregular
grid. Recently, Korn (1987) used it in his frequency domain
finite-difference method. They both used irregular vertical
spacing in a 1-D medium. Here, the irregular grid is
probably used for the first time for modelling a 2-D laterally
inhomogeneous medium.

The technique proposed in this paper is applied to the
problem of the seismic response of near-surface local
geological structures. The finite-difference method (using a
regular grid) has been successfully used to solve this
problem, e.g. Boore, Larner & Aki (1971) and Zahradnik
& Hron (1987).

In Section 2 the explicit finite-difference scheme for an
irregular rectangular grid is developed. The model of a
medium is specified in Section 3. In Section 4 the properties
of the irregular grid and the efficiency of the proposed
algorithm are shown, using examples of sedimentary basins.
The finite-difference seismograms are compared with those
computed by the discrete-wavenumber method. In Section 5
SH-seismograms and frequency responses for the sediment-
filled Chusal Valley, Garm region, USSR, are computed.
Theoretical results are compared with observations by King
& Tucker (1984). Some aspects of the proposed technique
are discussed in Section 6.

2 FINITE-DIFFERENCE SCHEME FOR AN
IRREGULAR RECTANGULAR GRID

2.1 Formulation of the problem

Two-dimensional SH-wave propagation in a 2-D in-
homogeneous medium is considered. Let us denote the
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Figure 1. Computational region, medium and types of boundaries.

shear modulus by u(x, z), the density by p(x, z) and the
y-component of the displacement vector by u(x, z, t). The
displacement component u satisfies the equation of motion

p(8%u/3t%) = 3(p 3u/3x)/3x + 3(udu/dz)/3z. (1)

The displacement and the velocity are assumed to be zero at
the time ¢ = 0:

(8u/8t)| ;o =0.

u|r=0= 0)

Let us consider a rectangular computational region where
the coordinates x, z are within the boundaries x € (0, X),
z€(0, Z). X and Z are the extensions of the model in the
horizontal and vertical directions. Since we are interested in
computing the seismic response of near-surface structures,
it is reasonable to consider the boundary conditions shown
schematically in Fig. 1. The upper boundary of the medium
is the free surface with zero stress. Both the bottom (z = Z)
and the right (x =X) boundary are transparent (non-
reflecting). The left boundary (x =0) can be transparent
(non-reflecting) or it can represent a plane of symmetry
(totally reflecting). Symmetry conditions can only be used in
the case of a symmetry of the investigated structure and the
wave excitation.

A plane SH-wave, incident on the structure from below,
is applied at the line z=Z_, Z, < Z.

The conditions of continuity for the displacement and the
stress on the internal interfaces are not explicitly specified,
since they are included as a special case of the medium
inhomogeneity in the method used below.

2.2 Numerical solution

First, let us cover the computational region by an irregular
grid (see Fig. 2) with grid spacings .h; and ,A; in the x- and
z-direction, respectively. The following relations hold:
.,MX, x1=0,:h1=0,
i=2,...,MZ z,=0, ,h;=0.

Besides the grid spacings, let us introduce the quantities By
and . h; as follows:

ohe= G+ i 1)]2,
z};j = (zh_p' ¥ zh_i+1)f2-

xk,‘=x,‘—x,-_1, l=2,--

zhj=z! s z;‘_l,

Further, we denote: At as the time spacing, #, = (k — 1) At
and UffJF as the discrete approximation of displacement
u(x;, z;, t;) in the grid point i, j at the kth time level.

To obtain the finite-difference scheme for equation (1),
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Figure 2. An irregular spatial grid.

we can use two approaches. The so-called ‘homogeneous
formulation’ (or homogeneous media approach) deals with
the equation for homogeneous media and explicitly
expressed conditions of continuity for the displacement and
the stress on the interfaces between media with different
elastic parameters. The second approach, the so-called
‘heterogeneous formulation” (or heterogeneous media
approach) solves directly the equation of motion for
heterogeneous media (1) with space dependent coefficients.

Here, we use the ‘heterogeneous formulation’. In this,
some effective values of the actual shear modulus and the
density are determined at the grid points. They measure
changes of the actual parameters in a neighbourhood of the
grid point. In the approach suggested by Tikhonov and
Samarskii (see, e.g. Boore 1972; Mitchell 1969, p. 23;
Samarskii 1983), the effective shear moduli are determined
as follows:

Li+1l

~1
#:j’thi+1|: dx/u(x, zj)] ,

Xi

()]

Zj+1

Bii= s ;'+1[ dz/u(x;, z)]_l.

p and u}; may be called the horizontal and the vertical
effective shear modulus, respectively. u,”; measures how
u(x, z) changes along the jth grid row between the grid
points i, j and i + 1, j. Similarly, pf’} measures how p(x, z)
changes along the ith grid column between the grid points
i,jand i, j+ 1.

The discrete approximation of the density p;; in the grid
point i, j is determined as follows:

Pij= (Pff + ng)m,
x,-+(,h.-+ 112)

=k x, 7)) dx,
Sl WL @)

. zj+(hj+1/2)
pur =) [ o, 2l
2= (hif2)

The following explicit finite-difference scheme for
equation (1) can be obtained
— 9k ke~
Ut =20, - Ui
+ (AU (Uf 1= UE ) chisn
= P;H— 1,;(Uij i Uf—l.j)thi]f(xhsps,j)
+ (A (U1 — Us) s
= Iu:./j—l(Ufj_ :_f—l)/zhj]i"(z};jpf.;)- C))



Let us remark that in the Soviet literature finite-difference
schemes, as for example (4), are called homogeneous
schemes, since the same formula holds for all grid points,
regardless of whether the point is in a homogeneous region
or in the neighbourhood of an interface.

The free surface corresponding to the Earths’ surface can
be simulated using a zero shear modulus above the surface.

If we suppose _hpz 1= .hpz, Hpgx_1 = hHpx and
P2 = .h;, the formulae derived by Reynolds (1978) can be
used to simulate the transparent (non-reflecting) bottom,
the right and the left boundary of the computational region,
respectively. For example, for the left transparent boundary
the formula is:

U}f.}—l = Uf.j + U;.j = U;;} i (A”xhz)(ﬂﬁjfpz.j)lm
X (Ut ,;—U5;— US:* + USTY).

The formula for the plane of symmetry at the left boundary
can be obtained from (4), putting Ug_f- = U;d-, ,ugfj = u';‘_;- and
xh‘.l.:xh:z:xﬁi'

To simulate plane wave incidence from below, we use the
approach suggested by Alterman & Karal (1968) originally
for a point source. For a plane wave the algorithm was used
by Virieux (1984). Let us divide our grid into two parts. Part
IT includes grid rows 1 up to JOU, Part I grid rows JIN
(=JOU+1) up to MZ. The grid row JIN represents the
source. It is placed beneath the inhomogeneity (local
geological structure). Besides the total field U, that is
computed in Part II and on the grid row JIN, the residual
field R; ; is computed in Part I and on the grid row JOU. Let
§(z) be the time function of the displacement, corresponding
to the vertically incident plane wave. Let ¢,, be the time that
the incident wave needs to travel the distance _h,,,, from the
grid row JIN to the grid row JOU. Now we can write the
scheme of the algorithm. At the first time level U} ,,,, = S(0)
for i =1, MX. All other quantities U} ; and R}, are zero. At
each further time level during radiating from the source row
JIN, U;; and R; ; are computed as follows:

(1) R,’-f;"; j=JIN, MZ, i=1, MX—using the difference
scheme (4) and formulae for the boundaries of the
computational region.

(2) Ufjin=REjin+S(kAn); i=1, MX.

(3) U5 j=2,J0U, i=1, MX—using the difference
scheme (4) and formulae for the boundaries of the
computational region.

4) Rijou="Uijou—S(kAt—tp); i=1, MX.

After the radiating finishes, it is possible to formally use the
above scheme with zero values of S(¢). However, in all
computations presented in this paper the following approach
is used. After the radiating finishes, the grid is reduced.
Only the field U;; is computed and the grid row JIN (or a
grid row with a lower index) becomes a ncw non-reflecting
bottom boundary.

It is very important that the above approach to simulate
the plane wave incidence allows the use of a fixed number of
grid rows in a homogeneous basement beneath the local
near-surface inhomogeneity, regardless of the size of grid
spacing between the grid rows and regardless of the duration
of radiation.

Finally, let us remark that it is not a problem to generalize
the above scheme for the case of oblique incidence.
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We wish our computation to be sufficiently accurate up to
the frequency f,.. In the case of a regular grid we have to
use a grid spacing AE, satisfying the well-known condition
AE < B,in/ (12f,) where B,;, is the minimum velocity in the
medium. According to this condition in each part of the
medium the grid spacings .h; and ,h; should satisfy
conditions

xki = ﬁf(lzfar:) and zh;' = ,6,1"(12)‘;:) (5)

where f is the local velocity.

According to the known stability condition in the case of a
regular spatial grid the time spacing At in the case of the
irregular grid should satisfy the condition

At < (h/B)uminl V2,

(#/B)min being the minimum ratio of the grid spacing and
corresponding local velocity B.

3 SPECIFICATION OF THE MODEL

First, let us consider, for example, a sedimentary basin. Let
the velocity be increasing linearly from some value v, at the
free surface up to v, at the basin bottom. The usual way to
model the medium in such a case is to use the regular
vertical grid spacing and to approximate the continuous
velocity—depth distribution by a system of thin horizontal
homogeneous layers with thicknesses ‘equal to the grid
spacing or to the half of the grid spacing (see Fig. 3a).

Since the velocity increases with depth we can
use—according to conditions (5)—an increasing grid
spacing. However, using homogeneous layers with thick-
nesses equal to grid spacings would yield too rough
approximation of the continuous velocity—depth distribution
(see Fig. 3b). To avoid this problem and to save varying the
grid spacing at the same time, we construct the model in
such a way that the continuous linear increase of the velocity
is strictly taken into account.

Let the velocity and the density along the grid column i
between the grid points i, j and i, j + 1 be linear functions of
the z-coordinate:

B=po+ Bz, P=potpiz.

Then the shear modulus g along the grid column i between
the grid points i, j and £, j + 1 is

p=(po+ p12)(Bo + B12)>. (6)
VELOCITY
DEPTH
a b

Figure 3. Approximation of a linear velocity—depth distribution by
a system of homageneous layers with thicknesses equal to grid
spacings: (a) using an equidistant vertical grid spacing, (b) using a
varying grid spacing. The latter approximation would be too rough.
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Inserting (6) into (2) yields for u;

ﬂgV; = zh;'+1:013%(»6m - por)’
X {(Bor — Po)[1/(Bor + 2j+1) — 1/(Bo1 + 2;)]
+1In|(po; + Zis )/ (Boy + Zj11)|
=In|(po1 +2)/(Bor + 2)1} ', (7

where By, = Bo/B, and po, = po/p,. An analogous formula
can be obtained for p{?, assuming a linearly varying velocity
and density along the jth grid row between the grid points
i, jandi+1,j.

From (3) we obtain for p;’? the following expression:

PE;B =pot .01[3; + (R — zh,i)'hq' (®)

In fact, this is equivalent to the arithmetical mean value of
the density p,+ p,(z; — .h;/2) at z;— ,h;/2 and the density
Po+ pi(z; + .hi1/2) at z;+ ,h;., /2. An analogous formula
can be obtained for p; .

The formulae (2), (3), (7) and (8) have to be modified, if
the interface between two media with different parameters
intersects the grid column or the grid row between two grid
points. For example, ,u,-‘_’j is then expressed as follows:

-4

dz/p’(x,, z)} 9)

Zis1

Zi+a
u!_’,:zhm“ dz/u'(x;, z) +
zj zi+a
Here, the superscripts 1 and 2 correspond to the medium 1
and to the medium 2, respectively; a is the distance from the
grid point i, j to the point of intersection of the interface and
the grid column i.

A computer program for preparing the grid model (i.e.
computing ., uf; and p,; in each grid point) has been
written that allows the geological structure to be modelled
as a combination of blocks of media with different
parameters. Inside the block the velocity and the density
may be constant or may vary linearly in the horizontal and
vertical direction. The geometry of the interfaces between
blocks may be arbitrary, i.e. the interface need not cross the
grid points.

4 TEST EXAMPLES

To show the properties of the irregular grid, SH-
seismograms at the free surface of two sedimentary basins
are presented. First, a sedimentary basin composed of two
homogeneous blocks of media is considered. Second, a
sedimentary basin inside of which the velocity linearly
increases with depth is taken into account. In both cases, the
geometry of the sediment—basement interface is the same as
in the classical basin problem studied by Boore et al. (1971)
and then by many authors (recently in detail by Moczo,
Bard & PSenéik 1987). The sediment—basement interface is
given by the formula z(x)=D + C[1- cos {27(]x|—
w/2)/w}]/2, —w/2<x=<w/2 and z(x) =D elsewhere (see
Fig. 4). D =1km, C=5km, w=50km, i.e. the maximum
depth at the centre is 6 km and the total width of the basin is
50 km. From above, the basin is bounded by a plane free
surface (see Figs 4 and 6).

In both cases a plane SH-wave incident vertically from
below is taken into account. Due to the symmetry of the
problem, only the right half of the basin is considered and
the left-hand boundary represents a plane of symmetry in
both cases.

0 5 1 15 20km 25
UJ 2 3 4 5 6 7 8 9 10 1 1 131
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Figure 4. Parts of three grids 1-3 used to compute the response of
the same basin, composed of two homogeneous blocks B1 and B2.
Grid 1 has a regular grid spacing, grid 2 has an abrupt change in the
grid spacing, grid 3 has a gradually increasing grid spacing. Due to
the symmetry of the problem the grids only cover the right half of
the basin. Numbers 1-14 denote receivers.

4.1 The sedimentary basin composed of two
homogeneous blocks

The basin is composed of two blocks B1 and B2 separated
by a horizontal interface at 2.2 km depth. The homogeneous
basement B3 underlies the basin (see Fig. 4). The
parameters of the model are given in Table 1.

The time dependence of the incident wave is given by the
Gabor impulse s(t) = exp [~ {w(t —t,)/y}*] cos {w(t — t,) +
y}. Here w=2xafp, fp is the predominant frequency,
t;=0.45y/fp, and the signal is defined in the interval
(0,2t,). In the computations f,=0.025Hz, y=4 and
Y = m/2 are used.

The seismograms are computed for three grids 1, 2 and 3
(see Fig. 4). A total of 51 grid columns and an equidistant
grid spacing of 600 m in the horizontal direction are used in
Grids 1-3. (In Fig. 4 only the 1st to the 42nd grid columns
are shown.) Grids 1-3 differ from each other by the grid
spacing in the vertical direction and thus by the number of
grid points. (Here, let us remind ourselves that the approach
used to simulate the wave incidence, see Section 2.2, allows

Table 1. Parameters of the basin

shown in Fig. 4.

S-wave

velocity Density
Block (ms™") (kgm™)
Bl 400 1700
B2 1200 2200
B3 3500 3300
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Figure 5. The seismograms for the grids 1-3 shown in Fig. 4.

the use of a fixed number of grid rows in the homogeneous
basement regardless of the size of the grid spacings. In all
computations in this paper six grid rows beneath the deepest
point of the sediment—basement interface are used.) Grid 1
has an equidistant grid spacing and 18 grid rows. Grid 2 has
an abrupt change in size of the grid spacing and 14 grid
rows. Grid 3 has a gradually increasing grid spacing and 15
grid rows. The 1st and 5 bottom grid rows are not shown
in Fig. 4. In between the 1st and the 2nd grid rows a zero
shear modulus is assumed to simulate the free surface on the
2nd grid row. The time spacing At=0.1s is used in the
computations.

The seismograms for receivers 1-14 (shown in Fig. 4) for
grids 1-3 are shown in Fig. 5. The seismograms for all grids
are practically the same. The very good agreement indicates
that even a grid with an extremely large change in grid
spacing can yield sufficiently accurate computations.

4.2 The basin with a vertical velocity gradient

Now, let us consider the basin without any internal interface
(see Fig. 6). The parameters of the model are as given in
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Figure 6. Parts of three grids A-C used to compute the response of
the same basin model with a vertical velocity gradient. Due to the
symmetry of the problem the grids only cover the right half of the
basin. Numbers 1-13 denote receivers.

Table 2. The time dependence of the incident wave is given
by the Ricker impulse s(f)= (ﬁﬂ)(a —0.5) exp (—a),
a=6(t—t)*/(T,V6/7)>. Here T, is thc predominant
period, and the signal is defined in the interval (0, 2t,). In
the computations 7, =40s and ¢, =44 s are used.

The seismograms are computed for three grids A, B, C
(see Fig. 6). A total of 91 grid columns and an equidistant
grid spacing of 333.3 m in the horizontal direction are used
in all grids A-C. (In Fig. 6 only the 1st to the 82nd grid
columns are shown.) Grids A-C differ from each other by
the grid spacing in the vertical direction and thus by the
number of grid points. Grid A has an equidistant grid
spacing and 26 grid rows. Grids B and C have an increasing
grid spacing and 18 and 16 grid rows, respectively. (Again,
the 1st and 5 bottom grid rows are not shown in Fig. 6.) The
grid spacings in Grids B and C satisfy the conditions (5),
considering the actual velocity in corresponding depths.

Let us emphasize that the continuous linear increase of
the velocity and the density inside the basin is strictly taken
into account in the computations. For example, inside the
basin, the vertical effective shear moduli u:’; are evaluated
using (7). Exceptions are such vertical elements between
two grid points that are crossed by the sediment-basement
interface. In such a case a modified formula is used which

Table 2. Parameters of the basin shown in

Fig. 6.
S-wave
velocity Density
(ms™") (kgm™)
basin: linearly increasing
from
(free surface) 200 1600
up to
(6 kmin depth) 1200 2200
basement: 3500 3300
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Figure 7. FD: finite-difference seismograms for the grids A, B and C shown in Figure. 6. DW: discrete-wavenumber seismograms (the same in
Figs A—C) shown here for comparison. DW seismograms have been computed by P.-Y. Bard.

takes into account the interface (see equation 9). The
horizontal effective shear moduli u;7; inside the basin are
equal to actual values of u in corresponding depths, since u
does not change in the horizontal direction. Again,
exceptions are the grid points near the sediment—basement
interface. The time spacing Ar=0.06s is used in the
computations.

The seismograms for receivers 1-13 (shown in Fig. 6) for
all grids are shown in Fig. 7 and they are denoted by FD,
There are only insignificant differences among all FD
computations. For comparison, discrete-wavenumber seis-
mograms denoted by DW (the same in all figures A-C)
are also shown in Fig. 7. Also the agreement between FD
and DW seismograms is very good.

5 SEDIMENT-FILLED CHUSAL VALLEY,
GARM, USSR

King & Tucker (1984) (see also Bard & Bouchon 1985)
made systematic observations of the seismic response of the
small (maximum 400m wide, 700 m long), approximately
2-D sediment-filled Chusal Valley in the Garm region,
USSR. The relatively deep valley exhibits a specific
behaviour along transverse profiles: an in-phase motion of
the valley surface, a decrease of amplitudes in the time
domain from the valley centre towards the valley edge, the
existence of the same fundamental resonance frequency
(about 3Hz) and a decrease of the corresponding spectral
amplitudes from the valley centre towards the valley edge.

We computed SH-seismograms and frequency responses
(transfer functions) for the central transverse profile (see
King & Tucker 1984) crossing the Chusal Valley.

The total width of the valley along the profile is 376 m and
the maximum depth is 60 m. The geometry of the valley is
shown in Fig. 8 (refer also to Sedova 1962).

The smooth velocity—depth distribution in sediments
(found by Sedova 1962) is approximated by a piece-wise
linear velocity distribution (Fig. 9). The density—depth
distribution is supposed in the form shown in Fig. 9. A
piece-wise linear distribution is used.

The velocity and density in the basement are not known.
Therefore, computations are carried out for three different
basement models: (1) homogeneous basement—3500ms™!
and 2800kgm™>, (2) homogeneous basement—2800 m s™*
and 2900 kgm™, (3) basement with a velocity gradient as
inferred by Bard & Tucker (1985) and a supposed
density—depth distribution as shown in Fig. 10.

The time dependence of the plane SH-wave incident
vertically from below is given by a Gabor signal (see Section
4.1) with the predominant frequency f, = 3 Hz.

A grid with 120 grid columns and 16 grid rows is used. An
increasing grid spacing is used in the vertical direction. A
regular grid spacing of 3.5m in the horizontal direction is
used from the left valley margin to the right one. An
irregular grid spacing is used outside the valley. In Fig. 8
only the 7th to the 115th grid columns and the 2nd to the
11th grid rows are shown. The time spacing for model 1 was
0.6364 ms and for models 2 and 3 it was 0.7955 ms.

The seismograms computed for receivers 1-11 (see Fig. 8)
are shown in Fig. 11. (King & Tucker 1984 recorded
seismograms only for the left part of the profile from the
valley edge to the site of maximum sediment thickness.) In
the seismograms for all three models we can clearly see a
decrease of the amplitudes from the site above the
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Figure 8. The geometry of the sediment-basement interface, a part of the grid used in the computations and locations of the receivers

(denoted by the numbers 1-11).
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Figure 9. The piece-wise linear velocity- and density—depth
distributions in valley sediments. These distributions are strictly
taken into account in the computations.
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Figure 10. The velocity- and density—depth distributions in the
basement of the model 3.

maximum sediment thickness (receiver 7) towards the valley
edges. There is a slower decrease of amplitudes in the
seismograms of receivers 3 to 1 than in those of receivers 7
to 4. Furthermore, an in-phase motion is evident mainly in
the seismograms of receivers which are in positions where
the sediment thickness is larger than about 40 m. These
features are in qualitative agreement with the observations
by King & Tucker 1984 (see fig. 7 of their paper).

The amplitudes for model 1 above the central part of the
valley are larger than those for models 2 and 3.

Figure 12 shows the frequency responses, computed as
ratios of amplitude spectra of the seismograms (shown in
Fig. 11) and the amplitude spectrum of the signal of the
incident wave. We can clearly see maxima with the same
fundamental prevailing frequency of about 3.9Hz at

receivers 5 to 9. The corresponding spectral amplitudes
decrease from the site above the maximum sediment
thickness (receiver 7) towards the valley edges and they are
larger for model 1. Besides the fundamental predominant
frequency there is another one at about 5.25 Hz. There are
large differences in corresponding spectral amplitudes for
model 1 and for models 2 and 3, but very small differences
between the responses for models 2 and 3. This means that a
velocity gradient in the upper 38 m of the basement (model
3) instead of a homogeneous basement (model 2) does not
significantly change the response in the frequency range
considered. This can be explained by the large wavelength
compared to the thickness of the velocity gradient zone.

Note that the seismograms discussed above are hardly
influenced by maxima at about 5.25 Hz in the frequency
responses, because the amplitude spectrum of the incident
signal has its maximum at 3 Hz and effectively vanishes at
about 6 Hz.

King & Tucker (1984) reported a representative
fundamental predominant frequency of about 3 Hz, whereas
our computations predict a frequency at 3.9 Hz. There may
be several reasons for this difference. One possible
explanation is that the actual velocity—depth distribution
differs from that found by Sedova (1962).

6 DISCUSSION

The basins investigated in Section 4 have the lowest local
velocity near the free surface along the whole extension of
the model in the horizontal direction. This implies an
equidistant grid spacing in this direction. (Using a varying
grid spacing in such a case would yield a larger number of
grid columns as compared to the equidistant spacing.) An
increase of the velocity in the vertical direction allows us to
use an increasing grid spacing in this direction. However, if
the zone of the lowest velocity was extended from the free
surface to the bottom boundary of the model it would imply
an equidistant grid spacing also in the vertical direction.
This shows that the usefulness of irregular grids for arbitrary
2-D models is restricted. An irregular grid is, in principle,
always applicable but, in general, not always with a smaller
number of grid points as compared to the regular grid.

In the case of all numerical examples presented, the use
of irregular grids yields more efficient computations as
compared to regular grids. It is not possible to quantify the
relative efficiency in general, because this depends on the
number of grid points in the regular and the irregular grid
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Figure 12. The frequency responses (ratios of the amplitude spectra of the seismograms shown in Fig. 11 and the amplitude spectrum of the

signal of the incident wave) for the models 1, 2 and 3.

and on the model (e.g. whether the blocks of media are
homogeneous or with velocity gradients).

The proposed finite-difference technique has been applied
to a specific seismic response problem. However, it also can
be used to solve other kinds of wave propagation problems,
e.g. to compute seam waves. There, the irregular grid might
be useful to model complicated fault zones of coal seams.

Absorption has not been taken into account in this paper.
However, it is possible to incorporate it into the
computations. In the simplest case, when the quality factor
Q does not depend on spatial coordinates, the incorporation
of absorption does not increase the requirements on

computer time and memory, see Zahradnik & Moczo
(1988).

Emmerich & Korn’s (1987) approach based on the
rheological model of the generalized Maxwell body allows to
take into account spatially dependent Q and a suitable
frequency dependence. The computer time and memory
increase, however, approximately twice.

7 CONCLUSIONS

A finite-difference technique is proposed which uses an
irregular grid (a rectangular grid with varying spacing). The



model may be composed of blocks of media inside of which
the velocity and density vary linearly in the horizontal and
vertical direction. The linear velocity and density distribu-
tions are strictly taken into account in computing the
effective shear moduli and the density.

The technique is applied to a specific seismic response
problem in this paper. Using the example of a sedimentary
basin composed of two homogeneous blocks it is shown that
the regular grid, the grid with an abrupt change in grid
spacing, and the grid with gradually increasing grid spacing
yield practically the same results.

The seismograms computed on the free surface of a
sedimentary basin with a vertical velocity gradient, using a
regular grid and two irregular grids, are practically the
same. They are also in very good agreement with the
seismograms computed by the discrete-wavenumber
method.

As an illustrative example the seismic response of the
sediment-fillcd Chusal Valley is computed. The computa-
tions predict all main features observed by King & Tucker
(1984).

In the case of all represented numerical examples the use
of an irregular grid yields more efficient computations as
compared to a regular grid.
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