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WAVE DIFFRACTION, AMPLIFICATION AND DIFFERENTIAL 
MOTION NEAR STRONG LATERAL DISCONTINUITIES 

BY PETER MOCZO AND PIERRE-YVES BARD 

ABSTRACT 

Macroseismic observations during various historical and recent earthquakes 
consistently show an increase of damage on narrow stripes located along 
strong lateral discontinuities, i.e., along contacts between two materials with 
very different rigidities. This paper presents a series of numerical investiga- 
tions into this issue. The model consists of a semi-infinite planar, soft layer 
embedded in a stiffer bedrock, and impinged upon by vertically incident plane 
SH waves. Computations are based on a finite-difference scheme including 
anelastic attenuation. Two basic phenomena are observed on such simple 
lateral discontinuities: the well-known 1D (vertical) resonance, and an efficient 
wave diffraction from the discontinuity towards the softer side. They induce 
frequency-dependent amplification and a significant differential motion. A pa- 
rameter study considering various impedance contrast and damping values 
shows that the amplification is primarily controlled by the impedance contrast, 
and to a lesser degree by sediment damping. The amplitude exhibits a slight 
maximum near the discontinuity, but always remains comparable (within 30%) 
to the 1D value. Differential motion is also controlled by the impedance 
contrast. It always exhibits a sharp peak in the immediate vicinity of the 
discontinuity, the level of which does not depend on sediment damping, and 
reaches significant values even for moderate incident motion. It is concluded 
that reported observations of increased damage near such geological struc- 
tures are very likely connected with effects of differential motion on structures. 

INTRODUCTION 

Numerous,  consistent macroseismic observations show a significant increase 
in damage intensity on "stripes" located along strong lateral discontinuities, i.e. 
areas where a softer material  lies besides a more rigid one (for instance, ancient 
faults, anomalous contacts, debris zones, etc.). We will not review here such 
observations, but  simply mention several reports. 

The earliest concerns the 1868 Hayward,  California, earthquake: "The most 
destructive effects were largely upon "made land" or alluvial formations, and 
especially along the lines where the "made land" connected with the solid 
material  along the old high water  mark" (Prescott, 1982). Similarly, many 
reports issued after the Provence (France) 1909 ear thquake (M = 6+), a synthe- 
sis of which may be found in Levret et al. (1986) and Payany  (1983), mention a 
marked increase of intensity on the softer side of such anomalous contacts in 
the villages of Rognes, La Roque d'Anth6ron, Venelles, Beaulieu, and Lambesc. 

Although not as clear as in the above reports, damage variations within the 
city of Valdivia during the 22 May 1960 ear thquake in Chile are interpreted by 
Weischet (1963) to be controlled by strong lateral discontinuities in surficial 
geology. Following the Skopje, Yugoslavia, ear thquake of 26 Ju ly  1963, Poceski 
(1969) presents evidences that  "the line of heaviest  destruction was along the 
belt which is defined by the sharp change in the thickness of alluvium" (from 
about 5 m to more than 20 m). 
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More recently, Siro (1983) and Ivanovic (1986) presented a synthesis on 
macroseismic observations during the Irpinia, Italy, ear thquake of 23 November 
1980 and the Montenegro event of 15 April 1979, respectively. Both draw 
attention to the potential danger of such contact zones, which may be associ- 
ated with faults, slope deposits or debris, or edges of alluvial valleys. A more de- 
tailed description of some specific examples from the villages of Caposele, 
Castelgrande, Lioni, Rocca San Felice, and Valva may be found in Cavallin et 
al. (1986) and Siro (1983). 

Finally, Yuan et al. (1992) report similar and consistent observations in the 
Shidian basin (Yunnan province, China), located about 300 km from the epicen- 
ter  of the Longlin ear thquake (M s = 7.1, 29 May 1976): the intensity jumps 
from a value of V to a value of VIII (Chinese scale) within a distance less than  
200 m of an old fault separating rock and soft lacustrine deposits and then 
decreases regularly with increasing distance from the fault down to intensity 
VI, although the surficial geology does not change. 

Such repeated observations have not received much attention, since it is well 
known tha t  damage usually increases as soil rigidity decreases, as expected 
from simple computations for vertical soil columns. It must  be emphasized, 
however, tha t  simple 1D models cannot explain why the damage in the above 
mentioned examples is concentrated in stripes along the contact zones; the 
present  paper is intended to focus on this issue. 

In some respects, this problem has already been addressed by many authors. 
The effect of a sharp vertical discontinuity between two joint quarter-spaces has 
been addressed in several papers, a list of which may be found in Ben-Zion and 
Aki (1990). All of them, however, consider the wave field radiated by a line S H  
source located at the discontinuity, and they address exclusively the problem of 
wave fields radiated from heterogeneous fault~zones, which is distinct from the 
surface diffraction phenomenon tha t  we face here. In addition, the velocity and 
impedance contrast  values considered in these investigations are very small 
(between 0.6 and 1.5 at most) compared with the values encountered at ground 
surface (largely exceeding 3). 

From another  point of view, as far as diffraction is concerned, the recent 
l i terature is full of papers dealing with the seismic response of 2D geological 
structures, with a special at tention on alluvial valleys (see S~nchez-Sesma, 
1987; Aki, 1988; and Faccioli, 1991, for recent reviews), the edges of which may 
be considered as one particular case of such "anomalous contacts." Although 
most of those papers focus on the response of the central part  of the valley, they 
usually show that,  as described in early papers by Dezfulian and Seed (1969a, 
b), ground motion on such edges is highly dependent on many different parame- 
ters: local slope, velocity contrast, damping, direction of incoming waves, and 
frequency. Only one of those papers, however, focuses the discussion on the 
above mentioned macroseismic observations (Yuan et al., 1992) and concludes 
tha t  the reported asymmetric,  irregular intensity distribution cannot be ex- 
plained simply on the basis of peak or spectral amplitudes computed with 
2D models. 

Some fur ther  work thus remains to be done in order to unders tand the origin 
of these intensity observations. Our goal in the present  study is simply to start  
this work on a simple class of models. We consider the simplest geometrical 
case, as i l lustrated in Figure 1, for which the anomalous contact between the 
two zones is vertical, and the incoming wave is a vertically incident plane S H  
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FIG. 1. Model geometry. A semi-infinite layer in a homogeneous half-space. Response has  been 
computed a t  equidis tant  sites within the  ( - 1.92 h, 24 h) range along the  free surface, h = 10 m has  
been used. 

wave. For this model, the relevant  parameters  are the velocity contrast  and 
damping. Our model is very similar to the one used by Rodriguez et al. (1988), 
apar t  from the fact that  our bedrock is elastic and not rigid. 

After a short description of the finite-difference scheme used in this s tudy 
(Method section and Appendix A), enlightening models will be presented and 
their parameters  discussed (section on Models). The corresponding results  are 
detailed in the section on Numerical  Results, with both the translational motion 
and the differential (twisting) motion of the surface presented. The final section 
discusses the connection with the macroseismic observations mentioned earlier 
in this introduction. 

METHOD 

Moczo (1989) presented a finite-difference technique using a spatially varying 
grid spacing for a perfectly elastic medium. Since the "soft" surficial soils we are 
simulating cannot be accurately considered as nondissipative material,  the 
present  s tudy uses a generalization of this technique to absorbing media, based 
on a method proposed by Emmerich and Korn (1987). 

Incorporation of absorption with a realistic frequency dependence into time- 
domain methods is not an easy task  since the stress-strain relation takes the 
form of a convolution integral. However, when the viscoelastic modulus is 
approximated by an nth-order rational function of frequency, the viscoelastic 
stress-strain relation can be t ransformed into a set of n first-order differential 
equations. Two ways have been suggested for the determination of the coeffi- 
cients of these rational function: Day and Minster (1984) used an analytical 
approach based on the Pad6 approximation, while Emmerich and Korn (1987) 
proposed a more efficient and more accurate numerical method. Their approach 
is based on the rheological model of a generalized Maxwell body (i.e., n classical 
Maxwell bodies and one spring, all connected in parallel): the rational function 
then corresponds to the modulus of this generalized Maxwell body, and its 
coefficients can be interpreted as the relaxation frequencies and weight factors 
of the classical Maxwell bodies. An optimum is reached when the distribution of 
the relaxation frequencies follows an equidistant  logarithmic scale, over the 
frequency range of interest. Any desired frequency dependence of the quality 
factor can be obtained by an appropriate weighting through a numerical curve- 
fitting process. 

Recently, Zahradnik et al. (1990a, b) suggested another approach to incorpo- 
rate absorption into time-domain methods that  provide the complete (not 
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decomposed into elementary waves) wave field. It consists of an a posteriori 
approximate correction of the solution obtained for a perfectly elastic medium. 
The approach is computationally more efficient than  the method of Emmerich 
and Korn (1987), but  it is restricted to media having a spatially constant quality 
factor (though an arbitrary power-law frequency dependence may be accounted 
for). Using the Emmerich and Korn (1987) approach, we are able to account for 
both an arbi t rary damping-frequency law and a spatially varying damping. 

The following paragraph gives a brief description of the way the absorption is 
incorporated into the equations of motion with the finite-difference scheme. A 
more complete description is given in Appendix A. Fur ther  details may be found 
in Emmerich and Korn (1987) and Moczo (1989). 

Equation of  Motion 

We consider propagation of S H  waves in a 2-D inhomogeneous medium (x-z 
plane). Let us denote the density by p(x,  z), the y component of the displace- 
ment  vector by u(x,  z, t) and the yx and yz components of the stress tensor by 
(ry x and Gyz, respectively. In the absence of body forces, the displacement u 
satisfies the homogeneous equation of motion 

p32 u /O t  2 = aGyx/OX + 3Gyz/3Z" (1) 

From Emmerich and Korn (1987), the stress-strain relations are 

~yx = 2Mu" (0.5 
~ry z = 2 M  u • (0.5 

• o u / o x -  

j = l  

" ~U//(~z - ~ ~j, yz) ,  
j = l  

(2) 

where Mu(x,  z) is the elastic, unrelaxed shear modulus, and the functions 
fj, yx(X, z, t) and fj, yz(X, z, t) satisfy 

~j, yx "b O)j~j,y x : 0.5(ojYjOu//o3x, 

~j, yz q- 09jCj, yz = 0.5°)jYjOu// 3z.  (3) 

Here wj, j = 1, 2 , . . . ,  n, are the relaxation frequencies, and the coefficients Yj 
(related to weight factors) are determined from the K equations: 

W N ' ( C % + w J / Q ( ~ % ) ) . Y j = I / Q ( 3 ~ k ) ,  k = 1 , 2 , . . . , K .  (4) 
j=  1 0) 9 + ~k 2 

The 3J k values correspond to the frequencies at which the quality factor Q(&k) 
is specified, so as to obtain the desired frequency dependence. When K > n, the 
system is solved by using a least-square algorithm. 

Inserting equations (2) into (1) and using functions ~j(x, z, t) defined as 

fj = 2" (3 (Muf j ,  yx ) /Ox  + O(Mu~j, y z ) / 3 z  ), (5) 



S T R O N G  L A T E R A L  D I S C O N T I N U I T I E S  89 

we obtain 

pc) 2 u / ~ t  2 = 3( Mu( 3U/OX) ) /3x  + 9( Mu( c)u/c~z))/Oz - 
n 

E (6) 
j=l 

The only difference between this last equation and that  for a perfectly elastic 
n medium comes from the term ~_,j= 1 ~j. 

Multiplying equations (3) by 2 Mu, differentiating the first and second set of 
equations with respect to x and z, respectively, and summing them up, we get 
the final set of n equations: 

$j + + (7) 

where 

Pj = Mu. Yj. (8) 

This set of equations is solved numerically through the finite-difference 
algorithm described in Appendix A. It is worth noticing that  differences between 
the definition of ~j, equations (6) and (7), and the corresponding ones in the 
paper by Emmerich and Korn (1987) are due to different approaches in the 
construction of the finite-difference schemes. 

Computational Cost 

The memory required in the anelastic case is obviously larger than in the 
elastic case: the ratio is approximately equal to (5 + 3n) /5 ,  n being the number  
of relaxation frequencies. From numerical tests, Emmerich and Korn (1987) 
concluded that  n = 3 provide accurate results  for all practical applications. The 
anelastic calculation then needs an approximately 2.8 times larger memory 
than the elastic one. 

As to the computational time, updating displacement value in one grid point 
in the anelastic calculation requires (23 + 14n) /21  times more arithmetic 
operations than in the elastic one. When n = 3, the CPU time is therefore 
approximately 3 times larger in the anelastic case. 

Test Example 

In order to compute the response of arbitrary, heterogeneous 2D geological 
structures to vertically or obliquely incident plane S H  waves, a program 
package called SHFD has been writ ten based on the above formulation. The 
geologic structure is modeled as a combination of blocks having different 
parameters.  Inside a given block, the velocity, density, and quality factor may 
vary linearly in the horizontal and vertical directions. The shapes of the 
interfaces between blocks may be arbitrary; the interface need not coincide with 
grid points. Both the interface shape and the gradients in the velocity, density, 
and quality factor are taken into account explicitly in the evaluation of the local 
effective parameters  (equations A1, A2, and A3 in Appendix A). The dependence 
of the quality factor on frequency may differ from one block to another. 

In order to test  this formulation, we consider a model derived from the 
"canonical" sedimentary basin studied first by Boore et al. (1971). This basin is 
sine-shaped, with a half-width of 2500 m, a maximum thickness of 600 m (in its 
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central part), and a residual thickness of 100 m (on edges). Velocity and density 
values in the sediments are both linearly increasing with depth: their surface 
values are, respectively, 0.2 k m / s e c  and 1.6 g / c m  3, while they reach 1.2 
k m / s e c  and 2.2 g / c m  3 at a 600-m depth. The velocity and density in the 
bedrock are spatially constant, and equal to 3.5 k m / s e c  and 3.3 g / c m  3. Fur ther  
details on geometry, elastic parameters  and input  motion can be found in 
Moczo (1989). 

We take here a value of 30 for the quality factor inside the basin, and of 1000 
in the basement,  both at a reference frequency fr = 1 Hz. We follow the 
recommendations by Emmerich and Korn (1987): three relaxation frequencies 
0)2 (n = 3) are used with the relations 0)2/0)2_ 1 = 10., and we take 0)3 = 
20)DOM, 0)DOM being the predominant  frequency of the input signal, here 2~r. 
0.25 Hz. The coefficients Yj, j = 1 , . . . ,  n are determined with 5 frequencies &k, 
distributed as follows: &l = 0)1, &k+l = & k Y ~ 2 / 0 ) l .  Causali ty is maintained 
through the Fut te rmann (1962) frequency-dependence relation for Q: Q(&k) = 
QB(0)r) - (1/~T) • ln(&k/0)~) , where °Jr = 2~rfr" A comparison between the exact 
(Futterman's)  dependence and the "approximated" (present model) one is shown 
in Figure 2 for the quality factor in the sediments. 

The final results, surface seismograms obtained with the present FD scheme, 
are compared in Figure 3 with results obtained with Aki-Larner method (Aki 
and Larner, 1970) as modified by Bard and Bouchon (1985) and Bard and Gariel 
(1986) to include at tenuat ion and velocity gradient effects. The agreement is 
very good, though some slight differences may be observed: both techniques (FD 
and AL) are only approximate methods, and these differences are probably due 
to numerical errors in both schemes. They are far too small, however, to be 
significant for practical applications. 

MODELS AND GROUND MOTION CHARACTERIZATION 

Geomet r i ca l  a n d  M e c h a n i c a l  Charac ter i s t i c s  

In order to investigate the effects of sharp surficial discontinuities, we con- 
sider a series of 2D models consisting of a semi-infinite, horizontal, softer layer 
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FIG. 2. Comparison between the exact (dotted line) and the approximated (solid line) quality 

factor (QB = 30) in the sediments of the test example detailed in the text. 
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FIG. 3. Comparison between the present finite-difference scheme (FD, lower trace) and the 
modified Aki-Larner technique (AL, upper trace) for a "canonical" absorbing basin. This basin is 
sine-shaped, with a half-width of 2.5 km,  a m a x i m u m  thickness of 600 m (in its central part), and a 
residual thickness of 100 m (on edges). Both the velocity and density values in the sediments are 
linearly increasing with depth: their surface values are, respectively, 0.2 k m / s e c  a n d  1.6 g / c m %  
while they reach 1.2 k m / s e c  a n d  2.2 g / c m  3 a t  a 600-m depth. Their respective, depth-independent 

3 counterparts in the bedrock are 3.5 k m / s e c  a n d  3.3 g / c m .  The  13 pairs of seismograms correspond 
to 13 equi-spaced surface sites, from basin center (1, x = 0 kin)  to basin edge (13, x = 2.4 kin). The 
incident signal is a Ricker  wave le t  w i t h  a central frequency fp of 0.25 Hz. 

(referred to as "sediments") embedded in a homogeneous,  indented, harder 
"half-space," referred to as "bedrock" (Fig. 1). The contacts between bedrock and 
sediments are horizontal along a semi-infinite plane giving rise to the classical 
1D vertical resonance, and vertical over a thickness h, inducing diffraction 
effects. The only dimensional parameter of such a model is the layer thickness 
h, which disappears when the results are expressed as a function of a dimen- 
sionless frequency ?7 = fifo, where fo = fis/4h is the fundamental  frequency of 
the layer. 

Tables 1 and 2 list the material parameters of 12 different configurations that 
were studied. There are six C (for "constant") models corresponding to homoge- 
neous sediments (i.e., velocity, quality factor, and density values are constant 
throughout the surficial layer), and another six G (for "gradient") models 
corresponding to vertically inhomogeneous sediments (i.e., velocity, quality 
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TABLE 1 
MECHANICAL PARAMETERS OF MODELS C* 

fir ~s Ps Pr 
Model ~r/fls Qs (m/sec) (m/sec) (kg/m 3) (kg/m 3) Qr 

C-5-50 5 50 1000 200 1800 2200 100 
C-5-20 5 20 1000 200 1800 2200 100 
C-5-10 5 10 1000 200 1800 2200 100 
C-2-50 2 50 400 200 1800 2200 100 
C-2-20 2 20 400 200 1800 2200 100 
C-2-10 2 10 400 200 1800 2200 100 

*Constant velocities, densities, and quality factors. 

TABLE 2 

MECHANICAL PARAMETERS OF MODELSG* 

f~r/'~s QJ f~s [m/sec] t Ps (kg/m3)~ Model (at depth h) 

G-5-50 4 40-*60 150-)250 1750-)1850 
G-5-20 4 16-)24 150-)250 1750-.1850 
G-5-10 4 8 - . 1 2  150-o250 1750-.1850 
G-2-50 1.6 40-*60 150-~250 1750-* 1850 
G-2-20 1.6 16- .24  150-.250 1750-* 1850 
G-2-10 1.6 8-* 12 150-.250 1750-.1850 

*Vertical gradient in velocity, density, and quality factor for the 
sediments. 

tLinearly increasing from free surface to depth h. 
fir, for, and Qr are the same as in C models. 

factor, and  densi ty  increase  l inear ly  from the  surface to depth  h). The m e a n  
values  of velocity, qual i ty  factor, and  dens i ty  wi th in  the  sed iments  in the  G 
models are equal  to the  corresponding cons tan t  values  in C models.  The bedrock 
is homogeneous  in all cases. 

Both  the  C and  G models  include a h igh  (5) and  low (2) velocity con t ras t  
(fir/~s) between  sed iments  and  bedrock, and  three  different  levels of a t t enua-  
t ion in the  sediments :  Qs(fr) = 50, 20, and  10, where  the  reference f requency  fr 
is 20 Hz. 

Incoming Wave Field 

The incoming wave field in this  s tudy  is a ver t ical ly  incident  p lane  SH wave 
wi th  t ime dependency  of a Gabor  impulse,  given by 

s( t)  = e-('°p "(t-t°)/~)2. cos(wp(t  - t~) + ~b), 

wi th  t~ = 0.45y/fp and  (Op = 2Wfp. We considered two different  Gabor  signals:  
(a) in order  to obtain  Four ie r  t r ans fe r  funct ions in the  spectral  domain,  we used  
a "6-like" impulse,  refer red  to in the following as impulse  I1, by  specifying 
fp = 0.45 Hz, T = 0.09, 0 = 0 in the above formula  (Fig. 4a); (b) in order  to 
obtain  a more  monochromat ic ,  t hough  t rans ien t ,  signal, we computed  the 
response  of the  12 models  to a Gabor  signal  hav ing  the following character is t ics :  
fp = 5.0 Hz, y = 4.0, 0 = It//4 ( impulse I2, Fig. 4b). 
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FIG. 4. Frequency and time dependence of the two Gabor signals used in this study. (a) I1 signal; 
(b) I2 signal. Left: time dependence; Right: Spectral content (modulus of the Fourier spectrum). 

The lat ter  frequency corresponds to the resonance frequency of the 10-m-thick 
soft layer, which implies a dimensionless frequency value 1.0. 

Computations and Characterization of  Ground Motion 

The "raw" results of our computations are time-domain seismograms at any 
point of the x-zplane. We consider here only the surface motion, and we 
compute results according to the following procedure. 

First, we first compute the response of each of the 12 models to an I1 Gabor 
impulse: we use a time step At = 0.001 sec and a total duration T of 2.0 sec for 
low-contrast models, and At = 0.00048 sec and T = 3.75 sec for high-contrast 
models. This is i l lustrated in Figure 5a for model C-5-50 at 14 surface sites. 

Second, at  each surface site, the Fourier transfer function (FTF) is obtained 
by dividing the Fourier  spectrum of the local response to I1 impulse by the 
Fourier  spectrum of the input  I1 signal. In all the figures, only the modulus of 
the FTF is shown (Fig. 5b). 

Third, from these FTF, it is easy to compute the time-domain response to 
an arbi trary input signal. This is done in this s tudy for the I2 Gabor signal 
(Fig. 5c). 

Fourth,  as the strong lateral discontinuity has a powerful diffraction effect, 
we consider not only the translat ional  motion u, but  also its spatial derivative 
3 u / 3 x ,  in order to est imate the amount  of differential motion, in the immediate 
vicinity of the vertical contact. This differential motion is computed both in the 
time domain, for I2 input  signals (Fig. 5d), and in the frequency domain (i.e., 
from the spatial derivative of the Fourier  t ransfer  functions computed in the 
second step) (Fig. 5e). The spatial derivative was est imated by simply dividing 
the difference between the translational motion computed at two adjacent 
receiver positions by their spacing (i.e., 4.8 m): the values presented from 
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FIG. 5. Results for C-5-50 model: (a) (left column) "Raw" results: response to I1 Gabor pulse 
(normalized) at 14 equi-spaced surface sites (from x = -19.2 m, bottom, to x = 230.4 m, top). (b) 
Fourier transfer functions at the same surface sites (next column). (c) Response to an I2 Gabor pulse 
(normalized: amplitude 1 = surface of half-space). (d) Surface differential motion 0 u/3x in the time 
domain for I2 Gabor pulse (= spatial derivative of c). (e) Surface differential motion 3u/Ox in the 
frequency domain (= spatial derivative of b). In each column, numbers to the right represent the 
peak values of the corresponding quantity for the site under consideration, which is identified 
through its abscissa x labeled on the left. The five curves on top of each column display the spatial 
variations of these peak values along a cross-section of the model. 

F i g u r e s  5 to  11 a r e  t h e n  to  b e  c o n s i d e r e d  a s  o n l y  a p p r o x i m a t e ,  a n d  l o w e r  b o u n d s  

of  t h e  a c t u a l  d i f f e r e n t i a l  m o t i o n .  
A l l  t h e s e  r e s u l t s  m a y  b e  s u m m a r i z e d  a s  d i s p l a y e d  in  t h e  u p p e r  p a r t  o f  F i g u r e  

5, w h e r e  t h e  v a r i a t i o n s  o f  t h e  c o r r e s p o n d i n g  m a x i m a  (i .e. ,  I1  i m p u l s e  t i m e  
r e s p o n s e ,  F o u r i e r  t r a n s f e r  f u n c t i o n ,  I2  t i m e  r e s p o n s e ,  I2  d i f f e r e n t i a l  m o t i o n  in  
t h e  t i m e  d o m a i n ,  a n d  d i f f e r e n t i a l  m o t i o n  in  t h e  f r e q u e n c y  d o m a i n )  a r e  p l o t t e d  
as  f u n c t i o n s  o f  t h e  d i s t a n c e  f r o m  t h e  d i s c o n t i n u i t y .  

NUMERICAL RESULTS 

Diffracted Wave Field 

S e i s m o g r a m s  in  F i g u r e  5 a  i l l u s t r a t e  t h e  w a v e  p r o p a g a t i o n  e f fec t s  d u e  to  s u c h  
a l a t e r a l  d i s c o n t i n u i t y .  A t  s i t e s  s o m e  d i s t a n c e  a w a y  f r o m  t h e  d i s c o n t i n u i t y  (for  
i n s t a n c e  a t  x = 200 m,  i .e. ,  x = 20 h) ,  t w o  w e l l - s e p a r a t e d  w a v e l e t s  m a y  b e  
c l e a r l y  i d e n t i f i e d :  t h e  f i r s t  c o r r e s p o n d s  to  t h e  p r i m a r y  a r r i v a l  a n d  i t s  s u b s e -  
q u e n t  r e v e r b e r a t i o n s  d u e  to  v e r t i c a l  b o u n c i n g  in  t h e  h o r i z o n t a l  sof t  l a y e r ,  w h i l e  
t h e  s e c o n d  c o r r e s p o n d s  to  w a v e s  d i f f r a c t e d  a w a y  f r o m  t h e  d i s c o n t i n u i t y .  
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I t  would be in t e re s t ing  to s epa ra t e  c lear ly  the  effects of the  hor izonta l  and  
ver t ica l  sect ions of the  interface.  However ,  since the  s t ruc tu re  is exci ted by  a 
ver t ica l ly  inc ident  p lane  wave,  i t  is not  possible to inves t iga te  the  effect of  a 
single ver t ica l  contac t  us ing  a two quar te r - spaces  model  s imi lar  to the  one 
inves t iga ted  by  Ben-Zion and  Aki (1990). Never the less ,  an  in t e re s t ing  ins ight  
m a y  be ob ta ined  us ing  a model  wi th  a re la t ive ly  large l aye r  th ickness  (or 
equiva len t ly ,  inves t iga t ing  the  very-h igh- f requency  response  of the  model  illus- 
t r a t e d  in Fig. 1). F igure  6 shows the  h igh- f requency  response  (I1 pulse) of a 
120-m-thick semi- inf ini te  l ayer  wi th  the  same velocities,  densi t ies ,  and  qua l i ty  
factors  as in the  C-5-50 model.  In  the  computed  t ime window, severa l  well- 
s epa ra t ed  waves  in the  sof ter  m e d i u m  m a y  be seen. The  f irs t  one corresponds  
s imul t aneous ly  to the  di f f racted wave t r a n s m i t t e d  from bedrock to sed iments  
a long the  ver t ica l  contac t  wi th  the  bedrock  velocity, and  to the  wave di f f racted 
f rom the  u p p e r  corner.  The  second one corresponds  ma in ly  to the  di rect  wave  
t r a n s m i t t e d  at  the  deep hor izonta l  in terface,  and  p ropaga t ing  t h r o u g h  the  layer ;  
however ,  as shown more  c lear ly  on the  di f ferent ia l  mot ion  se i smograms  of 
F igure  6b, th is  a r r iva l  is mixed  with,  and  followed by, w e a k e r  phases  corre- 
sponding  to waves  di f f racted f rom the  lower  corner  w h en  r eached  by  the  
inc ident  wave  and  also by  the  downgoing wave ref lec ted  a t  the  bedrock  surface.  

(a) T r a n s t o t ( o n o t  m o t { o n  (b) D~£?:rent~ot m o t { o n  
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FIG. 6. High-frequency response of a 120-m-thick model. Density, quality factor, and velocity 
values are the same as for C-5-50 model in Figure 5. (a) Response to I1 Gabor pulse (normalized) at 
20 equi-spaced surface sites (from x = - 19.2 m, bottom, to x = 72.0 m, top). (b) Surface differential 
motion 3u/ax in the time domain for I1 Gabor pulse (= spatial derivative of a). 
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These waves are then all bouncing between the free surface and the horizontal 
sediment-bedrock interface: the late arrival in Figure 6 corresponds to the first 
of these down-up reflections. It is interesting to notice that,  within the sedi- 
ments, the larger amplitude corresponds to the diffracted wave at very close 
sites (x < 0.2 h), while at  larger distances the direct wave is predominant. 

As a consequence, in the immediate vicinity of the discontinuity, the diffracted 
wave field consists of a combination of oblique body waves, radiated directly 
from the discontinuity, and multiply reflected at the surface and the bedrock 
horizontal interface. At large distances, the direct diffracted waves die out 
because of geometrical spreading and damping, while the multiply reflected 
waves progressively build up to form a Love wave: the late phase a t  large 
distances (x > 10 h) in seismograms of Figures 5a, c, and d corresponds to the 
phase and group velocities of the first Love modes of the layered half-space. 

Effects on Ground Motion 

The two dominant effects are classical 1D resonance and lateral diffraction. 
They result  in an abrupt  increase of the amplitude of ground motion jus t  across 
the discontinuity, which is particularly emphasized when the dominant fre- 
quency of the incoming signal coincides with the fundamental  frequency of the 
soft layer: for instance, Figure 5c shows that,  for a velocity contrast of 5, the 
amplitude is multiplied by a factor of about 4 over a distance of 2 h (20 m) in the 
case of an I2 incident pulse. At larger distance from the discontinuity, the peak 
(time-domain) amplitude stabilizes around the 1D value corresponding to the 
local one-layer structure, provided the direct signal is short enough not to 
overlap the onset of the diffracted surface wave. When this lat ter  condition is 
not met (i.e., for most real strong motion accelerograms), the peak amplitude 
may vary in a complicated manner,  depending on whether  the direct and 
diffracted waves interfere constructively or destructively. 

In addition to the amplification and prolongation of the signal, the presence of 
a lateral discontinuity results in a significant differential motion (Fig. 5d). For 
dimensionless frequencies around 1, the differential motion is largest over a 
very narrow zone (only 2h wide) located jus t  to the right of the discontinuity, 
where it is associated with a complex wave field. Away from the discontinuity, 
the differential motion is associated with the passage of the Love wave and may 
be easily est imated with the approximate formula: ~u/c~x = 1 / c . 3 u / $ t  = 
wp/c. u, where c is the phase velocity of the Love wave, the lower bound of 
which is fis, and wp is the dominant frequency of the signal. For the model in 
Figure 5, the maximum strains (i.e., 0.53u/c~x) reach 1 .5 .10  -8 for a bedrock 
maximum displacement of 1 cm, which is significant. This value may be 
compared with the strain predicted by a 1D model for the soft plane layer: in 
that  case, 3u/c~x is zero everywhere since there are no laterally propagating 
waves, while Ou/~z is zero at the (free) surface and maximum at the 
sediment-bedrock interface, where its order of magnitude is about 5 • 10 -8 for a 
bedrock maximum displacement of 1 cm. The maximum strain 0.5 • ( 0 u / d x  + 
3u /$z )  experienced by the sediments is therefore not larger in the 2D case. 
There exists, however, one major difference between 1D and 2D cases: in the 
lat ter  case, strains reach significant values not only at the sediment-bedrock 
interface, but  also at the surface. 

In the frequency domain, the Fourier t ransfer  functions for the soft layer are 
superpositions of the classical 1D resonance pattern, with bumps around 5 Hz, 
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and of oscillatory patterns corresponding to the interference between the direct 
(body) and the diffracted (surface) waves. The frequency spacing of these 
oscillations shortens with increasing distance from the discontinuity, while 
their amplitude decreases because of surface wave damping (Fig. 5b). As a 
consequence, when smoothed Fourier spectral ratios are used instead of "raw" 
FTF, the differences between 1D and 2D models are hardly visible, except in the 
immediate vicinity of the discontinuity where the spectral peak is significantly 
broadened in the latter case. 

It is also possible to characterize the differential motion in the frequency 
domain as shown in Figure 5e. An important result of this figure is that there is 
no differential motion at frequencies lower than fo, while it is almost constant 
(decreasing only very slightly) for frequencies above fo. It seems therefore 
rather easy to characterize the spectrum of differential motion, at least for this 
particular type of models. 

Dependence on Mechanical Parameters 

Effects of Gradient. Figure 7 shows the results obtained for Model G-5-50 in a 
similar way as done in Figure 5. The differences between Figures 5 and 7 are 
small, which is expected since the velocity gradient in model G-5-50 is rather 
small. Nevertheless, in the presence of a velocity gradient, the effects are larger: 
the direct waves are more amplified, and the diffracted Love wave, being more 

230,40 

211.20 

192.00 

172,80 

153.60 

134,40 

115.20 

9G.O0 

76.80 

57.60 

38,40 

18,20 

O, 

-19.20 

0 50 100 150 200 

D'[~i;onco {m) 

a 

1 . 8 7  

1,87 

1 . 8 7  

1.87 

~ 1.87 

1 . 8 7  

~ 1.87 

¢~ 1.8~ 

~ 1.88 

~ 2.02 

i .03 
2- 
1 -  1 , 0 2  
o 

5 1 : o  2 : o 3 : o  

M O D E L  G - 5 - 5 0  

0 0 ............... 0 0 0 50 I00 150 200 0 50 i00 150 200 0 50 i00 150 200 0 50 i00 150 200 
O~tonco (m)  O{~tonco (m)  Oi~tonco (m) Oi~tonco (m) 

b c d e 

~ ~ 8  ~ ~ ~ . ~  F .... ~ o ~  
L ~  7-~ ~ I ~ ~  F .... ~o~4  

~ 8.6 

3.35 

3.37 

~ 3.41 ~ .  O. ll 

3.43 ~ 0.13 

3 . 4 1  0 . 1 4  

3.32 ~ 0.16 

3.17 0.17 

3oi i~ oi, 
3.98 0.18 

1.Ol : 0.18 

I. 02 

~ ~ . 1  ~ , ~  
~ 5 . ~  L ~ ~  
~ ' " ~  ~ 
I ll,i 

S .... ' .... ' ' 

0 5 I0 15 
0 1 . 0  2 , 0  3 . 0  

Froquoncw {Hz )  T~me (s) 

. . . .  ~ . % ~ 1  

I . . .  " ~ 0 . 3 7  
. . . .  . . . . ,  

°iF o. 
. . , , , 

0 5 i0 15 

FIG. 7. S imi lar  to Figure  5, but  for G-5-50 model.  

0 1.0 2.0 3.0 

T~.me (5) Fr~qu~nc~ (Hz) 



98 P. MOCZO AND P.-Y. BARD 

dispersive,  is slower. As a consequence,  a l though  the  di f ferent ia l  mot ion  n e a r  
the  d iscont inu i ty  is l a rge r  for the  g rad ien t  case, i ts level  is comparab le  to t h a t  of 
the  C model  a t  l a rger  d is tances  (a l a rger  dispers ion implies  a more  efficient  
damping).  In  addi t ion,  the  peak  f requencies  are  s l ight ly  shi f ted towards  h ighe r  
va lues  (by about  15%) in the  g rad ien t  case, which  is cons is ten t  wi th  resu l t s  of 
s imple 1D modell ing.  

These  sl ight  differences are  also observed  in the  case of a lower  impedance  
contras t ,  as shown in F igure  8. The  s l ight  spat ia l  shif t  observed in the  m a x i m u m  
spectra l  ampl i f icat ion curves  of F igure  8a be tween  C and  G models  corresponds  
to the  fact  t h a t  the  wave leng ths  are  shor t e r  in the  l a t t e r  case. 

Effects of  Impedance Contrast. Figure  8 shows the  (expected) large  impor tance  
of impedance  con t ras t  on the  ampl i f ica t ion level. Impedance  con t ras t  affects 
bo th  the  t r ans l a t iona l  and  the  di f ferent ia l  mot ion  in app rox ima te ly  the  same 
way: w h e n  the  veloci ty con t ras t  changes  f rom 5 to 2, the  reduc t ion  ra t io  is 
a lmost  the  same for d i f ferent ia l  and  t r ans la t iona l  motion.  This  r e su l t  ar ises  
f rom the  fact  t h a t  the  physics  of  the  diffract ion p h e n o m e n a  is not  a l t e red  by the  
impedance  cont ras t ,  which affects only t he i r  ampl i tude  (see Fig. 9). I t  is wor th  
noticing, however ,  tha t ,  even  in the  case of a small  cont ras t ,  the  d i f ferent ia l  
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FIG. 8. Summary of effects of impedance contrast and gradient. (a) (Bottom) Spatial variation of 
the peak spectral amplification along a cross section of the model (corresponds to curves on top of 
Figs. 5b and 7b). (b) (Second from bottom) Spatial variation of the peak time-domain amplitude for 
an incident normalized I2 Gabor pulse (corresponds to curves on top of Figs. 5c and 7c). (c) (Third 
from bottom) Spatial variation of the peak time-domain surface strain for an incident normalized I2 
Gabor pulse (corresponds to curves on top of Figs. 5d and 7d). (d) (Top) Spatial variation of the peak 
spectral strain (corresponds to curves on top of Figs. 5e and 7e). Solid, chain-dotted and dotted lines 
correspond to different models, as displayed on top of the Figure (see Tables 1 and 2). 
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motion reaches significant values: over 10 -3 for the geometry i l lustrated in 
Figure 1 (h = 10 m, fls = 200 m/sec),  and a bedrock maximum displacement of 
1 cm (at 5 Hz). 

Effects of Damping. In general, the effect of damping is approximately 
proportional to the ratio between the travel distance and the wavelength. As a 
consequence, in the present application, it affects much more the diffracted 
surface wave than  the direct arrival, and thus the effects of damping differ 
depending on the distance from the discontinuity. For instance, comparing 
Figures 5 and 10, the signals near the discontinuity (x < 6h) are only slightly 
reduced but their  shape is not affected, while at  larger distances (x > 15h), 
only the direct arrival remains, the amplitude of the surface wave being 
drastically reduced. 

This effect is particularly important  for the differential motion, which, at  
large distances, is related only to the passage of the Love wave. The fall-off of 
the curves on the top of Figures 10d and 10e is therefore much more rapid than  
on Figures 5d and 5e. However, their  maximum, being near  the discontinuity, 
exhibits the same value independently of the damping considered. 

On the other hand, as the direct arrival is an important  part  of translat ional  
motion, the shapes of curves on top of Figures 5a, b, and c are not 
changed much in Figure 10: they are only shifted downwards, independently of 
the site position. 
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FIG. 10. Similar to Figure 5, but for C-5-10 model. 

The effects of damping are summarized in Figure 11 for the four different 
classes of models (G-5, C-5, G-2, and C-2). The above discussion proves valid for 
all the considered values of model parameters. 

CONCLUSION AND DISCUSSION 

Our computations show that strong lateral discontinuities give rise to two 
basic phenomena: one is the well-known 1D (vertical) resonance and its associ- 
ated frequency-dependent amplification, and the other an efficient wave diffrac- 
tion from the discontinuity towards the softer side, which induces an increase in 
amplification, together with a substantial differential motion. 

The amplification is primarily controlled by the impedance contrast, and to a 
lesser degree by sediment damping. It exhibits a slight maximum near the 
discontinuity, especially when peak time-domain motion is considered, but it 
always remains comparable to the 1D value (in the 12 models we investigated, 
the maximum "overamplification" never exceeds 30%). 

Differential motion level is also controlled by the impedance contrast, but its 
spatial distribution, depending primarily on sediment damping, always exhibits 
a sharp peak in the immediate vicinity o f  the discontinuity. In addition, the 
diffracting efficiency of such lateral discontinuities induces rather high levels of 
differential motion. 

These results are, stricto sensu,  valid only for the configurations we studied, 
i.e., step, semi-infinite soft inclusions subjected to vertically incident plane S H  
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and dotted lines correspond to different Q values (50, 20, and 10). 
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waves. In case of more realistic impinging wave fields, the lateral discontinuity 
would give rise to several  types of diffracted waves (Rayleigh, grazing SP,  etc.), 
and therefore to a more complicated pat tern than in the simple S H  case studied 
here. However, the results of practical interest  for engineering purposes would, 
in our opinion, remain similar from a qualitative point of view: waves diffracted 
from the discontinuity will propagate laterally in the soft layer and develop 
differential motion at ground surface. We thus believe that  our present  results, 
though limited, may be used, at least  from a qualitative viewpoint, to interpret  
the damage observations that  were mentioned in the introduction. 

As already emphasized, 1D models cannot explain the observed concentration 
of damages in narrow stripes along lateral discontinuities. The main differences 
between 1D and 2D models are related with the locally diffracted body and 
surface waves. There are several examples where such locally generated surface 
waves have been actually observed and identified, as predicted by the theory: in 
the Kanto and Osaka plains in Japan  (Seo and Kobayashi, 1980; Yamanaka et 
al., 1992; Kagawa et al., 1992; Kinoshita et al., 1992; Yamazaki et al., 1992), in 
the San Fernando and Los Angeles basins (Liu and Heaton, 1984; Vidale and 
Helmberger, 1988), and in the Santa Clara valley, California (Frankel et al., 
1991). Although all these observations were performed in the low-frequency 
domain only ( f  < 0.5 to 1 Hz) for large size basins, they may reasonably be 
thought to be present  also in smaller size structures at higher frequencies, and 
in particular for the discontinuities we address in this paper. 

Nevertheless, even when taking 2D diffraction effects and associated surface 
waves into account, it seems impossible, as already outlined by Yuan et al. 
(1992) for the Shidian basin, to explain the concentration of damages on narrow 
stripes jus t  in terms of increased amplification of the translational motion: the 
30% maximum overamplification with respect to 1D models would only explain 
an intensity increment of about 0.5 °, according to the (fuzzy) published relation- 
ships between amplification and intensity (Trifunac and Brady, 1975; Borcherdt 
and Gibbs, 1976). Meanwhile, actual observations reported in the introduction 
mention local intensity increments of at least 1 °, and in some cases of 2 °. As a 
consequence, as differential motion is the only parameter  tha t  is sharply peaked 
in the vicinity of the discontinuity, we propose that  at  least par t  of the damages 
are related with differential motion. 

It is obvious, without  the present  study, that  it is unwise to build structures 
that  span across faults or other strong lateral discontinuities. The consistent 
damage observations reported in the introduction and our numerical results 
have, in our opinion, two major engineering implications. First, it would not be 
wise to build structures on soft sites very close to a strong lateral discontinuity, 
even if this discontinuity does not correspond to an active fault. Second, 
differential motion might be an important  factor in ground motion destructive- 
ness: it is the only ground motion parameter  that  exhibits a sharp peak near the 
discontinuity, alike damages, and unlike peak amplitude or spectral amplifica- 
tion. We think that  differential motion should receive more attention than 
presently, and our results stress the need for the installation of new dedicated 
dense arrays in adequate locations. 
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APPENDIX A 

L e t  u s  c o v e r  a r e c t a n g u l a r  c o m p u t a t i o n a l  r e g i o n  b y  a n  i r r e g u l a r  g r i d  w i t h  g r i d  
s p a c i n g  x h i  a n d  z h i  i n  t h e  h o r i z o n t a l  a n d  v e r t i c a l  d i r e c t i o n s ,  r e s p e c t i v e l y :  

x h  i = x i - x i _  l , i = 2 ,  . . . , M X ,  x 1 = O, x h  1 = 0 ,  

z h l  = z Z - z t _  l ,  l = 2 . . . .  , M Z ,  z l = O, z h l  = O. 

L e t  u s  d e n o t e  

x h i  = ( x h i  + x h i + l ) / / 2 ,  zh l  = ( z h z  + z h z + l ) / / 2 ,  

w h e r e  A t  = t i m e  s p a c i n g ,  t k = ( k  - 1 )At ,  U k = d i s c r e t e  a p p r o x i m a t i o n  o f  t h e  i ,l  
d i s p l a c e m e n t  u ( x i ,  z z ,  tk) , a n d  ~j, i,z = d i s c r e t e  a p p r o x i m a t i o n  o f  t h e  f u n c t i o n  
~ j ( x i ,  z z ,  t k)  a t  a g r i d  p o i n t  i ,  l a t  k t h  t i m e  leve l .  
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The effective shear m o d u l i  ]JLiH,,I and v /~,l measure changes of the shear 
modulus between grid points and are defined as follows: 

" - h  {r )-1 
]Jbi,l - -x  i+11J ,  d x / M v ( x ,  zz) , 

\ xi 

txi V, z =~hz+ 1 ( xi,  z )  (A1) 

The discrete approximation of the density Pi, l in the grid point i, l is 
determined as follows: 

UD ~--2 Pi , l  = ( p iL l  Jr- Pi , l  ~ /  , ( t 2 )  

piL, f . . . .  f x i+(~h i+l /2 )  
= t l / x n i ) J x _ ( ~ h i / 2  ) P t X '  z l ) d x ,  

p iv~  = .  . . . .  rz ,+ (~h,+  ~12) . t ± lznz j  j_ Pt Xi, z )dz .  
z z - (zhl /2)  

Let us introduce new quantities pjH, z and pjV, i ,z in the following way (see 
equations 7 and 8 and compare with equations 6 and A1): 

Xi+l 
pjH =xhi+l ( M u ( x ,  z , ) Y j ( x ,  zl)  , 

(s [jVi, 1 =zhl+l Z '+ ldz l (Mu(x i ,  z ) Y j ( x i ,  z )  . (A3) 
\ zl 

Then the following finite-difference schemes for equations (6) and (7) can be 
found: 

Uk+l = 2U k - v k - 1  i,z i,l i,l + (At) 2 

• ~ i , z ( U i + l , l -  U~z)lxh~+~, 

H ~uk 
- u i  1 , i t  i ,z  - U ~ k - l , z ) / x h i ) / x ~ i  

+ - u?,,)/zh.1 
- #zi v U k  

j = l  

~jk+l/e = ck 1~2to _ t o j A t ) / ( 2  + w j A t )  + 2 w j A t  , i , l  Sj, i , l  t,~ 

[ (pH tU.k _ Uik, l ) / xh i+l  "[I, j , i , l k  i + l , l  

-- p j H  1,l(Vik, l - v i k _ l , l ) / x h i ) / x ~ i  

Jr-(pjVi , l (Uik,  l + l  - Vik, 1 ) / z h l + l  

(A4) 
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j , , , l _ l ( U i , l -  Uikl_l)/zhl)/zhl (2 + ~ojht). (A5) 

As regards the boundaries of the computational region, the plane-wave excita- 
tion, the conditions for the spatial grid and time spacings, and an evaluation of 
the effective elastic parameters  (equations A1 and A2), see Moczo (1989). Let us 
only mention here that  Emmerich and Korn (1987) showed that  the finite-dif- 
ference schemes in the viscoelastic case do n o t  require smaller time spacing 
than in the elastic case. 

The quantit ies pjH, i,1 a n d  PjYi,l defined by equations (A3) are evaluated 
approximately by 

: y . H  . H p y .  = y V  v 
p jH , I  j ,~,l  ~J~i,l, d, G1 j , i ,1 " [dLi,l, 

where quantities y j y  l are determined in the following way: let us introduce the 
quanti ty y Qk, i , l :  

Q k , i , l  
\ zt 

(A6) 

Qk y i, z measures  how Qk (the quality factor at  the frequency &k) changes along 
the i th grid column between the grid points i, l and i, l + 1. Having K values 
Qv (corresponding to the grid point i, l and to K frequencies 3Jk) , we can use k, i , l  
the system of equations (4) to determine n quantities YjYl. Assuming K > n, 
the system is solved by a least-squares algorithm. 

yjH t are determined in a similar way. 
Finally, we remark that  differences between equations (6) and (7), schemes 

(A4) and (A5), and the definition of ~j in this paper and the analogous ones in 
the paper of Emmerich and Korn (1987) are due to a different approach used to 
construct the finite-difference scheme. 
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