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EFFICIENT METHODS TO SIMULATE PLANAR FREE SURFACE IN THE
3D 4""-ORDER STAGGERED-GRID FINITE-DIFFERENCE SCHEMES

1
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ABSTRACT

We numerically tested accuracy of two formulations of Levander’s (1988) stress-
imaging technique for simulating a planar free surface in the 4™-order staggered-grid
finite-difference schemes. We have found that both formulations (one with normal stress-
tensor components at the surface, the other with shear stress-tensor components at the
surface) require at least 10 grid spacings per minimum wavelength ( Ay, [h=10) if
Rayleigh waves are to be propagated without significant grid dispersion in the range of
epicentral distances up to 15 l;fam.

Because interior 4"-order staggered-grid schemes usually do not require more than 6
grid spacings per minimum wavelength, in the considered range of epicentral distances, it
was desirable to find alternative techniques to simulate a planar free surface, which
would not require denser spatial sampling than A, [h=6. Therefore, we have

developed and tested new techniques: 1. Combination of the stress imaging (with the
shear stress-tensor components at the surface) with Rodrigues’ (1993) vertically refined
grid near the free surface. 2. Application of the adjusted finite-difference approximations
to the z-derivatives at the grid points at and below the surface that uses no virtual values
above the surface and no stress imaging. The normal stress-tensor components are at the
surface in one formulation, while the shear stress-tensor components are at the surface in
the other formulation.

The three developed formulations give for the spatial sampling A, /h=6 results

very close to those obtained by the discrete-wavenumber method. Because, however, the
technique with the vertically refined grid near the free surface requires 3 times smaller
time step (due to the refined grid), the technique with adjusted finite-difference
approximations is the most accurate and efficient technique from the examined
formulations in the homogeneous halfspace.
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1. INTRODUCTION

The finite-difference (FD) method is a key numerical tool in the recent numerical
modeling of earthquake ground motion. Accuracy of the finite-difference modeling
strongly depends on the implementation of the free-surface (i.e., traction-free) condition.

Obviously, a free-surface topography (nonplanar free surface) is more difficult to
simulate than a planar free surface, however, even the planar free surface is not easy to
simulate sufficiently accurately. In this paper we consider only numerical simulation of
the planar horizontal free surface. A concise review of the modeling of the free-surface
topography until 1996 can be found, e.g., in the paper by Moczo et al. (1997). Later
development is reflected in, e.g., Hestholm (1999), Hestholm et al. (1999) and Ruud and
Hestholm (2001).

Here, we consider only staggered-grid FD schemes which became the most popular
FD schemes soon after Virieux (1984, 1986) applied Madariaga’s (1976) method to the
wave propagation problem.

In the staggered-grid FD schemes, the horizontal free surface can be placed either at
the horizontal grid plane with grid positions of the normal stress-tensor components or
plane with grid positions of the shear stress-tensor components.

Levander (1988) suggested using virtual values of the stress-tensor components above
the free surface and apply the antisymmetry condition for the stress-tensor components
about the free surface. He applied this technique to his 2D P-SV 4™ order staggered-grid
velocity-stress FD scheme. We call Levander’s technique the stress-imaging technique
throughout this study. It is not clear from Levander’s paper which stress-tensor
components are placed at the free surface and how virtual particle velocities above the
free surface are treated.

Rodrigues (1993) developed a 3D 8™ order staggered-grid displacement-stress scheme
and used the stress-imaging technique with the normal stress-tensor components at the
free surface. He found that it is necessary to take 10 to 15 grid points per shortest
wavelength to avoid a significant numerical dispersion. Therefore, he combined the stress-
imaging technique with a vertically refined grid near the free surface and achieved good
accuracy.

Graves (1996) applied the stress-imaging technique with the normal stress-tensor
components at the free surface in his 3D 4™ order staggered-grid velocity-stress modeling.
Graves gave a clear explanation of treatment of the stress-tensor and particle-velocity
components at and above the free surface. He found this technique better than the
alternative vacuum formulation approach which applies the interior FD scheme also to the
free-surface grid points and assumes zero density and elastic moduli above the free
surface.

Ohminato and Chouet (1997) focused in their paper on a free-surface topography,
however, their technique is relevant also to the planar free-surface modeling because they
preferred to locate the shear stress-tensor components at the free surface in their 3D
2" order staggered-grid displacement-stress modeling.

Graves (unpublished data) tested the accuracy of the two formulations in his 3D 4™
order staggered-grid velocity-stress scheme in a homogeneous halfspace against the
frequency wavenumber integration method. Graves used minimum sampling of 5 grid
points per shear wavelength. He also compared grid phase and group velocities as
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functions of grid points per shear wavelength with the theoretical curves. Based on the
numerical tests he found the formulation with the normal stress-tensor components at the
free surface better than the other formulation.

Gottschiimmer and Olsen (2001) tested accuracy of the two formulations in the 3D
4™ order staggered-grid velocity-stress scheme in a homogeneous halfspace against the
discrete-wavenumber method of Bouchon (1981). They used ‘a Gaussian-shaped function
corresponding to approximately 6 points per shear wavelength’. Gottschammer and Olsen
showed cases when one formulation is better than the other and vice-versa. They
concluded with the recommendation to use the formulation with the shear stress-tensor
components at the free surface and to apply averaging across the free surface in order to
obtain values of the horizontal components of the particle velocity at the free surface.

In this paper we first numerically test accuracy of the two formulations by comparing
them with the discrete-wavenumber method. Based on the tests we present two alternative
techniques to simulate a planar free surface in the staggered-grid FD schemes.

2. PROBLEM FORMULATION

Consider a 3D Cartesian coordinate system (x,y,z) with the x-axis horizontal and
positive to the right and the z-axis positive downward. Also consider a perfectly elastic
isotropic halfspace for z3 O with a planar free surface at z =0. Let density p, shear
modulus # and bulk modulus x be functions of x,y,z. Let displacement vector

Zt(u,v,w), stress  tensor Tg},;g,ye{x,y,z}, and body force per unit volume

7( o fys fz) be functions of x,y,z and time ¢. The equations of motion are

PU=Tyx Ty TTzx0z +fx
PV =Trysx FTyysy +Toys7 +fy

PW =Ty Tyrsy H20z +f, [€))

and Hooke’s law is

2
‘ Ty =K€+-§,u(2u,x—v,y —w,z)

2
Tyy = KH-&-E;J(—M,X +2v,y —w,z)

yy

T, = K9+§,u(—u,x Yy +2w,z)
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Ty =Tyx = y(u,y "'va)
Tyz =Tzy = ,u(v,z +W’)’)

Tox =Txz = (W, +u’z) 2)
where @1is volume dilatation

0=u,, Y,y W, 3)

and i = 0%ulor*, Tyxrx =0Ty /Ox, u,, =0ulox, etc.

The traction vector T(;,;z) s

Txx Txy Txz
[TX’Ty’TZJ = [”x My ”z:l Tyx Ty Ty )
Tox Tzy Tz

is equal to zero at the free surface at z=0 with a unit normal vector ;1(0,0,—1).
Therefore,

T =7,=0 (5)

=Tz

is the boundary condition at the free surface.

Equations (1) and (2) can be solved by a FD method. Fig. 1 shows a FD grid cell of the
staggered-grid scheme. U and Ty, represent FD approximations to u (or, possibly, ou/ot)
and 7y, etc. Quantities Py ,..., lyy s and x represent grid material parameters.

In the 4"™-order staggered-grid FD schemes, the first spatial derivative of some
function @(&) at & =&, is approximated by

v @) =lal o[ & +3n)-o( & =30 [+8] o[ & +30) -0 6-31)] ®

with a=-1/24, b=9/8 and h being a grid spacing. Formula (6) would give a 2".order
approximation formulaif a =0 and b=1.

It is obvious that there are at least two options for localizing the free surface with
respect to the staggered spatial grid. In the first approach we place the free surface at the
horizontal grid plane going through the positions of the horizontal displacement
components U, V, and stress-tensor components Ty, Tyy, T7; and Tyy. In the second one,
the free surface coincides with the horizontal grid plane going through the positions of W,
T, and Ty. For brevity, we will use mnemonic denotation — the H formulation (with the
horizontal displacement/particle velocity components at the free surface) for the first and
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Fig. 1. A finite-difference (FD) grid cell with positions of the wavefield variables and effective
material parameters.

W formulation (with vertical displacement/particle velocity components at the free
surface) for the second option.

3. THE STRESS-IMAGING TECHNIQUE

As the equation (1) and (2), and the FD approximation formula (6) indicate, the update
of the displacement and stress-tensor components at the free surface and grid planes at
z=h/2 and z=h according to the FD scheme for interior grid points requires values of

the displacement and stress-tensor components at grid plahes z=-h/2, z=-h and

z=-3h/2, ie., above the free surface. The technique suggested originally by Levander

(1988) for the 2D P-SV 4™-order velocity-stress FD scheme and well described for the 3D
case by Graves (1996) can be called the stress-imaging technique. In principle, the
technique applies explicit boundary conditions to the stress-tensor components located at
the free surface and uses imaged values for the stress-tensor components above the free
surface assuming their antisymmetry about the free surface. The antisymmetry,

T (=2)=—75(2)
Tzy (-2)= Ty (2)

Ty (-2)=-7,(2) N

assures that
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Fig.2. Left: A surface FD grid cell, position of the free surface, and virtual field quantities
required above the free surface in the H formulation of the standard stress-imaging technique.
Right: The same for the W formulation.

Tax (0)= Tzy 0)= T2z (0)=0

as required by the boundary condition (5).

3.1. The H formulation

The positions of the free surface and quantities required above the free surface are
shown in Fig. 2 (left). The explicit application of the boundary conditions, imaged values
of the stress-tensor components, and computed values of the displacement components
above the free surface are summarized in Table 1. Treatment of the quantities not listed in

Table 1 is the same as in the case of interior grid points. ’

3.2. The W formulation

The positions of the free surface and quantities required above the free surface are
shown in Fig. 2 (right). Analogously to the case of the H formulation, the W formulation
is summarized in Table 2.

3.3. Theoretical comparison of the H and W formulations

Although the principle is the same for the both formulation, looking at Table 1 and 2
we see clear differences from which one could intuitively guess that the two formulations
might yield different results. The differences are summarized in Table 3.
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Obviously, a rigorous theoretical analysis of stability and grid dispersion of the two
formulations at least in a homogenous halfspace would be desirable. Such analysis is not
trivial. Therefore, we performed extensive numerical simulations and comparisons of the
two formulations.

3.4. Numerical comparison of the H and W formulations

We tested accuracy of the both formulations against the discrete-wavenumber (DWN)
method (Bouchon, 1981; computer code Axitra by Coutant, 1989) which is very accurate
and often used as the reference solution. The FD computations were performed using the
3D 4™ order staggered-grid displacement-stress FD scheme (Moczo et al., 2000, 2001).
Note that in the case of the homogeneous halfspace there is no difference between the
used and any other 3D 4™-order staggered-grid FD scheme in a material parameterization.
We also checked our calculations against the velocity-stress FD scheme and found no
difference.

Model. A perfectly elastic isotropic homogenous halfspace with the S-wave velocity

b = 300myvs, density r = 1500kg/m* and the P-wave velocity either @ = 520m/s

or @ = 995m/s. The lower and higher P-wave velocities correspond to two values of
Poisson’s ratio — S = 0.25 and s = 0.45, respectively.

Table 1. Summary of the H formulation

Ty (0)=0

Ty (0) is obtained from the 4™-order FD approximation to Hooke’s law for 7, in which
derivative w,, is replaced by derivatives u,, and v, y according to condition
7,,(0) =0 and Hooke’s law for 7,

Ty, (0) the same as above but for 7, .

T (=h/2) =T, (h/2), Ty (=h/2)=-T, (h/2)

T, (-h)= T, (h)

Ty (~3h/2) = T, (35]2), T,y (~3h/2) = =T,y (3/2)

U(0) is obtained from the 4"™-order FD approximation to the equation of motion in
which 7,,,, is obtained also using imaged T, values.

vV (0) the same as above but with 7, and Ty

W(-h/2)  is obtained from the 2™-order FD approximation to the condition 7,,(0)=0
and Hooke’s law for 7, .

U(-h) is obtained from the 2™-order FD approximation to the antisymmetry condition
Ty (—h/2) = =7, (h/2) and Hooke’s law for Ty -

V(=h) the same as above but with 7, -
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Table 2. Summary of the W formulation

T (0)=0, Ty (0)=0
T, (_h/Q) =-T, (h/2)
T (_h) =Ty (h)’ sz (—h)—_——sz (h)

T, (—3h/2) =-T, (3h/2)

W (0) is obtiined from the 4"-order FD approximation to the equation of
motion in which 7,,, is obtained also using imaged 7,, values.

U(-h/2)  is obtained from the 2"_order FD approximation to the condition 7,, (0)=0 and
Hooke’s law for 7, .

V(-~h/2)  is obtained from the 2"-order FD approximation to the condition 7,y (0)=0 and
Hooke’s law for Tpy -

W (=h) is obtained from the 2™-order FD approximation to the condition of the
antisymmetry 7, (—h/2)=—7,, (h/2) and Hooke's law for 7, .

Table 3. Comparison of the H and W formulations
H formulation W formulation

At the free surface

1 directly prescribed stress-tensor 2 directly prescribed stress-tensor
component components

2 displacement components calculated 1 displacement component calculated
using 4 imaged stress-tensor using 2 imaged stress-tensor
components components

Needed above the free surface

5 imaged stress-tensor components 4 imaged stress-tensor components
3 displacement components calculated 3 displacement components calculated
using the 2™-order scheme using the 2™-order scheme
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Fig.3.  Gabor signal used in the numerical simulations and its amplitude Fourier spectrum.
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Fig.4. The source-receiver configuration shown schematically in the xz vertical and xy horizontal
planes. Star denotes a point double-couple source, triangle denotes a receiver. Only two receivers
are depicted here for which synthetic velocity seismograms are shown in the next figures. The
dominant and minimum S-wave wavelengths as well as their ratios to the maximum epicentral

distance and source depth are also shown.
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Source. A point double-couple source with dip 6 =90°, rake A4 =0° and strike either
¢g =45° or gg =0°. A source time function corresponds to slip velocity and is given by
Gabor wavelet

s(t) = exp|~[@(t~15)/yT| cos[w(t~t5) + y]

with @ =27zfp and tg =045y/fp . Because in the standard theoretical analysis
stability and grid dispersion are analyzed for a harmonic signal we chose fp =0.5Hz,
y =11 and w =x/2 which give a relatively narrow-spectrum signal (shown in Fig. 3).
Thus, in the chosen model of the medium, the dominant and minimum wavelengths of the

S wave are /15(,," =600m and ﬂl‘fﬁn =400m, respectively. The depth of the source,

hg =366.6 m, was chosen relatively small, hg / /1;;“ =0.9, in order to allow for efficient
generation of Rayleigh waves.

Source-receiver configuration. Receiver positions were chosen so that comparison of
the wave propagation in the direction of a coordinate axis coinciding with a grid line and
that in the direction of the horizontal plane diagonal be possible. Epicentral distances in
both directions range from 3 Ag?,,m to 15 /15(,,,,. The source-receiver configuration is
schematically shown in Fig. 4. Given this configuration, the source with strike ¢y =45°

generates efficient Rayleigh wave propagation in the direction of the x-axis and SH wave
propagation in the direction of the diagonal. The source with strike ¢g =0° interchanges

directions of propagation of the two types of waves.

Positions of the receivers
in the DWN and FD calculations

FREE SURFACE FREE SURFACE
m v
vV v
oW
H formulation W formulation

Fig. 5. Positions of receivers for the U, V and W components of displacement/particle velocity
used in both the DWN (discrete-wavenumber) and FD calculations. In other words, the DWN and
FD solutions refer to exactly the same spatial positions.
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Let us emphasize that in each DWN calculation we considered 3 receivers in order to
exactly fit the positions of the u,v and w components of the displacement/particle
velocity in the staggered grid in the FD calculations. In other words, there is no averaging
between different receiver positions or inaccuracy due to half-grid spacing shift in
receiver positions (see Fig. 5).

Results. Part of the numerical calculations performed for all combinations of the above
mentioned parameters is illustrated in Figs. 6, 7 and 8. Figure 6 shows synthetic velocity
seismograms computed by the FD method with the H formulation and those computed by
the DWN method. Seismograms are shown for the source with ¢g =45°, § =90° and

A =0° which generates efficient Rayleigh wave propagation in the direction of the x-axis
and SH wave propagation in the direction of the horizontal diagonal. (The case of
¢s =0°, 6 =90° and A =0° was also investigated but is not shown in the paper.) The
top and bottom parts of the figure show seismograms for Poisson’s ratios o =0.25 and
o =0.45, respectively, both for the sampling ratio A, /h = 6. Figure 7 shows the same

for the W formulation. Figure 8 compares the H and W formulations with the DWN
solutions for the case with o =0.25 and Ay, /h=10.

The analysis of all numerical calculations leads to the following conclusions for the
sampling ratio A, /h=6:

1. The P and SH-wave propagation is modeled sufficiently accurately by both the W and
H formulations. (Obviously, sufficient accuracy is a relative, problem-dependent
concept. The observed level of agreement between the DWN and FD solutions might
be interpreted as sufficient accuracy of the FD solution in the earthquake ground
motion modeling.)

2. While the W formulation causes a delay of Rayleigh waves, the H formulation causes

an earlier arrival of Rayleigh waves.

The W formulation gives better amplitudes of Rayleigh waves.

4. There is no significant anisotropy in the grid — propagation in the direction of the grid
line and diagonal are close.

5. There is no significant dependence of accuracy of both formulations on Poisson’s
ratio.

w
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The main conclusions from all calculations for the sampling ratios A, /h =6 and
Amin /h =10 are:

a. At least 10 grid spacings per wavelength (i.e., Api,/h=10) are necessary in order to
achieve sufficient accuracy in modeling Rayleigh wave propagation by the both
formulations.

b. If Ay /h=10, the W formulation gives better amplitudes while the H formulation

gives better phases.

The consequence of the two above conclusions is obvious: Application of either of the
two - formulations requires sampling ratio at least 10 grid spacings per minimum
wavelength which is much more than that (6 grid spacing per minimum wavelength; see
Moczo et al., 2000) required by the 4™-order FD schemes in an unbounded medium. This
would, however, significantly reduce the efficiency of the 4™order FD modeling.
Therefore, some other technique is desirable that would be sufficiently accurate at
sampling ratio A, /h=6.

Let us stress that considering a particular value of the spatial sampling ratio A, /A is
reasonable only for a given epicentral distance or range of the epicentral distances.
Considering A, /7 =6 or 10 in this study relates to the range of the epicentral distances

up to 15 ﬂ[fom. This range is well representative in the earthquake ground motion
modeling in sedimentary valleys and basins.

4. THE W FORMULATION WITH A VERTICALLY REFINED GRID (W-VRG)

Rodrigues (1993) used a grid that was refined only in the vertical direction and only
down to a necessary depth in his 8™_order velocity-stress FD modeling. In his modeling
the normal stress-tensor components are located at the free surface which corresponds to
what we call in this paper the H formulation. Because we think the W formulation is
better than the H formulation, we combine Rodrigues’ idea with the W formulation.

The principle of this technique, which we call W-VRG is:

—  stress-imaging technique in the W formulation,

—  vertically refined grid near the free surface,

— adjusted FD approximations to the Z-derivatives at the grid points near the
bottom of the refined grid.

The W-VRG technique is illustrated in Fig. 9. In addition to the horizontal grid planes
at depths h/2, h and 3h/2 (of the regular grid), there are 6 horizontal grid planes at
depths /6, h/3, 2h/3, 5h/6, Th/6 and 4h/3. As a part of the refined grid, virtual
horizontal grid planes above the free surface are also spaced with half grid spacing h/3.
The z-derivatives are approximated by formula (6) at depths 3h/2, 2h, etc. The
z-derivatives at depths zq =0, 1/6, h/3, h/2, 2h/3, 5h/6 and h are approximated by the
4™ order formula

Stud. geophys. geod., 46 (2002) ; 369
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oor= o0+ 58}~ Lr o a0-La]]

with a; =—1/8 and by =27/8 , which is obtained from (6) after substitution of h/3 for h.
The z-derivatives at depth zy =7h/6 are approximated by the 4™ order formula

9.2(20) = %{ ay [¢(20 +%hj—¢(zO —%hj] +by [90(20 +%hj—¢(ZO —%h)]} ©

with ay =-1/120 and b, =25/24. The z-derivatives at depth zo=4h/3 are
approximated by the 4™ order formula

0.,(20)= %{0@ [qo(zo +%h)—go(zo ——i—h):|+b3 [go(zo +%h)—(p(zo —%hﬂ} (10)

with a3 =—1/336 and by = 49/48 .

Figure 10 shows synthetic velocity seismograms calculated by the W-VRG technique
and those calculated by the DWN method (compare with the top panels of Figs. 6 and 7).
It is clear from this and other calculations (not shown here) that the W-VRG technique

with only 6 grid spacings per minimum wavelength gives results close to those obtained
by the DWN method.

040 o«n
—
X
—
%

T Ty Tzz

Fig.9. A part of the FD grid, position of the free surface, and virtual field quantities required
above the free surface in the W-VRG technique which combines the W formulation of the standard
stress-imaging technique with a vertically refined grid.
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Fig. 10. Synthetic velocity seismograms calculated by the W-VRG technique and DWN method
for Poisson’s ratio 0.25. Sampling ratio 6 grid spacings per minimum wavelength was is used in the
FD calculation. The double couple source generates Rayleigh wave propagation in the direction of
the grid line and SH propagation along the horizontal diagonal. R, Z and T denote radial (U),

vertical (-W) and transverse ( [V-U] /\/2) components.

5. THE H AND W FORMULATIONS WITH THE ADJUSTED FD APPROXIMATIONS
(H-AFDA AND W-AFDA)

The traction-free surface can be simulated in the staggered-grid FD scheme
alternatively — without the stress imaging. As in the case of the standard stress imaging
and stress imaging combined with the vertically refined grid, there are two possible

formulations. In one formulation, the normal stress-tensor components, Tyy and the # and

v components of the displacement are located at the free surface. In the other formulation,

the shear stress-tensor components 7, and 7, , and the w component of the

displacement are located at the free surface. The principle of our approach is:

— directly prescribed zero values of 7,, at the free surface in the first formulation or

7, and 7, in the second formulation,

x

— no stress imaging: i.e., no virtual stress-tensor and displacement components above
the free surface,

— adjusted FD approximations to the z-derivatives at the grid points at and below the
free surface.

We can call the two techniques based on the above principle as the H and W formulations
with the adjusted FD approximations and use acronyms H-AFDA and W-AFDA. The
techniques are illustrated in Fig. 11. The treatment of the stress-tensor and displacement
components at the free surface and depths #/2 and 4 in the H-AFDA is summarized in
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H - AFDA W - AFDA
FREE SURFACE 0 FREE SURFACE 0

zx— Ixz
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0<d0 e«H
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Fig. 11. Left: A part of the FD grid and position of the free surface in the H-AFDA technique. The
z-derivatives at the free surface and depths of h/ 2, hand 3h/ 2 are calculated using adjusted FD
approximations given in Table 6. Right: The same for the W-AFDA technique.

Table 4. Similarly, the treatment of the stress-tensor and displacement components at the
free surface and depths h/2 and h in the W-AFDA is summarized in Table 5. The FD

approximation formulas (#1 — #4), used in the both formulations, are listed in Table 6.

Fig. 12 shows synthetic velocity seismograms calculated by the H-AFDA and
W-AFDA techniques and those calculated by the DWN method (compare with the top
panels of Figs. 6 and 7 and Fig. 10). The H-AFDA and W-AFDA seismograms were also
calculated for other model configurations used for comparison of the W and
H formulations of the standard stress imaging (not shown here). Both the H-AFDA and
W-AFDA techniques with only 6 grid spacings per minimum wavelength give results
close to those obtained by the DWN method. The W-AFDA gives better amplitudes while
the H-AFDA gives better phases. This is similar comparison as that between the H and W
formulations of the standard stress imaging in the case of 10 grid spacings per minimum
wavelength.
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T, (0)=0
Ty (0)

Ty, (0)
T (1/2)

Ty (h/2)

Ty (h)

U (0)

v (0)

W (h/2)

U (h)

V(R

Table 4. Summary of the H-AFDA technique

is obtained from the 4™-order FD approximation to Hooke’s law for Ty
derivative w,, is replaced by derivatives u,, and Viy due to condition
Tz (0)=O~

similar to Ty, (0).

is obtained from the 4"™-order FD approximation to Hooke’s law for Toxs
derivative u,, is approximated by formula #2.

is obtained from the 4"™order FD approximation to Hooke’s law for Toys
derivative v,, is approximated by formula #2.

is obtained from the 4"-order FD approximation to Hooke’s law for Tox s
derivative w,, is approximated by formula #3 in which w,, (0) is replaced by

derivatives u,, and v,, due to condition 7,, (0)=0.
X y 2z

Tyy (h) and T, (h) - similar to T, ().

is obtained from the 4™-order FD approximation to the equation of motion for u;

derivative 7,,,, is approximated by formula #1 in which condition 7, (O) =0
is used.
is obtained from the 4"™-order FD approximation to the equation of motion for v;

derivative Tyzoz is approximated by formula #1 in which condition Ty, (O) =0

is used.
is obtained from the 4™-order FD approximation to the equation of motion for w;

derivative 7,,,, is approximated by formula #2.
is obtained from the 4™-order FD approximation to the equation of motion for u;

derivative 7,,, is approximated by formula #4 in which condition 7, (0)=0
is used.

is obtained from the 4"™-order FD approximation to the equation of motion for v;
derivative 7y,,, is approximated by formula #4 in which condition 7,,(0)=0

is used.
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Table 5.

T (h)

Ty (h)

W (0)

U(h/2)
V(h/2)

W (h)

Ty (O) =0,
i (h/2)

Summary of the W-AFDA technique

T 7y (0)=0
is obtained from the 4"-order FD approximation to Hooke’s law for Tyx s

derivative w,, is approximated by formula #2.

Ty, (h/2) and T,, (h/2) - similar to Ty, (h/2)

is obtained from the 4%-order FD approximation to Hooke’s law for 7, ;
derivative u,, is approximated by formula #3 in which u,, (0) is replaced by
W, due to condition 7,,(0)=0.

is obtained from the 4™-order FD approximation to Hooke’s law for Toys
derivative V,, is approximated by formula #3 in which Vg (0) is replaced by
W,y due to condition 7,,(0)=0.

is obtained from the 4™-order FD approximation to the equation of motion for w;

derivative 7,,,, is approximated by formula #1 in which condition 7, (0)=0

is used.
is obtained from the 4™-order FD approximation to the equation of motion for u;

derivative 7,,, is approximated by formula #2.
is obtained from the 4"-order FD approximation to the equation of motion for v;
derivative Toyoz is approximated by formula #2.
is obtained from the 4"-order FD approximation to the equation of motion for w;

derivative 7,,,, is approximated by formula #4 in which condition 7,, (0)=0
is used.
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Table 6. FD approximation formulas used in the H-AFDA and W-AFDA techniques

formula #1
1[ 352 h\ 35 3
f'(Zo)=—{ 105f( z0)+ '—f(zo+2)“2-zf(zo+5h)
21 5 5 7
+Z6f(20 +Eh)—-5—6-f(20 +—2-h)j|+0(h4)
formula #2
1[ 11 hY 17 h) 3 3
f'(Zo)=;[—§f(Zo —5)+52f(20 +‘2-)+gf(zo +“2‘h)
5 5 1 7
—Ezf(zo+5h)+—22f(zo+5hﬂ+0(h4)
formula #3
oy [ e g STT (o B, 200k
f(Zo)—h[ 22f(Zo h) 528f(o ) 176f(Z0+2)
9 3 1 5 4
_Rf(zo 2h)+753§f(z0+5h)]+0(h)
formula #4

=11 e 22 2o

3 1 5
_4_0]"(10 Ehj+ﬁf(zo +5hﬂ+0(h4)
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6. QUANTITATIVE EVALUATION OF ACCURACY

In general, it is better to evaluate accuracy of the numerical methods in a quantitative
way using reasonably defined error criteria. Let S(¢) be the tested solution and S rEF ()

the reference solution. Perhaps the simplest possible quantitative criterion is a difference
D defined as

D(t) = SREF(I)—S(I) .
An integral criterion, say, misfit M, can be defined as

\/Z[SREF ()= St
M — m
\/ZSI%EF (tm)

Though both criteria are used in comparisons of two solutions, it is not difficult to check
that they account more for a phase misfit than for an amplitude misfit. In order to evaluate
both the accuracy in the amplitude and phase we define the envelope misfit EM as

\/z[|fREF<tm>|-|§<tm>|]2
EM =m

\/Z|§REF (tm)|2

and the phase misfit PM as

\/Z [|Srer ()] Arg (Srer (tm)/§(tm))]2

PM = =
7 '\/ZI§REF (tm)|
m

3

where SREF(t) and S(r) are analytical signals of Sppr(r) and S(r), respectively, and
Arg(g) is the principal value of the argument of a complex quantity ¢.

Figure 13 shows the envelope and phase misfits for the solutions shown in the
previous figures for all tested and developed methods. It is very clear from Fig. 13 that the
envelope and phase misfits for the transverse component of motion in all techniques and
formulations are relatively small and close to each other. This is in agreement with the
conclusion based on simple visual comparisons of the seismograms. The transverse
motion in the simulations is due to the body SH wave propagation. We can conclude that
all techniques and formulations model the body SH wave propagation in a homogeneous
halfspace in the studied range of the epicentral distances comparably and sufficiently
accurately.
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Fig. 13. Accuracy of the investigated and developed methods for simulation of the planar free
surface. The envelope and phase misfits are evaluated against the normalized epicentral distance.
The DWN solutions are used as the reference solutions. Numbers 6 and 10 mean the numbers of the
grid spacings per minimum wavelength used in the H and W formulations of the standard stress-
imaging technique. 6 grid spacing per minimum wavelength are used in the W-VRG, H-AFDA and
W-AFDA solutions. Poisson’s ratio is 0.25 in all cases.
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The phase misfits of the radial and vertical components in the standard stress-imaging
technique for a given epicentral distance, in the studied range of the epicentral distances,
is smaller for Ay, /h=10 than that for Ay, /h=6. The phase misfit for a given

epicentral distance and spatial sampling is smaller in the H formulation than that in the
W formulation. This is in agreement with the conclusions based on simple visual
comparisons of seismograms.

Analogous simple statements cannot be made for the envelope misfits in the standard
stress-imaging technique. This is likely due to the fact that the envelope misfit also ‘feels’
the phase misfit.

Compare now the misfits of the three developed techniques — W-VRG, H-AFDA and
W-AFDA. The phase misfit for a given epicentral distance is largest in the W-VRG and
smallest in the H-AFDA solutions, though the values are relatively close to each other and
all below 0.1 The envelope misfit for a given epicentral distance is largest in the H-AFDA
and smallest in the W-VRG. For the studied epicentral distances the misfits are below 0.2.

Given the fact that the W-VRG technique requires a three times smaller time step we
prefer the H-AFDA and W-AFDA techniques. Given smaller difference between phase
misfits and larger difference between the envelope misfits of the two formulations in the
radial component we conclude that the W-AFDA formulation as the slightly better of the
two formulations.

7. CONCLUSIONS

We numerically tested two formulations of Levander’s (1988) stress-imaging
technique. In the H formulation the normal stress-tensor and horizontal
displacement/particle velocity components are located at the free surface. In the
W formulation the shear stress-tensor and vertical displacement/particle velocity
components are located at the free surface. Comparison of the numerical results for
a homogeneous halfspace with calculations by the discrete-wavenumber method show that
both formulations require at least 10 grid spacings per minimum shear wavelength in
order to achieve reasonable accuracy in modeling Rayleigh wave propagation in the range

of the epicentral distances up to 15 /150," .

Because spatial sampling A, /2 >10 obviously degrades efficiency of the 4™-order
FD modeling to the 2™-order level, we have developed two alternative techniques:

1. W-VRG: Combination of the W formulation of the stress imaging with Rodrigues’

(1993) vertically refined grid near the free surface.

2. a) H-AFDA: H formulation (normal stress-tensor and horizontal displacement/
particle velocity components at the free surface) with adjusted FD approximations
to the z-derivatives at the grid points at and below the free surface (the technique
uses no virtual values above the free surface and no stress imaging).

b) W-AFDA: W formulation (shear stress-tensor and vertical displacement/ particle
velocity components at the free surface) with adjusted FD approximations to the z-
derivatives at the grid points at and below the free surface (the technique uses no
virtual values above the free surface and no stress imaging).
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By numerically comparing the three developed formulations with the discrete-
wavenumber method in the range of the epicentral distances up to 15 /’L,i,m we have found

that for the spatial sampling A, /h =6 they give results very close to those obtained by

the discrete-wavenumber method. However, because W-VRG requires 3 times smaller
time step (due to the vertically refined grid near the free surface), we conclude that AFDA
is the most accurate and efficient technique from the examined formulations in the
homogeneous halfspace. While H-AFDA gives slightly better phases, W-AFDA gives
better amplitudes. We recommend W-AFDA for the earthquake ground motion modeling
in surface sedimentary structures.

In practical calculations it is desirable to obtain values of the displacement/particle
velocity components directly at the free surface.

In the stress-imaging techniques it is possible to use averaging across the free surface
in order to obtain the missing component(s) at the free surface, as suggested by
Gottschimmer and Olsen (2001).

In the techniques with adjusted FD approximations it is possible to apply extrapolation
formulas of different orders of accuracy. The 4™ order formula is necessary to obtain good
accuracy.
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