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ABSTRACT - Numerical simulations of the earthquake motion in a deep Alpine Grenoble 
basin, France, were performed for the flat-free surface model of Grenoble basin and for 
four detailed kinematic source models (W1, W2, S1, S2) specified for participants of the 
ESG 2006 Grenoble basin benchmark. A 3D 4th-order velocity-stress finite-difference 
scheme (Moczo et al. 2002, Kristek et al. 2002, Kristek et al. 2003, Moczo et al. 2004) on 
an arbitrary discontinuous staggered grid was used for simulations. 
 
 

1. Introduction 
 
There are several numerical methods that can be applied in order to simulate earthquake 
ground motion in a deep sediment-filled valley such as the sedimentary basin beneath the 
city of Grenoble in French Alps. The methods include recent formulations of the finite-
difference method (e.g., Takeuchi and Geller 2000, Moczo et al. 2002, Kristek and Moczo 
2003, Kang and Baag 2004) and the finite-element method (e.g., Bielak et al. 2003, 
Yoshimura et al. 2003), as well as the spectral-element method (e.g., Komatitsch et al. 
2004, Chaljub et al. 2006) and ADER-DG method (Käser and Dumbser 2006). The four 
mentioned methods differ in accuracy with respect to different structural features of the 
complex heterogeneous models and considerably in the computational efficiency. 

The finite-difference method can be considered as the simplest method from the 
mathematical point of view. Recent development in application of the method to seismic 
wave propagation confirms, in our opinion, that the achievable level of accuracy and 
computational efficiency in the case of relatively complex structural models makes the 
method still an important numerical tool in seismological research, mainly in earthquake 
ground motion prediction and analysis. 

We hope that our finite-difference simulations for the ESG 2006 Grenoble basin 
benchmark will prove that our finite-difference scheme can be well applied to as 
structurally complex models as the Grenoble valley is. 

 
 

2. Method of Simulation: 3D  4th-order  Velocity-stress  Finite-difference  Staggered-
grid Scheme for a Heterogeneous Viscoelastic Medium 
 
For numerical simulations we used a 3D 4th-order velocity-stress finite-difference 
staggered-grid scheme for a heterogeneous viscoelastic medium. A complete theory and 
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presentation of the scheme can be found in papers by Moczo et al. (2002), Kristek et al. 
(2002), Kristek et al. (2003), Moczo et al. (2004) and Moczo and Kristek (2005). 

The finite-difference scheme solves the equation of motion and Hooke’s law for 
viscoelastic medium with rheology of the generalized Maxwell body in the following 
formulation: 
 ,i i j j iv fρ σ= +  (1) 
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Here, in a Cartesian coordinate system 1 2 3( , , )x x x , ( )ixρ ; { }1, 2,3i ∈  is density, ( )ixκ  

unrelaxed (elastic) bulk modulus, ( )ixμ  unrelaxed shear modulus, lYκ  and lY μ  anelastic 

coefficients, ( , )iu x t  displacement vector, t time, ( , )if x t  body force per unit volume, 

( , )i j kx tσ  and ( , )i j kx tε ; { }, , 1, 2,3i j k ∈  stress and strain tensors, i j
lξ  material-independent 

anelastic functions (material-independent memory variables), and lω  relaxation angular 

frequencies. The anelastic coefficients lYκ  and lY μ  are obtained from 
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3α κ μ ρ⎡ ⎤= +⎢ ⎥⎣ ⎦  and ( )1 2β μ ρ=  are elastic (that is, corresponding to the 

unrelaxed moduli) P and S wave velocities, and anelastic coefficients lYα  and lY β  are 
obtained from the desired or measured quality factor values Qα  and Qβ  using the system 
of equations 
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We cannot go into details of the finite-difference schemes for solving equations (1) to 

(3). All details can be found in the references given above. Here we only comment that the 
schemes for solving the equation of motion and time derivative of Hooke’s law have the 
same structure as standard 4th-order velocity staggered-grid schemes. The accuracy of 
our scheme is due to the way how we treat smooth material heterogeneity and material 
discontinuity. For brevity we give here only formulas for evaluation of effective grid density 
and unrelaxed moduli assigned to respective grid positions: 
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It is clear from eq. (6) that an effective grid density for a corresponding particle velocity 
component is evaluated as an integral volume arithmetic average of density inside a 
h h h× ×  grid cell centered at the grid position of the corresponding particle velocity 
component. The integral is evaluated numerically and the grid cell can contain a material 
discontinuity. Effective grid unrelaxed bulk and shear moduli are evaluated as integral 
volume harmonic averages of moduli in respective grid cells centered at grid positions of 
the stress-tensor components, eqs. (7) and (8). 

Anelastic coefficients lYκ  and lY μ  for a grid cell containing smoothly heterogeneous 
medium and/or material interface are determined as follows: An average viscoelastic 
modulus in the frequency domain is numerically determined for a cell as an integral 
harmonic average. A corresponding quality factor is then determined from the averaged 
viscoelastic modulus at specified frequencies. Equations (5) for the bulk and shear moduli 
are then used to determine average anelastic functions. 

Spatial distribution of the material parameters and field functions is shown in Fig. 1. 
 
 

3. Arbitrary Discontinuous Staggered  Grid 
 
In numerical simulations for surface heterogeneous structures it often is possible have 
coarser spatial sampling in the lower part of the computational region: a near-surface 
sedimentary body with lower seismic wave velocities (covered by a finer spatial grid) is 
underlain by a stiffer bedrock with larger seismic wave velocities (covered by a coarser 
spatial grid). The use of such a combined spatial grid is extremely important because it 
significantly reduces computer memory requirement and computational time. 

In order to make such a combined (or discontinuous) spatial grid efficient, the ratio of 
the size of a spatial grid spacing in the coarser grid and that in the finer grid should 
 
 

 
 

Figure 1. Spatial distribution of the material parameters and field functions. 
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correspond to the ratio of the shear-wave velocities in the stiffer bedrock and softer 
sediments. Therefore we developed and algorithm that enables to adjust a discontinuous 
spatial grid accordingly except that, due to the structure of the staggered grid, the ratio of 
the spatial grid spacings in the coarser and finer grids has to be an odd number. In other 
words, depending on the model of medium, we can choose a 1:1 (uniform) grid, or 1:3, 
1:5, ... discontinuous grid. The grid is illustrated in Fig. 2. 
 
 

 
 

 
 

Figure 2. Arbitrary discontinuous staggered grid  ( case 1 : 3 ). 
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4. Computer Code 
 
A Fortran 95 computer code 3DFD_VS has been developed for performing the finite-
difference scheme. A PML absorbing boundary conditions are implemented. The code is 
MPI parallelized. The code is available at  http://www.nuquake.eu/Computer_Codes/ . 
 
 

5. Model of Medium 
 
Model of the medium used for simulations of seismic motion is that constructed by Vallon 
(1999) with flat free surface. A bedrock depth was obtained by inverting gravimetric 
measurements. Geometry of the sediment-bedrock interface and material parameters are 
shown in Fig. 3.   
 
 

6. Configuration of Sources and Receivers 
 
Four different sources were prescribed in the benchmark. Source W1 represents weak 
right-lateral strike-slip event (Mw=2.9) on the Eastern Part of the Belledonne Border Fault, 
source W2 left-lateral strike-slip event (Mw=2.8) on the Southern Part of the Belledonne 
 
 

 
 

Figure 3. Model of the medium and positions of sources and receivers. 
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Border Fault. Sources S1 and S2 are the strong alternatives of W1 and W2 (Mw=6.0) with 
Haskel crack on the fault with dimensions 4.5 km x 9 km. Benchmark participants were 
requested to provide time series of ground velocity at 40 receivers (Fig. 3). 
 
 

7. Simulation and Results 
 
All simulations where performed on small cluster of Opteron2.2 machines (6 CPUs, 10GB 
RAM in total). A discontinuous grid with finer grid of 1321x1431x45 grid cells and 25 m 
grid spacing, and coarser grid of 265x287x65 grid cells and 125 m grid spacing were 
used. As a consequence, the maximum frequency is around 2.5 Hz. The computational 
time for 30s time window (weak cases W1 and W2) was 33 hours, for 80s time window 
(strong cases S1 and S2) 88 hours. The peak-ground-velocity maps and velocity 
seismograms (vertical component) at the receivers #25 to #32 on the 2D profile are 
displayed in the Figs. 4 – 7.  
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Figure 4. Simulation W1: (top) The peak-ground-velocity map,  
(bottom) velocity seismograms of the vertical component of the particle velocity. 
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Figure 5. Simulation W2: (top) The peak-ground-velocity map,  

(bottom) velocity seismograms of the vertical component of the particle velocity. 
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Figure 6. Simulation S1: (top) The peak-ground-velocity map,  

(bottom) velocity seismograms of the vertical component of the particle velocity. 
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Figure 7. Simulation S2: (top) The peak-ground-velocity map,  
(bottom) velocity seismograms of the vertical component of the particle velocity. 

 
 


