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S U M M A R Y
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian
basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from
the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are
modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth
velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the
1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly
dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-
spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations
of the finite-difference method (FDM-S and FDM-C) up to 4 Hz.

The accuracy of individual solutions and level of agreement between solutions vary with
type of seismic waves and depend on the smoothness of the velocity model. The level of
accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete
representation of the material interfaces (at which material parameters change discontinuously)
for the surface waves in the sharp models.

An improper discrete representation of the interfaces can cause inaccurate numerical mod-
elling of surface waves. For all the numerical methods considered, except SEM with mesh of
elements following the interfaces, a proper implementation of interfaces requires definition
of an effective medium consistent with the interface boundary conditions. An orthorhombic
effective medium is shown to significantly improve accuracy and preserve the computational
efficiency of modelling.

The conclusions drawn from the analysis of the results of the canonical cases greatly help
to explain differences between numerical predictions of ground motion in realistic models of
the Mygdonian basin.

We recommend that any numerical method and code that is intended for numerical prediction
of earthquake ground motion should be verified through stringent models that would make it
possible to test the most important aspects of accuracy.

Key words: Numerical solutions; Numerical approximations and analysis; Earthquake
ground motions; Site effects; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismologists must predict earthquake ground motion during po-
tential future earthquakes in densely populated areas and sites of
special importance. This is very important for land-use planning,

designing new buildings and reinforcing existing ones. It is also
very important for undertaking actions that could help mitigate
losses during future earthquakes.

Prediction of the earthquake ground motion for a site of interest
can be based on empirical approach if sufficient earthquake records
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at that site or at a sufficiently similar site are available. In most
cases, however, this is not so and seismologists face a drastic lack
of data. In such situations it is the theory and numerical simulations
that have to be applied for predicting the earthquake motion.

Structural and rheological complexity of the realistic models im-
ply that only approximate computational methods can be applied.
Among the approximate methods, the domain (in the spatial sense)
numerical-modelling methods are dominant due to relatively rea-
sonable balance between the accuracy and computational efficiency.
Some of the more widely used numerical-modelling methods are
the time-domain finite-difference, finite-element, Fourier pseudo-
spectral, spectral-element and discontinuous Galerkin methods.

Each method has its advantages and disadvantages that often
depend on a particular application. In other words, none of these
methods can be chosen as the universally best (in terms of accuracy
and computational efficiency) method for all important problems.
One logical consequence and particular aspect of this situation is
that, depending on a particular model of the medium, it might
be not trivial to reach satisfactory agreement between solutions
obtained by different methods. And indeed, this is the important
lesson learned from the dedicated international blind predictions
tests and comparative exercises for the Turkey Flat in the Parkfield
area, central California in 1989–1990 (e.g. Cramer 1995), Ashigara
Valley in the Kanagawa Prefecture, SW of Tokyo, Japan in 1992
(e.g. Bard 1994), Osaka basin, Japan in 1998 (Kawase & Iwata
1998), Grenoble valley in French Alps in 2006 (Chaljub et al. 2006,
2010) as well as from the Southern California Earthquake Center
(SCEC) code comparison (Day et al. 2001, 2003, 2005; Bielak et al.
2010).

The SCEC comparison included relatively simple models of a
homogeneous half-space and layer over half-space (Day et al. 2001),
and a realistic model of the San Fernando Valley and Los Angeles
Basin (Day et al. 2003, 2005). In the simple models the P- to S-wave
velocity ratio was as low as 1.73 and the S-wave velocity contrast
less than 1.5. Due to the material parameters and source position,
strong surface waves were not generated in the models. Bielak et al.
(2010) analysed results of verification for the ShakeOut scenario
earthquake for the realistic SCEC community velocity model and
frequency range [0.1, 0.5] Hz. They concluded that the independent
simulations were, given the complexity and size of the problem,
satisfactorily close. They attributed the observed differences mainly
to differences in discrete representations of the model heterogeneity
and models of attenuation.

The ESG2006 (Effects of Surface Geology 2006) exercise was
focused on the Grenoble valley in the French Alps (Chaljub et al.
2006, 2010). Compared with the Los Angeles basin, the modelling
of the Grenoble Valley is complicated by the larger P- to S-wave
velocity ratio, larger velocity contrast and the complex interface
geometry. The simulations were performed for the frequency range
[0.1, 2] Hz. Four teams reached a very good level of agreement up
to 1 Hz. The differences above 1 Hz were attributed to differences
in discrete representations of the model heterogeneity, numerical
dispersion and models of attenuation, that is, similar to reasons
found by Bielak et al. (2010).

The individual named reasons for differences in both compar-
isons for realistic models are probably correct but they were not re-
ally separated and quantified. In other words, none of the three com-
parisons (SCEC simple models, SCEC ShakeOut and ESG2006)
provides sufficient methodological basis for estimating accuracy of
individual numerical solutions and possible differences among in-
dependent numerical solutions for relatively simple but stringent
models or for other complex realistic models. This, however, is

an important aspect in relation to application of the numerical-
modelling methods in practical predictions.

Given the state-of-the-art in the numerical modelling of earth-
quake motion it was logical to develop a project focused on sys-
tematic and quantitative comparison of the most advanced numer-
ical methods. The Aristotle University of Thessaloniki, Greece,
the Cashima research project (supported by CEA—the French
Alternative Energies and Atomic Energy Commission, and the
Laue-Langevin Institute, ILL, Grenoble) and ISTerre at Joseph
Fourier University, Grenoble, France, jointly organized the Euro-
seistest Verification and Validation Project (E2VP) which aims at:
(i) evaluating accuracy of the current most advanced numerical
methods when applied to realistic 3-D models and (ii) quantitative
comparison of the recorded and numerically simulated earthquake
ground motion. E2VP thus includes both verification and valida-
tion (e.g. Bielak et al. 2010; Moczo et al. 2014). The E2VP target
site is the Mygdonian basin near Thessaloniki, Greece, the interna-
tional research and test site of many international seismological and
earthquake-engineering projects (for more on the site see Maufroy
et al. 2014).

In this paper, we address the verification part of E2VP. From the
originally 18 teams from around the world intended to participate,
eight teams contributed to the 3-D modelling over the whole dura-
tion of the first verification phase and four teams were able to reach
a satisfactory level of agreement for the complex 3-D models of the
Mygdonian basin [one team applied its finite-difference scheme,
one team Fourier pseudo-spectral scheme and two teams indepen-
dent implementations of the spectral-element method (SEM)].

Importantly and consistently with the previous comparative ef-
forts mentioned above, there were differences among individual
solutions by the four teams mainly in the configurations with strong
surface waves and at high frequencies—despite the effort to make
the individual discrete models as close as possible. The differences
led us to develop 4 canonical models derived from the realistic 3-D
model of the Mygdonian basin. Two models are 1-D, two models
are 2-D. Wavefields are in the all models 3-D. The solutions for the
canonical models were computed by the four original teams and
by a fifth team which applied the velocity–stress collocated-grid
finite-difference scheme.

The quantitative analysis of the results explains how the accuracy
of individual solutions and level of agreement between solutions
vary with the type of seismic waves and depend on the discretization
of the spatial variations of material parameters.

2 E U RO S E I S T E S T V E R I F I C AT I O N A N D
VA L I DAT I O N P RO J E C T

The target site of E2VP is the Mygdonian basin located in the
northeastern part of Greece, 30 km ENE from Thessaloniki, in the
epicentral area of the M6.4 seismic event which occurred on 1978
June 20 (e.g. Soufleris et al. 1982; Theodulidis et al. 2006). E2VP
focuses on the part of the basin between the Lagada and Volvi
lakes, a site which has been extensively investigated in several
European projects (e.g. Euroseistest, Euroseismod, Euroseisrisk,
ISMOD, ITSAK-GR; see http://euroseisdb.civil.auth.gr,
last accessed 16 January 2015) and monitored with a dense ac-
celerometric array since the mid-nineties. The project makes use
of a detailed 3-D model of the intralake basin zone (about 5 km
wide and 15 km long) based upon work by Manakou (2007) and
Manakou et al. (2010). The model consists of three sedimentary
layers with significant lateral variations in thickness as shown in
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92 E. Chaljub et al.

Figure 1. Thicknesses of the sedimentary layers of the Mygdonian basin’s velocity model used within the E2VP project. The red triangle denotes the position
of TST, the central station of the Euroseistest accelerometric array.

Table 1. Thicknesses (h) and material parameters (S and P seismic
velocities VS and VP, respectively, and mass density ρ) in the model
with three homogeneous layers used in E2VP. Li, i = 1. . . 3 denote
the sedimentary layers and H the surrounding bedrock.

h (m) VP (m s−1) VS (m s−1) ρ (kg m−3)

L1 17.3 1500 200 2100
L2 72.5 1800 350 2100
L3 115.6 2500 650 2200
H 1000 4500 2600 2600

Table 2. Same as Table 1 for the smooth, piecewise linear, three-
layer model used in E2VP.

h (m) VP (m s−1) VS (m s−1) ρ (kg m−3)

L1 17.3 [1500–1600] [200–250] 2100
L2 72.5 [1600–2200] [250–500] [2100–2130]
L3 115.6 [2200–2800] [500–900] [2130–2250]
H 1000 4500 2600 2600

Fig. 1. Note that the TST station at the centre of the Euroseistest
site is located at a saddle point, with the sedimentary thickness in-
creasing both eastward and westward, and decreasing towards the
edges of the basin. The central NS profile passing through TST
appears as a buried pass between two thicker sub-basins, the max-
imum thickness (about 400 m) being reached in the westernmost
one. Based upon this three-layer structure of the basin, two differ-
ent velocity models have been considered in E2VP: a piecewise
homogeneous model with physical interfaces within the sediments,
and a smooth, piecewise linear model without internal discontinu-

ities. The depth distribution of seismic velocities and mass densities
in each sedimentary layer and in the surrounding bedrock is given
for both models in Tables 1 and 2, respectively. The intrinsic attenu-
ation is modelled through a linear scaling of the quality factor with
shear wave velocity as QS = VS/10, neglecting the bulk attenuation,
Qκ = ∞.

Many different numerical methods were compared during the
verification phase of E2VP, to evaluate the epistemic uncertainty in
numerical prediction of earthquake ground motion in sedimentary
basins. Here we consider a subset of those methods which pro-
vided the most similar results: the velocity–stress finite-difference
method on the staggered grid (FDM-S), the Fourier pseudo-spectral
method (FPSM) and the Legendre SEM. They are are briefly de-
scribed in Section 4. The reader is referred to Maufroy et al. (2014)
for a presentation of the results obtained by a wider set of meth-
ods and codes, which allows to better appreciate the difficulty to
obtain acceptable levels of agreement in realistic 3-D verification
exercises.

In Fig. 2, we compare synthetics simulated at the TST station by
the three methods for frequencies up to 4 Hz for the viscoelastic
model with three homogeneous layers. The basin is excited by a
double-couple point source located at 3 km depth. The level of sim-
ilarity is excellent for the first arrivals (i.e. for t ≤ 5 s), which consist
mainly of body waves, and it decreases for late arrivals consisting
mostly of surface waves diffracted at the basin edges. In Fig. 3, we
compare synthetics for the elastic model with homogeneous layers.
The neglect of attenuation reveals significant differences in ampli-
tude and phase in the time window dominated by the local surface
waves, that is for t ≥ 6 s. Note that those differences remain even
after increasing the grid resolution used in each of the numerical

Figure 2. Comparison of predictions of the NS (left-hand panel) and vertical (right-hand panel) components of ground velocity at the central TST station
obtained by three different numerical methods: FDM-S (black), SEM (red) and FPSM (blue). The sedimentary basin is modelled with three homogeneous
viscoelastic layers of varying thicknesses described in Fig. 1 and Table 1.
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Figure 3. Same as Fig. 2 for the elastic model (neglecting intrinsic attenuation) with homogeneous layers. Note the good agreement on the first arrivals and
the differences in phase and amplitude for later arrivals (between t = 6 and 12 s).

Figure 4. Same as Fig. 3 for the smooth basin model of Table 2: no internal material discontinuities in sediments. Note the overall good agreement obtained,
even on late arrivals.

solutions. These results suggest that the epistemic uncertainty of
numerical prediction of earthquake ground motion may be large for
local surface waves. Several factors may contribute to this. They are
investigated and discussed later in the paper.

Another important observation is that the level of epistemic un-
certainty on the late arrivals was found smaller whenever a smooth
basin model was considered. This is illustrated in Fig. 4 where we
compare the predictions of the elastic response of the smooth piece-
wise linear model of Table 2. Despite the neglect of attenuation, the
level of fit is excellent on the whole wavefield.

3 C A N O N I C A L T E S T C A S E S

In order to better understand the origin of the differences between
numerical predictions of ground motion observed in the course of
E2VP, we designed a set of test cases with relevant characteristics.

We focus on the perfectly elastic models because we checked
that the differences between individual solutions were much larger
when attenuation was neglected. The verification of solutions in
the viscoelastic models is left for a further, second level analysis.
We may note that reaching a satisfactory level of agreement in the
elastic models represents a real numerical challenge.

In this paper, we present four test cases: two for which the velocity
model is varying only in the vertical direction (1-D geometry), and
two for which the velocity model is a simplified, 2-D cross-section
of the Mygdonian basin model (2-D geometry). For each geometry

(1-D or 2-D), two kinds of structural models were considered: one
model, referred to as sharp, with internal discontinuities of the ma-
terial parameters in the sedimentary part; and one model, referred
to as smooth, where the vertical variation of the material parame-
ters is continuous, piecewise linear within the sediments. The four
test cases are denoted as 1D-sharp, 1D-smooth, 2D-sharp and 2D-
smooth. The 3-D seismic wavefields include surface waves trapped
in the sediments: for models with 1-D geometry, the surface waves
are excited by a surface force, whereas they are spontaneously gen-
erated from the conversion of body waves at the basin edges for
models with 2-D geometry.

3.1 Models with 1-D geometry

The problem configuration for the test cases with 1-D geometry (1D-
sharp and 1D-smooth) is depicted in Fig. 5. The model consists of
three sedimentary layers overlying an elastic, homogeneous half-
space. The layer thicknesses, densities and seismic velocities for
the 1D-sharp and 1D-smooth models are given in Tables 1 and
2, respectively. The total sediment thickness is 205.4 m and the
fundamental resonance frequencies are f0 � 0.67 and �0.74 Hz
for the 1D-sharp and 1D-smooth models, respectively. Note that
although the 1D-smooth model was not designed to be a smooth
approximation of the 1D-sharp model, whence the difference in
the fundamental frequency, both models are consistent with the
geological and geophysical information gathered at the TST site.
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Figure 5. Schematic representation (left: vertical cross-section, right: surface view) of the 3 layers (L1, L2, L3) over half-space (H) models used in the test
cases 1D-sharp and 1D-smooth. The values of thicknesses, densities and seismic velocities are given in Tables 1 and 2. The positions of the sources and surface
receivers are indicated with bold arrows and triangles, respectively. The beach ball at the epicentre indicates the focal mechanism of the double-couple point
source plotted. The distance between the receivers along the northern surface profile is 1 km.

Figure 6. Source time functions used in the test cases 1D-sharp and 1D-smooth. Left-hand panel: dimensionless time histories for the deep double-couple
source (red) and the surface force (blue). Right-hand panel: corresponding amplitude Fourier spectra.

The impact of the strategy used for constructing a geophysical model
on the level of epistemic uncertainty in the numerical prediction of
earthquake ground motion is discussed at the end of the paper.

A double-couple point source with strike φS, dip δS and rake λS is
set at 3 km depth. The focal mechanism is that of a vertical strike-slip
fault (δS = 90◦, λS = 0◦), rotated such that the horizontal coordinate
axes do not lie in any nodal plane of the radiation patterns for the P
or S waves: φS = 22.5◦. An additional vertical force is considered at
the free surface in order to excite Rayleigh surface waves trapped in
the sedimentary layers. Both sources act synchronously with the
time functions shown in Fig. 6. The source time function for the
surface force is a bandpass filtered Dirac pulse with almost no spec-
tral content beyond fmax = 4 Hz and a flat part in the band [0.3–3 Hz];
its integral is used to define the time history of the double-couple
source. The seismic moment of the double-couple source is set to
M0 = 1018 N.m and the amplitude of the surface force is multiplied
by a factor A = 5 × 1011 in order to obtain synthetic seismograms
with realistic ratios of body- to surface wave amplitudes.

3.1.1 Reference solutions

The reference solutions for the 1D-sharp and 1D-smooth cases were
computed with the discrete wavenumber method (DWM; Bouchon
1981, 2003): we used the axitra program (Coutant 1989) to com-
pute the wavefield generated by the deep double-couple source and

a code implementing Hisada’s asymptotic approximation at high
wavenumbers (Hisada 1995) to compute the wavefield generated by
the surface force.

Fig. 7 shows the synthetic seismograms computed at a few re-
ceivers located at the surface along the northern profile for the
1D-sharp case. The east–west component of ground velocity con-
sists only of SH body waves and shows a typical 1-D resonance
pattern at about 2.7 Hz, whereas the vertical component is dom-
inated by the propagation of strongly dispersed Rayleigh surface
waves. The time-frequency representation of the vertical ground
velocity at 4 km epicentral distance is shown in Fig. 8. It helps to
identify the contributions of the different Rayleigh modes to the
15 s long wave train recorded after 10 s: seismic phases arriving
between 12 and 16 s consist mainly of the high-frequency (≥2 Hz)
first higher mode, whereas phases arriving after 18 s are made of
the moderate- to low-frequency fundamental mode (≤3 Hz). Note
the large amplitude related to the arrival of the Airy phase of the
fundamental Rayleigh mode around 17 s, which is well predicted by
the analysis of the group velocity.

The surface seismograms for the 1D-smooth case are shown in
Fig. 9. Note that, compared to the 1D-sharp case, the high-frequency
resonance effect is less pronounced in the body wave part and that a
simpler surface wave dispersion pattern is observed on the vertical
component. Looking at the time-frequency representation of the
vertical ground velocity at 4 km epicentral distance (Fig. 10), one
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Figure 7. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity along the northern surface profile computed with the
discrete wavenumber method for the 1D-sharp model.

Figure 8. Time (bottom panel) and time-frequency (top panel) represen-
tations of the vertical ground velocity at 4 km epicentral distance for the
1D-sharp case. The background colours on the top image indicate the ampli-
tude of the seismic arrivals, from blue (small) to red (medium) and bordeaux
(large). The solid lines superimposed on the image indicate the theoretical
group arrival times of the fundamental (blue) and first higher (green) modes
of Rayleigh waves.

sees indeed that the fundamental and first higher modes of Rayleigh
waves are well separated in time, the fundamental mode being much
less dispersed than in the 1D-sharp case.

3.2 Models with 2-D geometry

The problem configuration for the test cases with 2-D geometry (2D-
sharp and 2D-smooth) is shown in Fig. 11. The model corresponds
to a 5-km-long valley bounded at one side by a vertical wall and
at the other side by a gentle slope, in order to mimic the geometry
of the north–south cross-section of the Mygdonian basin passing
through the central TST station (Fig. 1). The layering for the 2D-
sharp (resp. 2D-smooth) model is the same as that for the 1D-sharp
(resp. 1D-smooth) model, except close to the northern edge where
the thickness of each layer linearly decreases from its value given
in Table 1 (resp. Table 2) to zero over a distance of 1.5 km. The

resulting angle of the bedrock-sediment interface at the northern
boundary is about 8◦.

Both 2-D models are excited by the same deep double-couple
source used for the 1D-sharp and 1D-smooth cases. In these models,
contrary to the 1-D models, the surface waves (of Rayleigh and
Love type) are generated at the edges of the valley and trapped in
the sediments.

4 N U M E R I C A L M E T H O D S

The numerical solutions presented in this paper were obtained by
three kinds of numerical approximation in space: two velocity–
stress formulations of the finite-difference method – on the stag-
gered grid and on the collocated grid, the FPSM and the Legendre
SEM. Time evolution in all cases is solved by an explicit, condi-
tionally stable, finite-difference scheme. In what follows, we briefly
present each method and explain how it should be implemented to
provide an accurate solution to the canonical cases.

4.1 Legendre SEM

The SEM is a high-order finite-element approximation in which the
consistent choice of an orthogonal polynomial basis and of a Gauss
numerical quadrature allows to achieve the convergence properties
of spectral methods. In its early applications to seismology (Priolo
et al. 1994; Seriani & Priolo 1994), a set of Chebyshev polyno-
mials and Gauss–Chebyshev quadrature were used. Using instead
Legendre polynomials and Gauss–Legendre–Lobatto quadrature
yields SEM, which still holds the convergence rate of spectral meth-
ods while providing a diagonal mass matrix resulting in costless
implementation of explicit finite-difference schemes in time. The
Legendre formulation of the SEM was introduced in seismology by
Faccioli et al. (1997) and Komatitsch & Vilotte (1998), and is the
most widely used nowadays. It relies on the tensorization of the 1-D
SEM, and therefore on the use of quadrangles in 2-D and hexahe-
dras in 3-D. The reader is referred to Komatitsch et al. (2005) and
Chaljub et al. (2007) for review articles presenting the numerous
developments of SEM, and to Moczo et al. (2014, chapter 5, p. 76)
for a historical presentation and recent applications to seismic wave
propagation in sedimentary basins or alluvial valleys.
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Figure 9. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity along the northern surface profile computed with the
discrete wavenumber method for the 1D-smooth model.

Figure 10. Same as Fig. 8 for the 1D-smooth case.

In the finite-element method (FEM), and therefore in SEM, the
free-surface condition (and more generally the continuity of trac-
tion) is said to be a natural boundary condition because it is ac-
counted for in the weak form of the equations to be solved and
does not have to be explicitly enforced at the discrete level. This
allows surface topography to be accounted for in SEM, as long

as the variations of the free surface can be accurately represented
at the discrete level. No particular effort, or care, was therefore
needed when implementing the free-surface condition in SEM for
the canonical cases considered here, since they all deal with a flat
free surface.

Two kinds of material heterogeneities can be accounted for in
SEM: intra-element, continuous variations approximated by their
projection on the high degree (typically N ∈ [4 − 6]) local poly-
nomial bases, and inter-element discontinuities, thank to the FEM
functional framework. Note that the representation of small-scale
variations by the local spectral element polynomial bases is intrinsi-
cally limited. Trying to represent localized variations, for example
material discontinuities, can lead to aliasing effects and/or Gibbs
oscillations just like in the traditional spectral methods (e.g. Boyd
2001). However, practical situations occur where discontinuities
exist but can hardly be represented at the discrete level due to geo-
metrical complexity in the design of hexahedral meshes (e.g. when
large variations of interface elevation occur on small spatial scales)
or due to prohibitive computational cost to respect the Courant–
Friedrichs–Lewy (CFL) stability condition (e.g. close to the val-
ley or basin edges). Some approximate mesh design strategies are
sometimes adopted in those cases. In these strategies, the element
boundaries do not follow the shape of the material interfaces (they
do not coincide with the interfaces). We may use acronym ‘NF’ (not
following) for these strategies. In the remainder of the paper, the
performance of some NF strategies is evaluated and compared to

Figure 11. Schematic representation (left: vertical cross-section, right: surface view) of the valley model used in the test cases 2D-sharp and 2D-smooth. The
bottom and total widths are BW = 3.5 km and TW = 5 km, respectively, and the maximum sediment thickness is about 205 m. The location of the source is
indicated by the double-couple in the left figure and by the beach ball in the right one. The triangles along the western line (WL) and eastern line (EL) indicate
the receiver positions where numerical predictions are further compared.
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the optimal strategy, referred to as ‘F’ strategy, in which the ele-
ment boundaries follow the interfaces (i.e. material interfaces never
intersect the elements). Note that the spectral element meshes con-
sidered here are always geometrically conforming, that is such that
neighbouring elements share either a corner or an entire edge or
face.

Two open-source codes implementing SEM have been used in
this study: specfem3D (Peter et al. 2011) and efispec (De Martin
2011). Both codes implement the P1 paraxial formulation of Stacey
(1988) at the absorbing boundaries. We always used a polynomial
order N = 5 and, away from the interfaces, we imposed the size
of the spectral elements to be smaller than or equal to the local
minimum S wavelength. The results obtained with the two codes
are strictly similar when using the same mesh of elements. In the
remainder of the paper, the results obtained with specfem3D (resp.
efispec) will be referred to as SEM1 (resp. SEM2).

4.2 FPSM

The FPSM combines the optimal accuracy of the global spectral
differential operators with the simplicity of the spatial discretiza-
tion using a structured rectangular grid. The peculiarity of FPSM
consists in the evaluation of the spatial derivatives by means of a
multiplication in the wavenumber domain. Time evolution is usually
solved using non spectral approaches, as, for example the 2nd-order
explicit finite-difference scheme used in this paper. The transition
from the spatial domain to the wavenumber domain, and back, is
performed by means of the fast Fourier transform. Thanks to the
Nyquist sampling theorem, FPSM works with a relatively coarse
spatial sampling (Fornberg 1987), which represents a valuable ad-
vantage when solving 3-D problems.

On the other hand, the nature of the global differential opera-
tors implies that possible numerical artifacts are spread across the
whole space domain. There are two common sources of numerical
errors. One is the discontinuity of the fields that are being dif-
ferentiated, which produces singularity in the calculated wavefield
(Gibbs phenomenon). The other is the representation of material
discontinuities (interfaces): since FPSM solves the heterogeneous
formulation of the equation of motion, artefacts may be due to the
staircase approximation interfaces with sharp impedance contrast.
The free-surface condition—a typical feature of models used for
earthquake ground motion simulations—can be seen as an extreme
case of a sharp material interface and therefore is particularly chal-
lenging for FPSM.

The FPSM implementation used in this paper (Klin et al. 2010)
tackles the aforementioned problems in the following way. The
occurrence of Gibbs phenomenon is significantly reduced using
the Fourier differential operators on staggered grids (Őzdenvar &
McMechan 1996). The staircase approximation of the material inter-
faces is avoided using the volume harmonic averaging of the elas-
tic moduli and volume arithmetic averaging of density proposed
by Moczo et al. (2002). The free-surface boundary condition—
discontinuity of displacement and vanishing traction at the free
surface—is solved by the following approach: (1) before applying
the differential operator a linear function is subtracted from the
displacement field in order to remove its discontinuity at the free
surface, and it is added back after differentiation is performed; (2)
a stress imaging technique accomplishes the vanishing of the stress
field. In order to sample adequately the surface wave wavefield,
which features higher vertical-component wavenumbers close to the
free surface, the vertical spatial sampling step is gradually squeezed

towards surface. Finally, the wavefield absorption at lateral and bot-
tom boundaries of the computational domain is performed with
the convolutional perfectly matching layer (CPML; Komatitsch &
Martin 2007).

A more comprehensive review of FPSM and related discussions
can be found in Klin et al. (2010) and Moczo et al. (2014).

4.3 3-D (2-4) Velocity–stress finite-difference scheme on an
arbitrary discontinuous staggered grid (FDM-S)

Here we very briefly describe the finite-difference methodology that
has been developed based on several partial approaches starting
from the introduction of the staggered-grid schemes into seismol-
ogy (Madariaga 1976; Virieux 1984, 1986) up to developing the
orthorhombic effective grid modules (Moczo et al. 2014). Because
the description of the methodology below is very concise, we refer
for a complete theory to the book by Moczo et al. (2014).

The scheme solves the strong differential form of the equa-
tion of motion and time derivative of Hooke’s law for the vis-
coelastic medium with rheology of the generalized Maxwell body.
The schemes have the same structure as standard velocity–stress
staggered-grid schemes which are 2nd-order accurate in time and
4th-order accurate in space. The accuracy of the scheme in the
heterogeneous medium is mainly determined by the way how a
smooth material heterogeneity and material interface are repre-
sented by the effective material grid parameters. Two approaches
are applied in this study. The first one has been presented by Moczo
et al. (2002). The effective grid density is evaluated as an integral
volume arithmetic average of density inside a grid cell centred at
the grid position of the corresponding particle velocity component.
The effective grid unrelaxed bulk and shear moduli are evaluated
as integral volume harmonic averages of moduli in respective grid
cells centred at grid positions of the stress-tensor components. The
integrals are evaluated numerically and the grid cell can contain a
material interface. In the second approach, the effective averaged
medium has, in general, an orthorhombic anisotropy. If a material
interface is parallel to a Cartesian coordinate plane, the averaged
medium is transversely isotropic. The transverse anisotropy is the
correct representation of a planar material interface consistent with
the boundary conditions in the long wavelength approximation (as
shown originally by Backus (1962) and discussed also by Moczo
et al. (2002)). For a detailed exposition see chapter 9 of the book
by Moczo et al. (2014). The free surface is simulated using the
AFDA technique (Kristek et al. 2002; Moczo et al. 2004). The
non-reflecting boundaries of the spatial grid are simulated by us-
ing PML. For efficient modelling of earthquake motion in surface
sedimentary structures a spatially discontinuous staggered grid is
used. The stable algorithm of the discontinuous grid (Kristek et al.
2010) enables one to use the ratio between the bottom coarser grid
and upper finer grid as large as 25. For the computer codes we re-
fer to http://www.nuquake.eu/FDSim (last accessed 16 January
2015).

4.4 3-D Velocity–stress collocated-grid finite-difference
method (FDM-C)

The FDM-C (Zhang & Chen 2006; Zhang et al. 2012) solves
the first-order hyperbolic velocity–stress elastodynamic equa-
tions using finite-difference approximations with all the wavefield
components and model parameters defined at the same grid point.
Having quantities collocated, the method is well suited to utilize
curvilinear grids for solving elastodynamic equations in curvilinear
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coordinates. This makes it suitable for implementing irregular free
surface. The collocated grid is also a natural choice to simulate seis-
mic waves in a general anisotropic medium. A simple application
of the central differences on the collocated grid to approximate the
first-order derivative would lead to odd-even decoupling problem
as a grid-to-grid oscillation in the simulation results. Either a spa-
tial filtering or artificial damping would be necessary to suppress
the non-physical grid-to-grid oscillations. The FDM-C in this pa-
per uses the DRP/opt MacCormack scheme (Hixon 1998) with a
7-point stencil for one derivative. Usually the accuracy of a 7-point
stencil can reach 6th order. However, in the DRP MacCormack
scheme, two points are sacrificed to achieve optimal dispersion ac-
curacy by the dispersion-relation preserving (DRP) methodology
(Tam & Webb 1993), which results in an optimized 4th-order accu-
racy in terms of dispersion error. To get minimal dissipation error,
DRP/opt MacCormack of (Hixon 1998) optimizes the coefficients
of the DRP MacCormack at 8 points per wavelength and higher.
In the DRP/opt MacCormack scheme, the central spatial difference
operator is split into forward and backward one-sided difference
operators, which are alternately used in the 4th-order Runge-Kutta
time marching schemes. The one-sided operators introduce inherent
dissipation, which can damp the spurious short-wavelength numer-

ical (non-physical) waves to avoid the odd-even decoupling. The
central difference is recovered when the forward and backward dif-
ferences are added together. As we can use different operators in
three dimensions, there are in total eight biased different operators,
and they are used sequentially in an 8-steps cycle to get minimal
error. More details can be found in Zhang & Chen (2006) and Zhang
et al. (2012). The free-surface boundary condition on curvilinear
grids is implemented by the traction-imaging method (Zhang &
Chen 2006; Zhang et al. 2012) which antisymmetrically images the
traction components to the ghost points and is an extension of the
stress-imaging technique for the flat free surface. For a discrete rep-
resentation of material heterogeneity, the effective media approach
by Moczo et al. (2002) is adopted. The density at a point is evalu-
ated as the volume arithmetic average whereas λ and μ at a point
are calculated as the volume harmonic averages. PML is used as
the absorbing technique surrounding the lateral and bottom bound-
aries. If the grid is rectangular in the absorbing layers, the auxiliary
differential equations implementation of the complex frequency-
shifted PML (ADE CFS-PML; Zhang & Shen 2010) is used. If the
grid is curvilinear in the absorbing zones, a multi-axial extension
(ADE CFS-MPML) towards stable simulations on curvilinear grids
(Zhang et al. 2014) is applied.

Figure 12. East–west component of ground velocity along the northern surface profile computed for the 1D-sharp case by 4 different methods: (a) FDM-S;
(b) FDM-C; (c) SEM2-F; (d) FPSM. HAR indicates the harmonic averaging of the elastic moduli. Each of the seismograms (plotted in red) is superimposed
on the reference solution computed with DWM (in black). The numbers to the right of each trace correspond to the goodness-of-fit scores in envelope (labelled
to as ‘am’) and phase (labelled to as ‘ph’) with respect to the reference solution. A perfect match corresponds to a score of 10.
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Figure 13. Same as Fig. 12 for the vertical component of ground velocity.

5 R E S U LT S F O R 1 - D G E O M E T RY

5.1 1-D layered model with sharp interfaces

Fig. 12 shows the EW component of ground velocity along the
northern surface profile (Fig. 5) computed for the 1D-sharp case by
the four methods: FDM-S, FDM-C, FPSM and SEM2-F. Note that
in FDM-S, FDM-C and FPSM calculations, the volume harmonic
averaging of the elastic moduli and volume arithmetic averaging
of mass density proposed by Moczo et al. (2002) is used to ap-
proximate the physical interfaces of the 1D-sharp model, and that
the SEM2-F calculations are performed following the F strategy,
that is imposing that the interfaces of the model coincide with the
spectral elements’ boundaries. In FDM-S and FDM-C, the grid
spacing is 5 m, which corresponds to a minimum of 10 gridpoints
per S wavelength at the surface. The horizontal grid spacing is 20 m
for FPSM and 10 m in average for SEM2-F at the surface (i.e. the
horizontal size of the surface spectral elements is 50 m and the
polynomial order is N = 5). The vertical grid spacing increases in
FPSM from 3 m at the surface to 100 m in the bedrock. In SEM2-F
it is set in average to 3.46 m in the first layer and to 14.5 m in
the second layer. The spectral element mesh is further coarsened
twice with depth using a three-to-one elementary brick (e.g. Peter
et al. 2011), yielding an average horizontal and vertical resolution
of 90 m in the bedrock. Each numerical solution is superimposed on
the reference one–computed with DWM as detailed in Section 3.1.1.

The goodness-of-fit (GOF) in amplitude and phase between the two
solutions are also shown. The GOF values were obtained as

G = 10 exp(−|M |),

where M represents the time-frequency misfit in amplitude or phase
evaluated for the time-frequency window [0 − 30] s × [0 − 4] Hz.
G attains values from 0 (no fit) to 10 (perfect fit); see Kristeková
et al. (2009) for details. As expected from the spatial resolution
used and given the fact that the analysed traces contain only body
waves, the level of agreement obtained in Fig. 12 is excellent
with amplitude GOF values well above 9 for all solutions, and
with only FPSM exhibiting non-optimal phase GOF values, slightly
below 8.

The same comparison for the vertical component of ground ve-
locity is shown in Fig. 13. Except for the SEM2-F calculations,
clear differences in phase and amplitude are now seen in all the pre-
dicted surface wave trains. Whereas for the solutions computed with
FDM-S and FPSM the phase error seems to increase with frequency,
it looks more uniformly distributed for the FDM-C solution. The
overall GOF scores are, however, similar for the three solutions.
They are even slightly higher for the FDM-C solution which, sur-
prisingly, shows a minimal phase error on the high-frequency Airy
phase of the fundamental Rayleigh mode. Note that the GOF values
decrease with epicentral distance as expected from the accumulation
of error during propagation.
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Figure 14. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity computed for the 1D-sharp case using SEM1-NF.

The excellent fit obtained for SEM2-F is intrinsically related to
the correct discrete representation of the interfaces in the 1D-sharp
model by the F strategy. In Fig. 14, we present the results obtained
with SEM1 using a NF strategy, where instead of squeezing one

element in the first layer, L1, two spectral elements of the same
vertical size (= 44.9 m) are used to describe the first two layers, L1

and L2. Note that only the first physical interface is approximated
in this modified mesh, the other two still coincide with elements’

Figure 15. East–west component of ground velocity along the northern surface profile for the 1D-sharp case computed with FDM-S using different grid
spacings and definitions of the effective media: (a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic
averaging, 5 m.
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Figure 16. Same as Fig. 15 for the vertical component of ground velocity.

boundaries (i.e. the vertical size of the elements is further adapted
to the thickness of the L3 layer). The effect on the accuracy of the
resulting numerical solution is tremendous. Apart from the direct S
wave, all the other arrivals are affected by large phase and amplitude
errors: the high-frequency 1-D resonance occurs at a slightly lower
frequency (around 2.5 Hz instead of 2.7 Hz) and the surface wave
dispersion pattern is completely different. This is not a straightfor-
ward matter of the vertical spatial resolution in terms of the number
of nodes per wavelength, but rather a problem of how the disconti-
nuity in the material parameters is represented at the discrete level
by the local spectral polynomial bases: everything happens as if we
had computed an accurate solution in a wrong discrete model. Note
that some of the inaccurate late arrivals in the SEM1-NF solution
(e.g. around 20 s at 1 km epicentral distance) are due to weak re-
flections off the western (not perfectly absorbing) boundary of the
computational domain, which was not as distant as in the mesh used
in computation of the reference SEM2-F solution. Those spurious
arrivals, however, contribute only marginally to the misfit with the
reference solution.

The sensitivity of the surface wave dispersion properties on the
discrete implementation of the model in SEM was reported by
Capdeville & Marigo (2008) in the context of global seismology. It
can be recast under the general issue, faced by any grid-based nu-
merical method, of how to represent spatial variations of the elastic
parameters which are smaller than the size of the numerical grid cell
(the extreme case being that of a material discontinuity). The main

challenge is to ‘up-scale’ the medium, that is to design an effective
medium which realizes a physically consistent, low-pass filtering
of the original model. Several up-scaling procedures have been de-
rived in the last years: Moczo et al. (2002) proposed to use the
volume harmonic average of the elastic moduli and arithmetic av-
erage of the mass density in the vicinity of a material discontinuity;
Fichtner & Igel (2008) presented a non-linear minimization ap-
proach to design smooth models which preserve the phase ve-
locities of a few target Love and Rayleigh modes; more re-
cently Capdeville et al. (2010a,b) and Guillot et al. (2010)
introduced a general numerical procedure to derive a fully
anisotropic effective model using the framework of the homoge-
nization theory; Moczo et al. (2014) extended their 2002 formu-
lation to a more general effective medium with the orthorhombic
anisotropy.

In Figs 15 and 16, we illustrate the performance of this new
orthorhombic effective medium for numerical solutions for the
1D-sharp case computed with FDM-S. Note that because the inter-
faces are horizontal, the anisotropy simplifies to the vertical trans-
verse isotropy, that is, the effective medium reduces to the one pre-
dicted by Backus (1962). For the seismograms consisting of body
waves crossing the discontinuities (Fig. 15), the two approaches
are comparable, the accuracy being controlled by the resolution of
the grid rather than by the choice of the effective medium. The
advantage of using the orthorhombic approach is much clearly seen
in Fig. 16, which involves Rayleigh waves propagating parallel to the
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Figure 17. East–west component of ground velocity along the northern surface profile computed for the 1D-smooth case by four different methods:
(a) FDM-S; (b) FDM-C; (c) SEM2-F; (d) FPSM.

discontinuities: the anisotropic solution computed with a grid spac-
ing of 10 m (Fig. 16c) outperforms the isotropic solution obtained
with a grid spacing twice smaller (Fig. 16b), having inaccuracy
only in the high-frequency Airy phase of the fundamental Rayleigh
mode. Further reducing the grid spacing to 5 m in the anisotropic
solution (Fig. 16d) allows to reach the same level of accuracy as
with SEM2-F.

Note that the applied number of grid points per wavelength in the
1D-sharp model may not be sufficient in other (velocity) models for
obtaining the same level of accuracy.

5.2 1-D gradient layer model

The numerical solutions for the 1D-smooth case computed with the
four methods (FDM-S, FDM-C, FPSM and SEM2-F) are shown in
Fig. 17 (EW component) and Fig. 18 (vertical component). Com-
pared to the 1D-sharp case, the level of goodness-of-fit with respect
to the reference solution is systematically increased for both body
and surface waves.

Most interestingly, the solution obtained with SEM1-NF, in which
the mesh design follows the NF strategy, is also sufficiently accu-
rate, as shown in Fig. 19. This is related to the ability of the poly-
nomial bases used in the shallow spectral elements to represent the
1D-smooth velocity model, which consists of a gentle kink—the

S velocity gradients in layers L1 and L2 are 2.89 and 3.45 s−1, re-
spectively. The comparison of the FDM-S solutions obtained with
different effective medium implementations and grid spacings is
shown in Fig. 20. The same conclusion drawn for the body waves in
the 1D-sharp model, that numerical accuracy was mostly controlled
by the resolution of the grid rather than by the choice of the effective
medium, now applies to the entire simulated wavefield.

The comparison suggests that the material interface of the first
order (discontinuity of the first derivative only) does not produce
significant effective anisotropy.

6 R E S U LT S F O R 2 - D G E O M E T RY

We now consider more realistic canonical cases with a 2-D ge-
ometry. The aim of this section is to highlight how the discrete
representation of the model, in particular at valley edges, where
surface waves are generated, influences the accuracy of the numer-
ical prediction of earthquake ground motion.

6.1 2-D valley with sharp interfaces

We first consider the 2D-sharp model with geometry shown in
Fig. 11. The flat part corresponds to the three-layer-over-half-space
model 1D-sharp.
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Figure 18. Same as Fig. 17 for the vertical component of ground velocity.

Figure 19. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity for the 1D-smooth case computed with SEM1-NF.

Relying on the results for the 1D-sharp case, we consider as
a reference the solution computed with SEM2-F with the mesh
(shown in Fig. 21) designed following the F strategy. Because of
the deformation of the hexahedra close to the northern edge of the
valley, the distance between the grid points tends towards a very tiny
value, yielding an extremely severe CFL stability condition on the

time step. In such realistic situations, the F strategy can drastically
decrease the computational efficiency of SEM. In the remainder
of the paper, some alternative strategies are presented and their
efficiency is discussed.

The seismograms of the SEM2-F solution are shown in Fig. 22
for two horizontal components along two different surface profiles.
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Figure 20. Vertical component of ground velocity along the northern surface profile for the 1D-smooth case computed with FDM-S using different grid
spacings and definitions of the effective media: (a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic
averaging, 5 m.

Figure 21. Spectral element mesh, designed following the F-strategy, used to compute a reference solution of the 2D-sharp case. The mesh consists of a 2-D
section of unstructured quadrilaterals which is further ‘sweeped’ along the direction transverse to the valley in order to define hexahedra. The mesh is further
coarsened in the horizontal and vertical directions, from the orange ‘shoe-box’ intermediate region to the outside green region.

Because the model has a 2-D geometry, the left seismic section is
dominated by the in-plane component of motion corresponding to
a pseudo-2-D P–SV case (the wavefield would be fully 2-D if it was
excited by a line of sources parallel to the axis of the valley) and the
right section by the out-of-plane component of motion correspond-
ing to a pseudo-2-D SH case. A clear asymmetry in the excitation
of surface waves is observed between the edges of the valley. At the
(northern) edge with the gentle slope, very energetic and strongly
dispersed Rayleigh and Love surface waves are generated, whereas

the surface wave trains generated at the vertical (southern) edge are
hardly seen. The red lines indicate the seismic traces that are used
as reference for comparing with the other numerical predictions.
They correspond to receivers located 1 km away from the edges of
the valley.

Fig. 23 shows the horizontal in-plane component of the ground
motion computed at the northern receiver by FDM-S, FDM-C,
FPSM and SEM1-BE. The numerical solutions were computed us-
ing the same spatial resolution as for the 1D-sharp case, except for
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Figure 22. Seismic sections of the north–south (left-hand panel) and east–west (right-hand panel) components of ground velocity along the western (left-hand
panel) and eastern (right-hand panel) profiles (Fig. 11) computed for the 2D-sharp case with SEM2-F. The distance is measured from the centre of the valley
and increases towards north. The left (resp. right) panel shows a strongly dispersed Rayleigh (resp. Love) wave train excited at the northern edge. Red traces
correspond to locations where the different numerical predictions are further compared (see text).

Figure 23. North–south component of ground velocity at a receiver along the western surface profile of Fig. 11, 1 km away from the northern edge, computed
for the 2D-sharp case by four teams using (a) FDM-S, (b) FPSM, (c) FDM-Cand (d) SEM1-BE. The SEM2-F solution is taken as a reference and is plotted
in black. The level of agreement between each solution and the reference is quantified by the time-frequency goodness-of-fit (GOF) in amplitude (top panel)
and phase (bottom panel). The colour scale indicates the level of GOF, from 7 to 10 (perfect fit). The average GOF is indicated on top of the time-frequency
subplots.
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Figure 24. Same as Fig. 23 at a receiver which is 1 km away from the southern edge of the valley.

FPSM where the vertical grid spacing varies from 7 m (instead of
3 m) at the surface to 84 m (instead of 100 m) in the bedrock. In the
SEM1-BE solution, the mesh is designed in the ‘best-effort’ (BE)
mode, which is a compromise between the F and NF strategies:
the boundaries of the elements follow the material interfaces only
when these are horizontal or vertical. This results in a ‘shoebox’
high-resolution mesh coinciding at the southern edge with the mesh
designed following the F strategy, but with elements intersected
by the material interfaces at the northern edge. Note that the BE
strategy makes it possible to increase the time step compared to
the F strategy, and consequently decrease the total CPU time of the
calculation, by a factor p � 13.

Each prediction in Fig. 23 is superimposed on the SEM2-F refer-
ence, and the time-frequency GOF (in amplitude and in phase) with
respect to the reference are shown as colour images. The agreement
with the reference is very good, even excellent in the first arrival,
around 2 s. Some discrepancies appear around 3 s, in the Rayleigh
waves generated at the nearby northern edge, for the FPSM solution
and more noticeably for the SEM1-BE solution which, among all
solutions, is the one that makes the crudest approximation of the
northern edge geometry. The level of GOF generally decreases with
time, except for the SEM1-BE solution because the BE strategy used
to design the mesh is optimal to accurately model the generation of
Rayleigh waves at the southern edge and their propagation along
the flat part of the valley.

In Fig. 24, we compare the same horizontal in-plane component
of ground motion but at the southern receiver. The agreement is very
good for the first 10 s of the seismogram which consists of body and
Rayleigh waves generated at the vertical southern edge. The level
of agreement considerably decreases for later arrivals consisting
of Rayleigh waves excited at the northern edge of the valley. The
best fit is obtained with the SEM1-BE solution, suggesting that the
error in the numerical modelling of the surface wave generation
at the northern edge is not increased by the propagation of the
surface waves towards the centre of the valley. For all the other
solutions, the numerical error accumulates during propagation of
the surface waves along the horizontal interfaces—as in the 1D-
sharp case. Note that the phase of the FDM-C solution seems again
optimally accurate for the most energetic Rayleigh surface wave
arrivals around 11 and 17 s, which probably correspond to Airy
phases.

In Fig. 25 we compare the horizontal in-plane component at the
southern receiver computed with FDM-S for different resolutions
and definitions of the effective medium. As in the 1D-sharp case,
the advantage of using the orthorhombic effective medium is clearly
seen on the late Rayleigh waves generated at the northern edge:
the GOF levels for the anisotropic solution computed with 10 m
grid spacing (Fig. 25c) are much higher than for the 5 m isotropic
solution (Fig. 25b). Halving the size of the grid in the anisotropic
solution (Fig. 25d) yields perfect match with the SEM2-F solution,
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Figure 25. Same as Fig. 24 for solutions computed with FDM-S using different grid spacings and definitions of the effective medium: (a) harmonic averaging,
10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic averaging, 5 m.

Figure 26. Seismic sections of the north–south (left-hand panel) and east–west (right-hand panel) components of ground velocity along the western (left-hand
panel) and eastern (right-hand panel) profiles (Fig. 11) computed with SEM2-BE for the 2D-smooth case. The distance is measured from the centre of the valley
and increases towards north. The left (resp. right) panel shows strong Rayleigh (resp. Love) wave trains excited at the northern edge. Red traces correspond to
locations where the different numerical predictions are further compared.
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Figure 27. North–south component of ground velocity at receivers along the western surface profile of Fig. 11, 1 km away from the northern (left-hand
panel) or southern (right-hand panel) edge, computed for the 2D-smooth case by three teams using (a–b) FDM-S, (c–d) FPSM, (e–f) FDM-C. The SEM2-BE
solution is taken as a reference and is plotted in black. The level of agreement between each solution and the reference is quantified by the time-frequency
goodness-of-fit (GOF) in amplitude (top panel) and phase (bottom panel). The colour scale indicates the level of GOF, from 7 to 10 (perfect fit). The average
GOF is indicated on top of the time-frequency subplots.

which provides an a posteriori justification for considering the latter
a reference.

The out-of-plane component (which mainly consists of SH
and Love waves) computed by FDM-S, FDM-C, FPSM and

SEM1-BE at the northern and southern receivers are shown in
Figs S1 and S2, respectively, and the FDM-S solutions computed
with different grid spacings and implementations of the effec-
tive medium are shown in Fig. S3. The same conclusions as for
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the in-plane component can be drawn and are thus not repeated
here.

6.2 2-D valley with gradient in sediments

Given the considerable cost to compute the solution of the 2D-
sharp case with SEM2-F, we consider instead the SEM2-BE solution
computed with the BE strategy as a reference. The seismograms of
the horizontal ground velocity, computed with SEM2-BE along the
two surface profiles of Fig. 11, are shown in Fig. 26. As for the
2D-sharp case, we observe a strong asymmetry in the spontaneous
generation of surfaces waves following the slope of the valley edge.
Note also that the surface waves, in particular Love waves, are
less dispersed than in the 2D-sharp case (compare with Fig. 22), as
expected from the analysis of the 1D-sharp and 1D-smooth solutions
(Figs 8 and 10).

Fig. 27 shows the horizontal component of the in-plane compo-
nent of the ground velocity computed at the northern and southern
receivers by FDM-S, FDM-C and FPSM, and their comparison with
the reference SEM2-BE solution. Note the excellent level of agree-
ment in the early part of the signals, including the Rayleigh waves
recorded at the northern receiver, and the overall good fit obtained
for the late Rayleigh waves (generated at the northern valley edge)
at the southern receiver.

The effect of varying the grid resolution and the definition of
the effective medium in the FDM-S solution is shown in Fig. S4.
Consistently with the analysis of the 1D-smooth results, we observe
only a slight increase of GOF with respect to the SEM2-BE solu-
tion when switching from the isotropic to the orthorhombic effective
medium, the accuracy being mainly controlled by the spatial reso-
lution of the grid. Note also that the SEM2-BE solution, although
not optimal, can be reasonably considered a reference. The tiny re-
maining difference between the 5 m orthorhombic FDM-S solution
and the SEM2-BE solution can be partly attributed to the fact that
the latter is not exact.

For the sake of completeness, we show in Fig. S5 the compari-
son of the horizontal out-of-plane component at the northern and
southern receivers. Similar conclusions can be drawn as for the in-
plane component: the overall level of agreement between solutions
is very good, even for some of the late Love wave arrivals. Finally,
in Fig. S6 we compare the predictions by FDM-S at the southern
receiver for different grid spacings and definitions of the effective
medium. We conclude again that due to the smoothness of the veloc-
ity model, the solution for the orthorhombic effective medium only
slightly differs from that obtained using the harmonic averaging
of moduli.

7 C O N C LU S I O N

In order to better understand the origin of differences between
3-D numerical predictions of earthquake ground motion in realistic
models of the Mygdonian basin, we have designed four canoni-
cal models and have compared several numerical solutions of the
four cases for frequencies up to 4 Hz. The solutions were computed
with the FPSM, the Legendre SEM and two formulations of the
finite-difference method (FDM-S and FDM-C).

The comparisons show that both the accuracy of individual solu-
tions and level of agreement between solutions vary with the type of
seismic waves and depend on the smoothness of the velocity model.
The level of accuracy is high for the body waves in the numerical
solutions for all the models considered, whereas it systematically
decreases in the sharp models for the surface waves. This is also

observed for the realistic models of the Mygdonian basin (Maufroy
et al. 2014).

The accuracy of the numerical solutions for the sharp models
is shown to depend strongly on the discrete representation of the
material interfaces (at which material parameters change discontin-
uously) inside the sediments. We have illustrated the dual nature
of the implementation of interfaces in SEM: solutions computed
with a mesh of elements whose boundaries follow the interfaces
(F strategy) are optimally accurate, whereas solutions computed
by approximating the discontinuities with the polynomial basis lo-
cal to the elements can be extremely inaccurate for surface waves
propagating along the interfaces. For all the numerical methods
considered, except SEM if the F strategy can be applied, a proper
implementation of interfaces requires the definition of an effective
medium consistent with the interface boundary conditions. We have
tested the efficiency of two explicit effective media: the isotropic
volume harmonic and arithmetic averaging of elastic moduli and
densities, respectively (Moczo et al. 2002), and its generalization to
an orthorhombic effective medium (Moczo et al. 2014). Our results
show that using the isotropic effective medium yields numerical
solutions of limited accuracy for surface waves. They also indicate
that reaching an acceptable accuracy by solely decreasing the size
of the numerical grid may be extremely computationally expensive.
Using instead the orthorhombic effective medium is shown to sig-
nificantly improve the accuracy of the solutions and to preserve the
computational efficiency of the methods.

The conclusions drawn from the analysis of the results of
the canonical cases greatly help to explain the origin of the
differences between numerical predictions of ground motion in
realistic models of the Mygdonian basin (Maufroy et al. 2014).
The persistent misfit between even the most similar solutions can
be fairly attributed to the differences in the discrete representa-
tion of the material interfaces in sediments: The SEM solution was
computed following the best-effort strategy in which the element
boundaries do not follow the interfaces for depths smaller than a
threshold value (the choice of which is the result of a compromise
between accuracy and computational efficiency); the FDM-S and
FPSM solutions used an isotropic effective medium with insuffi-
ciently small grid spacing (10 m for FDM-S and 7 m for FPSM,
respectively).

These results have important implications regarding the accuracy
of numerical prediction of earthquake ground motion in sedimen-
tary basins, in particular with respect to local surface waves which
play a critical role in the lengthening of ground motion duration and
local amplifications at the basins’ edges (e.g. Kawase 1996; Hallier
et al. 2008). An improper discrete representation of the interfaces
can cause considerably inaccurate numerical modelling of surface
waves. Therefore, preparation of the computational model needs
special care in this respect. Homogeneous layers within sediments
should not be artificially introduced.

Whenever small-scale, or localized, strong variations of the mate-
rial parameters have to be considered in the sediments, for example
based on firm geological, geotechnical or geophysical evidence, an
effective medium relevant for the chosen frequency range should be
used. Depending on the degree of knowledge of the model hetero-
geneity and on the desired level of accuracy of the predictions, the
effective media can be defined by procedures of increasing com-
plexity. In the common situation where the level of uncertainty in
the model (including the presence of interfaces) is large, a simple
volume arithmetic average of the densities and slownesses, or a vol-
ume arithmetic average of the densities and harmonic average of
the elastic moduli, should be used to provide an isotropic effective
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medium ready for numerical simulations. In all other situations,
an upscaling procedure should be adopted to design an anisotropic
effective medium, either by solving a homogenization problem as
suggested by Guillot et al. (2010) and Capdeville et al. (2010b), or
by following the explicit approach proposed by Moczo et al. (2014)
based on the orthorhombic averaging.

Finally, our results confirm that there is no single numerical-
modelling method that can be considered the best—in terms of
accuracy and computational efficiency—for all structure-wavefield
configurations. We recommend that any numerical method and code
that is intended to be applied for numerical prediction of earth-
quake ground motion should be verified through stringent mod-
els that would make it possible to test the most important aspects
of accuracy. We believe that the canonical cases presented in this
paper, and made freely available to the seismological community
(http://www.sismowine.org, last accessed 16 January 2015),
can serve this purpose.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Figure S1. East–west component of ground velocity at a receiver
along the eastern surface profile of Fig. 11, 1 km away from the
northern edge, computed for the 2D-sharp case by (a) FDM-S, (b)
FPSM, (c) FDM-C, (d) SEM1-BE. The SEM2-F solution is taken as
a reference and is plotted in black. The level of agreement between
each solution and the reference is quantified by the time-frequency
goodness-of-fit (GOF) in amplitude (top panel) and phase (bottom
panel). The colour scale indicates the level of GOF, from 7 to 10
(perfect fit). The average GOF is indicated on top of the time-
frequency subplots.
Figure S2. Same as Fig. S1 at a receiver 1 km away from the
southern edge of the basin.
Figure S3. Same as Fig. S2 for solutions computed with FDM-S us-
ing different grid spacings and definitions of the effective medium:
(a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c)
orthorhombic averaging, 10 m; (d) orthorhombic averaging, 5 m.
Figure S4. North–south component of ground velocity at the south-
ern receiver for solutions computed with FDM-S using different
grid spacings and definitions of the effective medium: (a) harmonic
averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic
averaging, 10 m; (d) orthorhombic averaging, 5 m. The level of
agreement between each solution and the reference is quantified by
the time-frequency goodness-of-fit (GOF) in amplitude (top panel)
and phase (bottom panel). The colour scale indicates the level of
GOF, from 7 to 10 (perfect fit). The average GOF is indicated on
top of the time-frequency subplots.
Figure S5. Same as Fig. 27 for the east–west component of ground
velocity at receivers along the eastern surface profile of Fig. 11,
1 km away from the northern (left-hand panel) or southern (right-
hand panel) edge.
Figure S6. Same as Fig. S4 for the east–west component of ground
velocity at the southern receiver. (http://gji.oxfordjournals.org/
lookup/suppl/doi:10.1093/gji/ggu472/-/DC1).
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