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Motivation

measurements.

We have developed a 3D computational tool to synthesize ambient seismic vibration (ASV) wavefields due to surface noise
sources. We have applied this tool to a set of receivers located around a blind fault, in a canonical model of the Mygdonian
sedimentary basin in Greece. We present the results of several analyses of synthetic noise seismograms (up to 5 Hz)
corresponding to many different source-receiver configurations. We further focus on two different analyses: single-station
H/V, which are compared to the predictions obtained in the Diffusive Field Approximation (DFT), and noise array

Processing part of the ASV tool

The main goal of the processing part of the ASV tool is to obtain noise, synthetic seismograms due to spatial and temporal
distribution of noise sources. In order to do that and to avoid running a numerical wave propagation simulation each time
after changing spatial and/or temporal property of noise source, we use here the recipe (originally presented in the notes of
Ampuero 2003) based on the concept of the reciprocity theorem and Green's functions. This recipe is particularly
advantageous if one assumes that number of noise sources V., is much larger than the number of receivers NV,....

In the first stage of the processing part, we need to calculate set of synthetic Green’s functions. This can be summarized

in the following steps:

« select a numerical method for the wavefield simulation, e.g. spectral element method implemented in the computer

code EFISPEC3D (De Martin 2011, Chaljub et al. 2015, Maufroy et al. 2015),

« mesh the proposed computational model (Fig. 3) by the hexahedra elements (Fig. 4a),

« select coordinate position of one receiver from array of receivers on the free-surface (Fig. 4b),

. run 3 independent wavefield simulations (Fig. 4c) with the single force source applied to position of the selected
receiver. Each of 3 simulations corresponds to different orientation of the single force (£, I}, ;) with source-time

function (stf) of dirac-delta like function (f.k.a impulse source),

o calculate the resulting 3 component Green’s function in every Gauss-Lobatto-Legendre (GLL) point at the free surface

for all 3 simulations (Fig. 4c) — set of Green’s functions,

« apply decimation in time (proposed by De Martin et al. 2013) on each component of Green’s function using the finite
impulse response (FIR) filter during the simulation and infinite impulse response (lIR) after the simulation in order to

reduce binary file size of the set of Green’s functions (Fig 5.).
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Figure 4. (a) Hexahedron mesh of the computational model. (b) The free-surface view of the
meshed computational model with highlighted position of selected receiver. (c) Illustration of
an application of single force source at position of selected receiver, together with the positions
of all free surface GLL points. The table inside the figure provides binary size per time step
information if non-decimated 3 component Green's functions are stored in the GLL points at
the free-surface.

In the second stage of the processing part we prepare desired
configuration of noise sources (illustration in Fig. 6). The configuration
of noise sources consists of selecting the region on the free-surface
where noise sources are located and selecting their spatial and
temporal properties.

In order to generate noise wavefield, we use multiple single force
sources. Each of them acts at one point of the free-surface with random
value of its spatial and temporal property — point location within the
region, arbitrary amplitude, orientation of a force ( f., 1y or f.)and time-
delay of prescribed source-time function (stf).
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frequency of the H/V related to the position of sources
(denoted as red star) and propagation direction of the
ambient vibration wavefield (Hollender 2019).

The use of ASV has become an important tool for seismic hazard assessment, especially in regions of low-to-moderate seismic activity.
Indeed, ASV has been used in the last decades to provide valuable information about the structure of the Earth at different scales using
post-processing single station methods (e.g. H/V spectral ratio), two station method (e.g. noise-based standard spectral ratio and cross-
correlation) or many station method (e.g. frequency-wavenumber f — £k analysis).

Despite recent progress in analysis of ASV, some questions remain unanswered, such as the question of the origin of the processes
that cause time variations of subsurface properties (which are possibly related to the modification within the ambient vibration
wavefield composition) retrieved by ASV analyses in terms of the H/V peak frequency f; .

The time variation of the subsurface properties was observed through H/V analysis of a peak frequency fy corresponding to the real
ASV measurements at the cross-sectional profile of local, heterogenous sedimentary structure in the Mygdonian basin in Greece (Fig. 1).
Hollender (2019) have shown strong variation of /o as a function of time. By processing the ASV measurements carried out over a period
of 3h for a station located at the cross-sectional profile above the blind fault, they have shown that the value of fy for the first 3h of
measurements in Fig. 2(a) is different from the value of fo for the last 1h of measurements in Fig. 2(b). This means that one can observe
clear shift of fo with respect to time. The possible explanation based on Hollender (2019) might lie in the different position of noise
sources and corresponding propagation direction of the surface waves:

» the noise sources located in the North (Fig. 2a) generate wavefield propagating southward
and the recorded H/V signature might correspond to the thickness of sedimentary layer to the North with fo near 2 Hz,

« however, the noise sources located in the South (Fig. 2b) generate wavefield propagating northward and the recorded
H/V signature might correspond to the thickness of sedimentary layer to the South with fo near 1 Hz.

: 475 2100 2770 2130 2500 475 2100 2770 2130 2500
Geometry of arrays of receivers on the free surface 130800 1600 2400 1500 2700 2075 2250 130800 1600 2400 1500 2700 2075 2250
P N N | e | T -1OF T T T - JqF T -OF TT ]
4300 m ._Iy' ™TrT I T™Tr=TrT ’I’l’—l—:—l-- -.--L-.~:\I\ T I T I— 54300 m -_Iy' LI S I L B S I IV 7' 7'7'7 Il 7l T 77 I LI B Ea I T I— i
P u ] _ v v 1! -25.mf 1F 1k i F 1k 1k ]
< ' 1 [ ]! Zs0.mf JE Jk i L JE ik 3
4200 mp N/ \J [l receivers (Niec=15) on free surfacef] 14200 M= | @ receivers (Nyoo=15) on free surface| 7] !
[ 7 7 1 i I -75.mf 1F 1F 1 F 1F 1F .
[/ ’ ! L i
4100 mf- -/ - 4100 mf- V- - i-100. mF b ik 1 E b 4k 3
, & W Y, %y Y v
{ i [ Q! \ 1 =125 mF 4F JF 4 F 4k 4 .
[ | . [ | ‘ 02 | ] .
4000 mH < l4000mpE- 0 O REE —
:"\ V' 02 [ o [ v 102° v ] 1-150. mf 1F 41F 1 F 1F 1F s
[\ N 4 r : I / ] :
3900 mf~ \\ v ina - 13900 mj- Vv ~ i-175.mf 1k AF 1 F H1 1F Rt (3 3
5 \ E : 3 E : -_— - - -— -
O\ blind fault 1! : PO A L O | A O | T O O 0l O A L | 2 LT
V4 | 1 R 4 1 i-900. m
3B0OmM- TN projection H -] 13800m[ v q. VSIms™1 1{vPims™"] | olkgm™]’ VP[msr] VS[msT] 1 olkgm™1"
[ L , 1 ¢ [ , 1 i1000. m} 4+ 1k 1 F = s -
sroompy g N soompy N
2326 m 2426 m 2526 m 2626m 2726 m 2826 m 2926 m | 3831m 3931m 4031m 4131m 4231 m 4331m 4431mi L c A , , ,
: - ' 1600 2400 2770 4270 2250 2500 2770 4270 1600 2400 2250 2500
Vertical cross section of the computational model 1D profile: shallow part of the basin deep part of the basin

0. 200. 400. 600. 800. 1000.1200.1400.1600.1800.2000.2200.2400.2600.2800.3000.3200.3400.3600.3800.4000.4200.4400.4600.4800.5000.5200.5400.5600. 5800.6000.6200.6400.6600.6800.7000.7200.7400.7600.7800. [m]
)I(""I""I'"'I""I""I""I'"'I'"'I""I""I""I""I'"'I""I""I""I""I'"'I""I""I""I""I""I""I""I""I""I""I""I'"'I'"'I""I""I""I""I'"'I""I""I""I""I

- AT SENAN- AT
9 mE 2 g L 2 L
=177 mf
— : 3386 m \ ] ’g'm R :
2400" (og(V/S[ms ")) deep part of the basin 2400¢ jog(VS[ms ")) 5
1600 ! e 1600 "o el :
800/ L - ‘-, 800 T ol
: ' R S, T —
475¢ tn 1 . 475} S
1000 mF F— . . -y \':t ~~~~~~~~~~~ —
; o | _2300. 2400. 2500. 2600. 2700. 2800. 2900. 3000. ' b
130] . : . E log(f[Hz]) i V-V AVAAFRIRE—EE E 130+ : : : i log(f[Hz])
1., 15 2. 3 fSmo =5 9 | E 1. 15 2. 3 fSmo =5 9
“T Mode 0 ; blind fault ; “1"""Mode 0
' Rayleigh(1D profile shallow part):  Mode 1 | ind fau 5 Rayleigh(1D profile deep part): -------- Mode 1
z ~ Mode 2 — N - Mode 2

_______________________________________________

Figure 3. The computational model based on the simplified 3D model of the Mygdonian basin with stair-step geometry representing the blind fault.
The free-surface of the model contains the array of 15 receivers above blind fault, the array of 15 receivers in the deep part of the basin and 4
additional receivers at the bedrock. The material parameters of the model are presented in the terms of 1D velocities and density profiles located in
the middle part of the shallow and the deep part of the basin. For the corresponding 1D velocity profiles the theoretical dispersion curves for 3
Rayleigh modes are plotted.
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Figure 5. (a) The representative example of non-decimated time series of
Green’s function belonging to the set of Green’s functions which are
stored in the file of total size 5.8 TiB. (b) The FIR and IIR filters applied on
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the Green’s function which decimate the time series by factor of 10 and recording_

16, respectively. (c) The comparison of the non-decimated and
decimated (by total factor of decimation 160) Green’s function. Thanks to
decimation, the total size of file is reduced to only 37.1 GiB.

In the last stage of the processing part, we

use the reciprocity theorem which shows that|qashed k.. line in

We present the results of f-k analysis for passive ASV experiment. We used beamforming method for high-resolution three-
component beam forming based on Capon (1969). In this case the post-processing was done in the software Geopsy (Wathelet et al.
2018, Wathelet et al. 2020).

. The 2 noise sources - receivers configurations (Fig. 8 & Fig. 9) and 1000 realizations of spatial and temporal properties of noise
sources were assumed. This resulted in 1000 noise seismograms for each receiver in the presented arrays of receivers. For post-
processing purposes the set of 1000 seismograms where considered as the 1000 separated time window slices of one long noise

We extracted the dispersion and ellipticity curves from noise seismograms and plotted them in the colour scale (Fig. 13) based on
the values of probability energy density of velocity and ellipticity, respectively. We have also plotted the theoretical Rayleigh surface
Modes of dispersion and ellipticity curves for the 1D model of shallow & deep part of the basin. The black straight solid &,,;,/2 and

the plots of dispersion curves denote the resolution and aliasing limit based on the geometry of selected
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bedrock (Fig. 7b).

For each receiver we obtained 1000 noise seismograms due to 1000 different realizations of noise sources spatial and temporal
properties. This allows us to calculate statistical values (median 1 and standard deviation o) on set of 1000 H/V curves (Fig. 7a).

We compared the median curve of H/V curves with the theoretical H/V curve based on the 1D elastic H/V diffuse field theory 000
(DFT) assumption (Fig. 7a). For calculation we use tool HV-Inv developed by Garcia-Jerez & Pina Flores (Garcia-Jerez et al. 2016, ’
Pifia-Flores et al. 2017), which allows us to compute the theoretical H/V curve for a receiver on a free-surface of 1D horizontally 45"
layered medium by assuming diffuse seismic wavefield. Since some parts of our model (e.g. middle of the shallow & deep part of

Single station method - H/V spectral ratio
In the case of H/V analysis, we have calculated noise seismograms for 4 selected receivers from the arrays of receivers due to noise
sources located in the region of the basin, in the region at the right part of the bedrock and in the region at the left part of the

circular ring sector with
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properties of noise sources. However, for each of 1000 realizations, the noise
sources must lie in the above-mentioned regions in the basin.
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Figure 7. (a) The results of H/V analysis of 1000 synthetic noise seismograms of the 4 representative receivers (4 columns of panels) corresponding to 3 different distinct energy density of

regions of noise sources (3 rows of panels). Each panel contain the 1000 curves of different colours, the curves of statistical measures in black color and two H/V curves velocity and ellipticity

(yellow & red) based on the DFT assumption corresponding to 1D profile in shallow and deep part of the basin. The vertical lines represent maximum frequencies of the used in Fig.11 & 12.

theoretical ellipticity curves of Rayleigh Modes. (b) The illustration of 3 different noise source regions — noise sources within the region of only the basin, of only the right

part of the bedrock or of only the left part of the bedrock. Each of 1000 realizations ensures random temporal and spatial properties of noise sources but within the bounds Refe rences .
[ ]

of corresponding regions.
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