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FDM
as applied to seismic wave propagation
and earthquake ground motion
= a large diverse family

of computational schemes
based on
FD approximations
of the equation of motion and constitutive law
at space-time grid points

a state-of-the-art FD scheme
can significantly differ from some other FD scheme

in accuracy and computational efficiency
in a strongly heterogeneous medium



FDM, SEM and DGM
are the most important recent numerical-modelling methods

FDM is clearly dominant
in the seismic prospecting

It could be also dominant
(due to accuracy_and_efficiency)

in investigation of earthquake ground motion
in local surface sedimentary structures

if
all the schemes being used

were at the state-of-the-art level



an explicit heterogeneous FD scheme

on a uniform spatial grid

(the latter does not contradict the use
of an efficient discontinuous grid

composed of several uniform grids)

Key conditions for competitiveness of FDM

efficiency_and_accuracy
are determined by the

grid dispersion
and

discrete grid representation
of a material heterogeneity, mainly material interfaces



explicit

heterogeneous

uniform-grid

the field variable at a space-time grid point
is calculated using an explicit FD formula
that uses only values of the field variables
at previous time levels

one scheme is used for all interior grid points
no matter what their positions are
with respect to material interfaces

for a chosen computational region and maximum frequency
one grid can be used
for arbitrary alterations
of geometry/position of material interfaces

presence of interfaces is accounted for
only by values of the effective material parameters
assigned to grid positions



Obviously,
a heterogeneous FD scheme

should approximate
an equation of motion and constitutive law

valid and having the same form
at any point of a medium

--
away of an interface or at an interface

in other words,
an interface should be represented

by an averaged medium
consistent with boundary conditions on the interface



Have a quick look at history:

strange (though not unusual) but illuminating and instructive



recall:
an interface should be represented

by an averaged medium
consistent with boundary conditions on the interface

Was this the basis for developing heterogeneous FD schemes ?
No, it was not.

Is this now the basis for developing heterogeneous FD schemes ?
Very rarely.



recall:
an interface should be represented

by an averaged medium
consistent with boundary conditions on the interface

Was this the basis for developing heterogeneous FD schemes ?
No, it was not.

Is this now the basis for developing heterogeneous FD schemes ?
Very rarely.

Why?
The explanation would be rather critical

and related to
persisting unawareness, overlooking and need to sell own schemes and results

( sorry )
All this is supported by arguments on uncertainties of different kinds.



The historical development
was strongly influenced by the fact that

since 60‘s until 1984-1988 (introduction of a staggered grid)
developers FD-approximated

the 2nd-order equation of motion in displacement
which certainly was not an easy task

( the only reasonable help
came from Tikhonov and Samarskii

who used a mathematical trick
to avoid spatial differentiation of elastic moduli )



After introduction
of the 1st-order velocity-stress formulation on a staggered grid

(which removed the problem of the 2nd-spatial derivatives of elastic moduli)

most developers assumed (and explicitly wrote)
that

the problem of implementing any heterogeneity
is solved implicitly

–
which obviously is not true



In parallel,

there had been another historical development

since 60‘s …



Backus (1962) found out
how to replace a stack of finely layered medium

by an averaged medium
consistent with boundary conditions

at the interfaces between layers.

Schoenberg & Muir (1989) extended the Backus approach
to arbitrary anisotropic layers.

Neither Backus nor Schoenberg & Muir
mentioned a relation to FD modelling.

Explicit essential reference to FD modelling
was done by Muir et al. (1992).



Nevertheless,
until the article by

Moczo, Kristek, Vavryčuk, Archuleta and Halada (2002),
the concept of an averaged medium

consistent with the interface boundary conditions
did not impact

the heterogeneous FD schemes.

Even then
many modellers (keen to sell own schemes?)

have been somehow “overlooking”
the evident and necessary progress.



This concludes

the short history of two non-communicating developments 

Back to the present



We have developed
unified discrete representations

of a strong material heterogeneity for

poro-viscoviscoelastic
(full frequency range)

elastic

viscoelastic

poro-viscoelastic
(low-frequency approximation)

The representations have capability of
a sub-cell resolution

and thus allow for
an arbitrary shape and position of an interface in a grid

media



Our principles
of finding an averaged medium

consistent with boundary conditions on an interface

The stiffness matrix of the averaged medium
has to have the same structure

(the same number of nonzero elements)
as the stiffness matrix of a smooth medium has

( except that the number of independent elements may be different)

1

consequence:
the number of algebraic operations

for updating stress
is the same as for the smooth medium



If a grid cell contains a planar interface
between two homogeneous materials

perpendicular to a coordinate axis,
the stiffness matrix of the averaged medium in the cell

will correspond to the exactly averaged medium
accounting correctly

for the position of the interface in the grid cell.

Our principles
of finding an averaged medium

consistent with boundary condition on an interface
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boundary conditions

continuity of the

traction vector

fluid pressure

solid displacement vector

normal component
of the relative fluid displacement vector

2D P-SV problem
poroelastic medium (low-frequency approximation) 

Example
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poroelastic halfspaces with an oblique planar interface



receiver in the upper halfspace
xv

receiver in the lower halfspace
xv

θ θ θ

θ
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Exact:
using code Gar6more2D
(Diaz & Ezziani 2008)
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middle-row receiversxv
DG: by Josep de la Puente



We have performed detailed comparisons
against SEM (Emmanuel Chaljub, Florent De Martin)

for

stringent viscoelastic models specially designed
for testing accuracy, sub-cell resolution and computational efficiency

of our discrete representation

The models included
sophisticated canonical configurations

and
complex models of the Mygdonian basin near Thessaloniki

The comparisons confirmed
accuracy,   sub-cell resolution and   computational efficiency

of our discrete representation



viscoelastic model poro-viscoelastic model
sediments with air in the pores

water-saturated sediments

effectively viscoelastic

Because we have
an efficient and sufficiently accurate

representation of heterogeneity of the poro-viscoelastic medium

we can apply this representation
also to

models with  viscoelastic and  poro-viscoelastic parts

this can be achieved by
 setting appropriate values of porosity and constant permeability
 choosing an appropriate fluid
 setting an appropriate value of the bulk modulus for a solid phase
 calculating solid-phase density from the density of bedrock
 calculating shear and bulk moduli
 setting an appropriate tortuosity



with a sufficiently accurate discrete representation of a material heterogeneity

the most advanced FD schemes

are more efficient

for modelling earthquake ground motion

in local surface sedimentary structures

than the spectral-element and discontinuous-Galerkin methods

conclusions



Thank you for your attention
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EXAMPLE:   2D P-SV constitutive law and equations of motion
poroelastic medium (low-frequency approximation) 
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boundary conditions at an interface between
poroelastic media 
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interfaces in a sedimentary wedge



Florent De Martin    EFISPEC3D available at  http://efispec.free.fr

interfaces in a sedimentary wedge

https://webmail.fmph.uniba.sk/owa/redir.aspx?URL=http://efispec.free.fr


interfaces in a sedimentary wedge



SPEM minimum node-to-node distance: 0.1 m
FDM   grid spacing: 5.0 m

interfaces in a sedimentary wedge
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