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motivation

naturally important to better understand
what controls nucleation and size of earthquakes

instead of adding complexity to the system,
we focus on underlying physics

theoretical models may provide
insight into which parameters or processes are controlling
nucleation, growth and arrest of ruptures
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arrested ruptures and fluid-injection induced seismicity
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the largest arrested rupture
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physics-based estimate of size of the largest arrested rupture
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Two important approximations

* |oad due to pore-pressure inside the reservoir
is approximated by a point force

* the pore-pressure change due to injected fluid is approximated
by a response of fully saturated reservoir (following McGarr 2014)



physics-based estimate of size of the largest arrested rupture
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physics-based estimate of size of the largest arrested rupture
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physics-based estimate of size of the largest arrested rupture
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Two important approximations
* load due to pore-pressure inside the reservoir
is approximated by a point force

the pore-pressure change due to injected fluid is approximated
by a response of fully saturated reservoir (following McGarr 2014)
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effects of aspect ratio on size of arrested ruptures
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effects of aspect ratio on size of arrested ruptures
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physics-based estimate of size of the largest arrested rupture
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pore-pressure response to various sources

point source in 3D isotropic reservoir
(Rice and Cleary 1976, Rudnicki, 1986)
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effects of pore-pressure models on size of the largest arrested rupture
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effects of pore-pressure models on size of the largest arrested rupture
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effects of pore-pressure models on size of the largest arrested rupture
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effects of pore-pressure models on size of the largest arrested rupture
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effects of pore-pressure models on size of the largest arrested rupture

10°9

— —h
@) o
—L —L
o &)

—
o
(&)

seismic moment [N.m]

109

L’
-,
-’
"
’

L’
-,
"
-’

cylindrical reservoir, no-flow boundaries

P
-,
"
’

P
-,
"
-’

Injection rate: 1 ml/min -

P
-,
L
’

g
-’
-,
%
-’

10° I/min
106 |/min

1 000 |/min -

11/min

107°

10°

injected volume [m3]

10°

1010



physics-based estimate of size of the largest arrested rupture
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Can the estimate of the largest arrested rupture be useful?

Development of an enhanced geothermal reservoir near Helsinki, Finland
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physics-based estimate of size of the largest arrested rupture
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we have derived a physics-based estimate
of seismic moment of the largest arrested rupture, M

max-arr

assuming injection into a saturated reservoir,
we have found that M, grows as ~ 32

max-arr

the slope of 3/2 is a rather robust feature that remains preserved
for elongated reservoirs with broad range of aspect ratios as well as for
ensembles of reservoirs with various pore-pressure models

consistency of our model with observations across broad range of scales
for fluid-injection induced seismicity suggests that our model captures
underlying physics

because induced earthquakes, particularly the largest ones, release
accumulated tectonic deformation, concept of our model should be
applicable also to natural tectonic earthquakes

however, due to poorly constrained conditions at the time of nucleation,
application to natural earthquakes remains a task for future...
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