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Motivations	


•  Fault zone properties: maturity, roughness, gouge layer thickness, 

off-fault damage, permeability, etc	


                                	


•  Fault motion styles: stable creep, unstable rupture propagation, 

conditionally (un)stable motion 	



•  Question: what controls the type of fault motion (loading condition, 
fault zone properties, etc)	



•  Focus on how fault rupture style evolves with the total fault 
displacement (net effect)	
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Experimental loading configurations	
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Scholz (1990)	



Triaxial 	


compression	



Direct 
shear	



Biaxial 
loading	



Rotary 
shear	



large displacement	


up to m/s loading velocity	


	


centimeter-scale	


steady-state or transient 
frictional response	



high confining pressure	


	


centimeter-scale	


	


fracture of intact rocks 	


rupture along pre-cut surface	



stick-slip events	


	


up to meter-scale	





4	
  

2	
  m	
  

USGS at Menlo Park	



Photos courtesy of McLaskey and Beeler	



Small displacement (~ cm)	


Slow loading rate	


Cannot check the fault surface condition 	
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NIED, Tsukuba, Japan	
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Up to 0.4 m displacement per run	


	


Both slow and fast loading rate	


	


Can check the fault surface condition 
after each run	





Strain gauge array	
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Map view (lower sample)	



Side view	



1560 mm	



Indian metagabbro	



Sampling rate:  1 MHz	
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Undulation: <10 µm	


Grit: #800	





What can be inferred from the strain data?	
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Static strength?	



Dynamic strength?	



Initial level 
before 	


failure? 	



Breakdown duration?	

 20 mm off 
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negative change 	



Svetlizky & Fineberg (2014, Nature)	



LEFM	



εxy (x 10-3)	

Vr = 0.88 Cs	



Off-fault 	


smearing-out 
effect	





LB09-001 (in 2014)	



•  Normal stress: 6.7 MPa	


•  Loading rate: 0.01 mm/s	


•  Incremental displacement: 6.9 mm	


•  Cumulative displacement: 6.9 mm	
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Ohnaka (1996, PNAS)	





LB09-002 (in 2014)	



•  Normal stress: 6.7 MPa	


•  Loading rate: 0.01 mm/s	


•  Incremental displacement: 6.1 mm	


•  Cumulative displacement: 13.0 mm	
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LB09-007 (in 2014)	



•  Normal stress: 6.7 MPa	


•  Loading rate: 0.1 mm/s , then 0.01 mm/s	


•  Incremental displacement: 35.5 mm	


•  Cumulative displacement: 537.3 mm	
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Fault rupture style – Cumulative displacement – Damage pattern	
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Cumulative Disp. 	


up to  6.9 mm	



Cumulative Disp. 	


up to 537.3 mm	



Vr: 10s to 100s m/s	

 Vr: comparable to Cs (km/s)	



Cumulative Disp. 	


up to 13 mm	



Vr: 100s to ~ 1000 m/s	



Gouge weight: 0.0032 g	

 Gouge weight: 0.0021 g	

 Gouge weight: 0.1283 g	



We collect gouges after each run, but gouges were kept during each run	
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Initial level	



Strain/stress drop	
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Ben-David et al. (2010, Science)	



What determines rupture speed	
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Proposed localization model 	



21	
  

High efficiency	

Low efficiency	



01	



02	



Patches with locally high normal and shear stress – high coupling, 
high work rate and wear rate	



Slow speed	
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Fast speed	



Di Toro et al. (2011, Nature) 	



Powder lubrication	



Reches and Lockner (2010, Nature)	





Some improvement in 2015	
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True end of 
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We wish to obtain 
the asymptotic 
behavior towards the 
true rupture front	
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Cumulative displacement < 50 mm	



Data from LB12 series	



LB12-001	
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Cumulative displacement > 400 mm	
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Conclusions	


•  With  the  accumulation  of  total  fault  displacement  under  direct-shear 

loading,  rupture  style  along  the  synthetic  fault  changes  from  slow 
propagation to fast propagation. 	



•  Evolution  of  the  fault  surface  properties  are  responsible  for  the  above 
change of rupture style.	



•  Developed  fault  heterogeneities  (grooves  and  gouges)  facilitate  strain 
localization, encouraging more efficient release of the stored strain energy 
(e.g. gouge lubrication) and faster rupture propagation.  	



•  Natural faults are more heterogeneous and span a wider range of scales. We 
should  care  about  the  local/macroscopic  description,  and  the  scale-
dependency.	
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