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Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable
tool in investigation of the Earth’s structure, processes in the Earth, and particularly earth-
quake phenomena. Among various numerical methods, the finite-difference method is the
dominant method in the modeling of earthquake motion. Moreover, it is becoming more im-
portant in the seismic exploration and structural modeling. At the same time we are convinced
that the best time of the finite-difference method in seismology is in the future.

This monograph provides tutorial and detailed introduction to the application of the finite-
difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic
wave propagation and earthquake motion. The text does not cover all topics and aspects of
the methods. We focus on those to which we have contributed.

We present alternative formulations of equation of motion for a smooth elastic continuum.
We then develop alternative formulations for a canonical problem with a welded material in-
terface and free surface. We continue with a model of an earthquake source. We complete the
general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelas-
tic media, and brief review of strong formulations of the equation of motion. What follows is
a block of chapters on the finite-difference and finite-element methods. We develop FD tar-
gets for the free surface and welded material interface. We then present various FD schemes
for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid
and mainly optimally-accurate FD schemes. We also present alternative formulations of the
FE method. We include the FD and FE implementations of the traction-at-split-nodes method
for simulation of dynamic rupture propagation. The FD modeling is applied to the model of
the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the
hybrid FD-FE method. The hybrid method is then applied to two earthquake scenarios for the
Grenoble basin.

Except chapters 1, 3, 5, and 12, all chapters include new, previously unpublished material
and results.
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Introduction

The invitation by Vladimı́r Bužek to write a text that would present a topic of our research was
for us a strong motivating challenge and nice opportunity at the same time: we could and we
should comprise a tutorial introduction, state-of-the-art review, and our recent results. We also
present several new unpublished results.

Numerical modeling of seismic wave propagation and earthquake motion is an important and
irreplaceable tool in investigation of the Earth’s structure, processes in the Earth, and particularly
earthquake phenomena.

An earthquake is a unique and interesting natural phenomenon. It is a powerful challenge for
seismologists who, after a century of modern seismological research, still do not have answers
to important questions regarding the process of preparation and initialization of earthquakes.
Consequently, seismologists still cannot predict time, place and size of future earthquakes. In
fact, it is even more interesting. Seismologists still do not know whether such prediction is
possible in principle and will be possible technically.

An earthquake can cause death and huge material losses. An earthquake that kills and causes
damage is not necessarily a big event in terms of relaxed energy. As it is clear in California
and Japan, even relatively weak earthquakes can cause record economic losses. Apparently
surprisingly, this is because the earthquake prone areas often are the most populated areas. Large
populated areas may be close to active seismogenic faults and/or local geologic conditions can
cause anomalous earthquake motion. An anomalous motion most often occurs at the surface
of soft or unconsolidated sediments due to resonant phenomena in sedimentary bodies. Largest
damages on buildings and constructions are often due to mutual resonance between the geologic
and building structures. Given the fact that most of large cities are located at the surface of
sediment-filled basins and valleys, it is not surprising that almost each recent moderate or big
earthquake that hits the populated area causes tremendous damage and also kills people.

Seismologists must study earthquakes, investigate possibilities to predict time, place and size
of the next earthquake. No matter whether they can predict occurrence of an earthquake itself,
they have to predict earthquake ground motion during future earthquakes. Prediction of the
earthquake motion at a site of interest is extremely important for planning and building new, and
reinforcing existing buildings, as well as for undertaking actions that could help mitigate losses
during future earthquakes.

Energetically important earthquakes are tectonic earthquakes. Most of tectonic earthquakes
occur on active seismogenic faults. A fault is a relatively weak zone separating two blocks of
the Earth’s crust or lithosphere. While each of the two blocks as a whole moves with respect
to the other block due to global tectonic processes, some area of their contact along the fault
may be at rest due to friction. Because the two blocks (except the locked area) move, the shear
(tangential) traction at the locked area of the fault grows. Should the shear traction at a point of
the fault exceed the frictional strength, a slip (relative displacement of the two fault faces) occurs.
As sliding at a point of the fault commences, the traction varies following a friction law. At the
same time the rupture propagates from the point of initiation over the fault. Due to the rupture
propagation, seismic (also called elastic) waves are radiated from the fault.

Seismic waves radiated from the fault cause earthquake ground motion (that is, a mechanical
vibratory motion) at the Earth’s surface.
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Because the rupture process typically occurs in depths of several tens of kilometers, that
is, in the Earth’s crust and upper mantle, and ruptured area spreads over tens or hundreds of
square kilometers, a direct controlled physical experiment, that would aim to model the process,
is impossible. Direct seismological measurements are, in fact, restricted to the Earth’s surface,
and almost all the information about the rupture process and structure of the Earth’s interior is
encoded in instrument records of the seismic motion (seismograms) during earthquakes. Our
knowledge of the earthquake source and the Earth’s interior has to be confronted with the seis-
mograms. It is therefore very clear that the numerical modeling of the rupture process on the
fault and the seismic wave propagation in the Earth’s interior really is an irreplaceable tool in the
seismological research.

Though we focused on earthquakes we have to stress that we would have to develop compu-
tational and, particularly, numerical-modeling methods for seismic wave propagation even if we
lived on a hypothetical planet without earthquakes. In such a case artificially generated seismic
waves would be still the best tool to investigate the planet’s interior.

The reason why we speak directly about the numerical-modeling methods is very clear. The
Earth’s interior is structurally complex medium with non-planar material discontinuities and gra-
dients of seismic wave speeds, density, and quality factors. The Earth’s surface has to be modeled
in many problems with its complicated regional or local topography. The lithosphere is for seis-
mic waves, in general, anisotropic. Analytical computational methods do not provide solutions
for reasonable (that is, structurally sufficiently complex) models of the Earth’s interior. Approx-
imate methods have to be applied. Apart from the asymptotic methods for the high-frequency
seismic wave propagation, the numerical methods play the key role. Among them still the finite-
difference method is the dominant method in the modeling of earthquake motion. Moreover, it
is becoming more important in the seismic exploration and structural modeling.

The finite-difference method, as any other method, has its own problems and limitations.
It can be, however, advantageously combined with other method(s) in hybrid approaches that
overcome limitations of the individual methods. An example is a combination of the finite-
difference and finite-element methods.

Our monograph is focused on the application of the finite-difference, finite-element, and
hybrid finite-difference – finite-element methods to seismic wave propagation and earthquake
motion.

We start with alternative formulations of equation of motion for a smooth elastic continuum.
We then develop alternative formulations for a canonical problem with a welded material inter-
face and free surface. We continue with a simple model of an earthquake source. We complete
the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelas-
tic media, and brief review of strong formulations of the equation of motion. What follows is a
block of chapters on the finite-difference and finite-element methods. Major part of the material
is related to the finite-difference method.

Except chapters 1, 3, 5, and 12, all chapters include new, previously unpublished material
and results.

We do not cover all topics and aspects of the finite-difference and finite-element methods. We
have not included anisotropy and non-reflecting boundaries. The main reason is that we have not
contributed to these topics. We have not included the incorporation of the free-surface topogra-
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phy in the finite-difference method – we solve this in our hybrid finite-difference – finite element
method. For the three topics in the finite-difference method we refer to a recent review article
on the finite-difference modeling in seismology by Moczo et al. (2007). Neither we included ex-
plicit material on the computational efficiency. The review by Moczo et al. (2007) addresses also
this key aspect of the modeling. The application of the finite-difference method to the seismic
wave propagation and earthquake motion modeling is a subject of other reviews and textbooks
as well, see Boore (1972), Levander (1989), Moczo (1998), Carcione et al. (2002), and Moczo
et al. (2004b).

We also recommend general mathematical textbooks and monographs on the finite-difference
method – Forsythe and Wasow (1960), Isaacson and Keller (1966), Richtmyer and Morton
(1967), Mitchell (1969), Marchuk (1982), Anderson et al. (1984), Mitchell and Griffiths (1994),
Morton and Mayers (1994), Durran (1999), and Cohen (2002). The application of the finite-
difference method to the computational electrodynamics can be found in the impressive book by
Taflove and Hagness (2005).

Textbooks and monographs on the finite-element method include Strang and Fix (1973), Akin
(1986), Strang and Fix (1988), Zienkiewicz and Taylor (1989), Ottosen and Petersson (1992),
Hughes (2000), Belytschko et al. (2000), and Reddy (2006). Very good recent examples of the
application of the finite-element method to the seismic wave propagation and earthquake motion
modeling are articles by Bielak et al. (2003) and Yoshimura et al. (2003).

We do not explain basics of the continuum mechanics (except necessary details on rheol-
ogy of the elastic and viscoelastic media). The reader is referred to very good introductions
to the continuum mechanics for seismologists in books by Aki and Richards (1980, 2002), and
Pujol (2003). Neither we explain basics of the theory of seismic wave propagation and seismol-
ogy. Textbook and monographs on theoretical seismology and seismic wave propagation include
those by Aki and Richards (1980), Ben-Menahem and Singh (1981), Dahlen and Tromp (1998),
Shearer (1999), Udı́as (1999), Červený (2001), Carcione (2001), Kennett (2001, 2002), Aki and
Richards (2002), and Pujol (2003).

The finite-difference and finite-element method clearly are not the only numerical methods
in seismology. We have to mention at least the boundary integral equation and boundary element
methods (BIEM and BEM), for example Bouchon and Sánchez-Sesma (2007), spectral-element
method (SPEM), for example Komatitsch et al. (2004) and Chaljub et al. (2007), and the arbitrary
high-order derivative – discontinuous Galerkin method (ADER-DG), for example Käser and
Dumbser (2006). These methods differ in accuracy with respect to different structural features
of the complex heterogeneous models and considerably in the computational efficiency. They
in several aspects represent alternatives to the finite-difference and finite-element methods. For
comparison of several modeling methods we refer to the review paper by Takenaka et al. (1998).
The most recent review of the computational and numerical-modeling methods can be found in
the book edited by Wu and Maupin (2007).
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ψ(t), ψijkl(t) stress relaxation function (4.19), tensor of

stress relaxation functions, eq. (4.15)
Ω volume, Fig. 1.1, interior of the computational domain, sec. 6.3
Ω̄ computational domain, sec. 6.3
Ωe sub-domain (element), sec. 6.3
ω angular frequency, eq. (4.2)
ωp eigenfrequencies, eq. (7.62)
ωr, ωl relaxation frequency, eq. (4.64)
ω̃k frequencies, at which Q is known, eq. (4.154)
∂(m,n)u, u(m,n) denotes partial derivative ∂m+nu/∂tm ∂zn , eq. (7.83)
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+/− indications of the +/− sides of an interface or fault
+/− related to the partial node p.n.+/p.n.−, respectively, Fig. 3.2
A area of the fault plane associated with a partial node, eq. (3.16)
Am
I optimally-accurate time derivative operator, eq. (7.88)

AI Arias intensity, eq. (14.6)
a, b, L constitutive parameters for the R&S friction law, eq. (3.14)
a, b finite-difference coefficients for the 4th-order, eq. (6.5)
al weight coefficient, eq. (4.120)
~a± acceleration at partial node, eq. (3.15)
C elastic modulus, eq. (7.80)
C, C(ω) compliance, creep compliance, eq. (4.6)
CR, CU relaxed and unrelaxed compliance, eq. (4.52)
C average elastic modulus, eq. (8.48)
CAV cummulative absolute velocity, eq. (14.7)
~c, ~ce numerical, exact solution, eqs. (7.59), (7.60)
~cp eigenvector, eq. (7.62)
coefTE u coefficient at u in the Taylor expansion, eq. (9.21)
convAm

I conventional time derivative operator, eq. (7.96)
convKm

I conventional spatial derivative operator, eq. (7.97)
d depth, eq. (13.1)
dep normal mode expansion coefficients, eq. (7.65)
D~u(xi, t) slip, eq. (3.1)
D~v(xi, t) slip rate, eq. (3.2)
Dc characteristic (critical) distance in the SW friction law, eq. (3.11)
D

(4)
z , D

(2)
z spatial operator, eqs. (11.1), (11.2)

dt time step, eq. (3.21)
e sequential number of element, sec. 6.3
E(z), E±(z) 1D equation of motion, eqs. (7.80), (8.1)
Ei components of the 3D equation of motion, eq. (7.105)
F{x(t)}, F−1{x(t)} Fourier and inverse Fourier transforms, eqs. (4.2), (4.3)
f frequency, Fig. 4.8
f global load force vector, eq. (6.36)
~F± force at a partial node, eq. (3.15)
~F c,± constraint force, eq. (3.16)
f IδhA(a) integral arithmetic average of body force, eq. (8.23)
f IδhAFS(a) integral arithmetic average of body force

at the free surface, eq. (8.80)
f IA(a) integral arithmetic average of body force, eq. (8.12)
f IAFS(a) integral arithmetic average of body force at the free

surface, eq. (8.78)
fPA(a) point arithmetic average of body force, eq. (8.7)
fi, ~f body force, Fig. 1.1
Gpq Green’s function, eq. (3.37)
H(ξ), H(t) Heaviside unit step function, eq. (2.18)
h grid spacing, spatial step, eq. (6.1)
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H stiffness matrix, eq. (7.58)
He exact spatial derivative operator, eq. (7.60)
I, J, K grid indices, eq. (6.1)
J Jacobian, eq. (6.29)
K global stiffness matrix, eq. (6.36)
Ke local stiffness matrix, eq. (6.23)
Km
I optimally-accurate spatial derivative operator, eq. (7.89)

l slip path length, eq. (3.10)
M, M(ω) elastic modulus, frequency-dependent complex viscoelastic

modulus, eqs. (4.22), (4.24)
M± mass of a partial node, eq. (3.15)
M global mass matrix, eq. (6.36)
mpq, Mpq moment density tensor, eq. (3.38), moment tensor, eq. (3.40)
M0 scalar seismic moment, eq. (3.49)
Me local mass matrix, eq. (6.24)
MR, MU relaxed and unrelaxed moduli, eqs. (4.39), (4.40)
Mw moment magnitude, sec. 13.1
MX, MY, MZ number of grid cells in the x-, y-, z-directions, respectively
n, sh normal and shear components of vector quantities, sec. 3
N number of grid spacing per λmin, eq. (10.38)
Ne total number of elements in a mesh, sec. 6.3
Nn total number of nodes in a mesh, sec. 6.3
ni, ~n normal vector, Fig. 1.1
nn number of nodes in an element, sec. 6.3
O(hn) order of a remainder, eq. (6.3)
PHA peak horizontal acceleration
p stability ratio, eq. (10.40)
p.n.± partial nodes, Fig. 3.2
pi, ~p traction vector, eqs. (1.3), (1.7)
px, py, pz components of traction vector at ΓN , eq. (6.15)
Q(ω) quality factor, eq. (4.42)
Qα, Qβ quality factors for P- and S-waves , eq. (4.162)
~R residual, eq. (6.12)
~r density of the restoring force, eq. (6.9)
r global restoring force, eq. (6.44)
re, r local restoring force, eq. (6.38)
rx, ry, rz subvectors of the local restoring force, eq. (6.38)
S surface, Fig. 1.1
S, S(t) frictional strength, eq. (3.5)
s spatial sampling ratio
s(inv) vector of the new (e-invariant) shape functions, eq. (6.79)
~s displacement produced by source, eq. (12.18)
s(t) source time function
si shape functions, eq. (6.11)
s vector of the shape functions, eq. (6.18)
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T ′, H ′ modified mass and stiffness matrix, eq. (7.72)
T, T e mass matrix, exact time derivative operator, eqs. (7.58), (7.60)
T transformation matrix, eq. (6.80)
T ij discrete approximations to the components of stress tensor, Fig. 6.1
Ti, ~T traction vector – equivalent to pi, eq. (1.3)
~T (~n; xi, t) total traction, eq. (3.3)
~T 0(~n; xi), ~T 0(~n) initial traction, eq. (3.3)
~T f (D~u, D~v, θ), ~T f (t) frictional traction, eq. (3.4)
~T d kinematic (dynamic) frictional traction, eq. (3.12)
~T s static (yield) frictional traction, eq. (3.12)
~T c, ~T c(~n) constraint traction, eq. (3.16)
~T ct, ~T ct(t) trial traction, eq. (3.25)
UmI,J,K discrete approximation to the x-component of displacement or

particle-velocity
Um
I matrix of discrete displacement values, eq. (7.100)

u,z partial spatial derivative
umI matrix of displacement values, eq. (7.87)
ux, uy, uz vectors of discrete displacements, eq. (6.22)
uxi, uyi, uzi components of discrete displacements at nodes, eq. (6.11)
ui, ux, uy, uz, ~u displacement, eq. (1.1)
up normal modes, eq. (7.77)
u

(0)
x , u

(1)
x , u

(2)
x , u

(12)
x e-invariants of displacements in the x -direction, eq. (6.83)

u
(0)
y , u

(1)
y , u

(2)
y , u

(12)
y e-invariants of displacements in the y -direction, eq. (6.83)

~uK recorded wavefield, eq. (12.21)
~uR residual wavefield, eq. (12.18)
u̇ partial time derivative
u̇i, u̇x, u̇y, u̇z, ~̇u particle velocity
üi, üx, üy, üz, ~̈u particle acceleration
V volume, Fig. 1.1
V mI,J,K discrete approximation to the y-component of displacement or

particle-velocity
W weight coefficient, eq. (8.20)
Wm
I,J,K discrete approximation to the z-component of displacement or

particle-velocity
x, y, z vectors of the global nodal coordinates, eq. (6.20)
x(0), x(1), x(2), x(12) e-invariants of the spatial coordinates x, eqs. (6.63), (6.65), (6.71)
xi, x, y, z, ~x cartesian coordinates, global coordinates, sec. 6.3
xek, yek, zek nodal coordinates, eq. (6.16)
y(0), y(1), y(2), y(12) e-invariants of the spatial coordinates y, eqs. (6.63), (6.65), (6.71)
Yl, Y αl , Y βl , Y κl , Y µl anelastic coefficients, eqs. (4.149), (4.162), (4.164), (4.165)



Equation of Motion for a Smooth Continuum 189

Fig. 1.1. Material volume V of a smooth continuum bounded by surface S. External traction ~p acts at
surface S, body force ~f acts in volume V . Volume Ω with surface SΩ is a testing volume considered in
derivation of the equation of motion.

1 Equation of Motion for a Smooth Continuum

1.1 Problem Configuration

Consider a material volume V of continuum with surface S in which material parameters are
continuous. Inside of V consider an arbitrary volume Ω with surface SΩ. Let ~nΩ be a normal
vector to surface SΩ pointing from interior of volume Ω outward. Consider body force ~f(xk, t)
acting in volume Ω and traction ~p Ω(xk, t) acting at surface SΩ. Here xk ; k ∈ 1, 2, 3 are
Cartesian coordinates and t is time. The configuration is shown in Fig. 1.1.

1.2 Application of the Newton’s Second Law - Strong Form

An application of Newton’s second law to volume Ω gives

d
dt

∫
Ω

ρ
∂ui
∂t

dV =
∫
SΩ
pΩ
i dS +

∫
Ω

fidV . (1.1)

Throughout the text dV and dS will be used for volume and surface elements, respectively.
Because Ω and SΩ move with particles, the particle mass ρdΩ does not change with time. The
equation can be written as∫

Ω

ρüidV =
∫
SΩ
pΩ
i dS +

∫
Ω

fidV . (1.2)

At surface SΩ, traction ~p Ω is related to the stress tensor σij :

pΩ
i = σij n

Ω
j . (1.3)

In eq. (1.3) and hereafter we assume Einstein summation convention for repeated indices. As-
suming continuity of the stress tensor throughout volume Ω, Gauss’s divergence theorem can be
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applied to the surface integral:∫
SΩ
pΩ
i dS =

∫
SΩ
σij n

Ω
j dS =

∫
Ω

σij ,j dV . (1.4)

Equation (1.2) can be then written as∫
Ω

(ρüi − σij ,j −fi)dV = 0 . (1.5)

Equation (1.5) is valid for any volume Ω inside V . We want to show that then the integrand
itself is equal to zero: ρüi − σij ,j −fi = 0. Assume that ρüi − σij ,j −fi > 0 at some point
inside V . Because the integrand is continuous throughout V , it is possible to find such volume Ω
(containing that point) for which ρüi−σij ,j −fi > 0 and thus also

∫
Ω

(ρüi−σij ,j −fi)dV > 0.
This, however, would be in contradiction with eq. (1.5). Thus,

ρüi − σij ,j −fi = 0 (1.6)

everywhere in V . Equation (1.6) together with boundary condition at surface S,

pi = σij nj , (1.7)

make a strong formulation for the considered problem.

1.3 Application of the Principle of Virtual Work - Weak Form

Alternatively to the application of Newton’s second law to the material volume V we can apply
the principle of virtual work. Consider a fixed state of continuum at some time and its virtual
(arbitrary, infinitesimal) deformation. Let δui be the corresponding virtual displacements. Then
the virtual deformation is characterized by the virtual strain tensor δεij :

δεij = 1
2 [ (δui),j + (δuj),i ] . (1.8)

Because virtual displacements are assumed in a fixed state of continuum, they do not affect
displacements and accelerations of continuum particles in this state. The principle states that
during the virtual deformation the work done by external forces has to be equal to a sum of an
increment of energy of deformation and a work of inertial forces:∫

S

piδuidS +
∫
V

fiδuidV =
∫
V

σijδεijdV +
∫
V

ρüiδuidV . (1.9)

Functions δui are arbitrary, they are equivalent to weight functions. Therefore we replace δui
by wi in eqs. (1.8) and (1.9). Then, due to symmetry of the stress tensor,

σij δεij = 1
2 (σij wi,j + σij wj ,i ) = σij wi,j . (1.10)

Equation (1.9) can be written as∫
V

(ρüi − fi)widV +
∫
V

σijwi,j dV =
∫
S

piwidS . (1.11)
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If eq. (1.11) is satisfied for all possible choices of weight functions wi then it is equivalent
to the strong form of the equation of motion and is called the weak form of the equation of
motion. ’Weak’ here means a requirement of continuity of displacement (that is weaker than
the requirement of continuity of its first spatial derivatives in the strong form), and the same
requirement with respect to the weight functions.

1.4 Integral Strong Form

Integration by parts of the last term on the l.h.s. of eq. (1.11) yields∫
V

(ρüi − fi)widV +
∫
V

(σij wi),j dV −
∫
V

σij ,j wi dV =
∫
S

pi wi dS (1.12)

and, using Gauss’s divergence theorem,∫
V

(ρüi − fi)widV +
∫
S

σij nj wi dS −
∫
V

σij ,j wi dV =
∫
S

pi wi dS . (1.13)

Assembling the volume and surface integrals together gives∫
V

(ρ üi − σij ,j −fi)wi dV =
∫
S

(pi − σij nj)wi dS . (1.14)

We can call eq. (1.14) the integral strong form of the equation of motion. It requires continuity
of the first derivative of displacement. In eq. (1.14) we can specify boundary condition for
traction at surface S by specifying values of pi. Note that term ’integral strong form’ was used
by Robert J. Geller in our personal communication. We adopted this term for clear distinction of
this formulation from the (differential) strong formulation and weak formulation.

2 Canonical Problem With a Material Interface

2.1 Problem Configuration

Modify the problem configuration shown in Fig. 1.1 by considering volume V split into two
material volumes, V = V + ∪ V −, S = S+ ∪ S−, separated by a smooth welded material
interface (material discontinuity) Σ with a unit normal vector ~ν pointing from volume V − to
volume V +. The configuration is shown in Fig. 2.1.

Boundary conditions at the welded interface are

u+
i = u−i at Σ (2.1)

and

σ+
ij νj = σ−ij νj at Σ . (2.2)

Boundary conditions at surface S can be written as

p±i = σ±ij nj at S± or pi = σij nj at S . (2.3)
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Fig. 2.1. Geometrical configuration of the canonical problem with a welded material interface Σ between
media ’−’ and ’+’.

Fig. 2.2. Alternative geometrical configuration, say, the ’Earth-like configuration’, of the canonical problem
with a welded material interface Σ between media ’−’ and ’+’. For this configuration we will give only
the final formulations at the end of the chapter.

Alternatively we could modify the problem configuration shown in Fig. 1.1 by considering
a ’core’ inside volume V as shown in Fig. 2.2. Compared to configuration in Fig. 2.1 this
one could be called the ’Earth-like configuration’. Because we are primarily interested in the
numerical modeling of seismic wave propagation and earthquake motion in local near-surface
structures, we will develop alternative formulations for the ’local configuration’ in Fig. 2.1. At
the end of this chapter, however, we will give a summary of formulations also for the ’Earth-like
configuration’.
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2.2 Strong Formulation (SF)

Applying eq. (1.6) to each of volumes V − and V + we have

ρ−ü−i − σ
−
ij ,j −f

−
i = 0 in the lower halfspace (2.4)

and

ρ+ü+
i − σ

+
ij ,j −f

+
i = 0 in the upper halfspace . (2.5)

Equations (2.4) and (2.5) together with boundary conditions (2.1) - (2.3) make the strong formu-
lation for our canonical problem with the welded material interface.

2.3 Weak Formulation (WF)

Considering our canonical problem with the welded material interface Σ we can apply eq. (1.11)
to the whole volume V = V − ∪ V + or start with applications to each of the two volumes
separately and continue with combination of the respective equations together with the welded-
interface condition. We follow the latter approach in order to better show a structure of a final
equation. The application of eq. (1.11) to volumes V − and V + gives∫

V −
(ρ−ü−i − f

−
i )widV +

∫
V −

σ−ijwi,j dV =
∫
∂V −

p−i widS (2.6)

and ∫
V +

(ρ+ü+
i − f

+
i )widV +

∫
V +

σ+
ijwi,j dV =

∫
∂V +

p+
i widS , (2.7)

where

∂V ∓ = S∓ ∪ ΣI . (2.8)

The surface integrals in eqs. (2.6) and (2.7) can be split:∫
∂V ∓

p∓i widS =
∫
S∓

p∓i widS +
∫

ΣI

p∓i widS . (2.9)

Combining eqs. (2.6), (2.7) and (2.9) together with the welded-interface boundary condition,

p−i (νj) = − p+
i (−νj) at ΣI , (2.10)

yields ∫
V −

(ρ−ü−i − f
−
i )widV +

∫
V +

(ρ+ü+
i − f

+
i )widV +

+
∫
V −

σ−ijwi,j dV +
∫
V +

σ+
ijwi,j dV =

∫
S−

p−i widS +
∫
S+

p+
i widS . (2.11)

Equation (2.11) together with boundary condition (2.1) make a weak formulation for our canon-
ical problem with the welded material interface.
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2.4 Integral Strong Formulation (ISF)

Integration by parts of the third and fourth integrals on the l.h.s. of eq. (2.11) and subsequent
application of Gauss’s divergence theorem yields∫

V −
σ−ij wi,j dV +

∫
V +

σ+
ij wi,j dV = (2.12)

=
∫

ΣI

σ−ij wi νj dS +
∫
S−

σ−ij wi nj dS −
∫
V −

σ−ij ,j wi dV +

+
∫

ΣI

σ+
ij wi (−νj) dS +

∫
S+

σ+
ij wi nj dS −

∫
V +

σ+
ij ,j wi dV.

Substituting eq. (2.12) into eq. (2.11) yields∫
V −

(ρ−ü−i − σ
−
ij ,j −f

−
i ) wi dV +

∫
V +

(ρ+ü+
i − σ

+
ij ,j −f

+
i ) wi dV = (2.13)

=
∫

ΣI

(σ+
ij − σ

−
ij) νj wi dS +

∫
S−

(p−i − σ
−
ijnj) wi dS +

∫
S+

(p+
i − σ

+
ijnj) wi dS .

Compared to eq. (2.11), eq. (2.13) requires continuity of the first spatial derivatives of displace-
ment (due to presence of the divergence of the stress tensor) while the requirement of continuity
of the weight function is removed (due to performed integration by parts). Thus eq. (2.13) to-
gether with boundary condition (2.1) can be called an integral strong formulation for our canon-
ical problem with the welded material interface.

2.5 Discontinuous Strong Formulation (DSF)

Let surface S (possibly a free – that is traction-free – surface or just a thought surface in the
medium), material interface Σ, and volumes V − and V + in our canonical problem be defined
as

ψ(xk) < 0 ; xk ∈ the lower halfspace except for Σ,
ψ(xk) = 0 ; xk ∈ Σ, (2.14)
ψ(xk) > 0 ; xk ∈ the upper halfspace except for Σ,

φ(xk) < 0 ; xk ∈ V − ∪ V + except for S,
φ(xk) = 0 ; xk ∈ S, (2.15)
φ(xk) > 0 ; xk /∈ V − ∪ V +,

where ψ and φ are smooth functions of spatial coordinates. Then the normals to the surfaces
Σ and S are

νj = ψ,j (2.16)

and

nj = φ,j . (2.17)
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Consider Heaviside unit step function

H(ξ) =

 0 ξ < 0
1/2 ; ξ = 0
1 ξ > 0 .

(2.18)

Using definitions of surfaces Σ and S, eqs. (2.14) and (2.15), and Heaviside function we can
express spatial distribution of quantities appearing in the equation of motion for our canonical
problem in the following way:

ρ üi = [ ρ−ü−i H(−ψ) + ρ+ü+
i H(ψ) ] [ H(−φ) +KH(φ) ] , (2.19)

σij = [ σ−ijH(−ψ) + σ+
ijH(ψ) ] [ H(−φ) +KH(φ) ] , (2.20)

fi = [ f−i H(−ψ) + f+
i H(ψ) ] [ H(−φ) +KH(φ) ] . (2.21)

Parameter K indicates presence/absence of material outside volume V . If K = 1, S is just a
thought surface in the medium. If K = 0, S is a free surface.

Substituting eqs. (2.19) – (2.21) into the strong-form equation of motion (1.6) we obtain

[ (ρ−ü−i − f
−
i )H(−ψ) + (ρ+ü+

i − f
+
i )H(ψ) ] [ H(−φ) +KH(φ) ] +

+{ [ σ−ijH(−ψ) + σ+
ijH(ψ) ] [ H(−φ) +KH(φ) ]},j = 0 . (2.22)

Considering

{H(±ψ)},j = δ(±ψ)(±ψ,j ) = ± νj δ(ψ) , (2.23)

{H(±φ)},j = δ(±φ)(±φ,j ) = ± nj δ(φ) , (2.24)

and differentiating the expression in braces in eq. (2.22), we obtain

{[ σ−ijH(−ψ) + σ+
ijH(ψ) ] [ H(−φ) +KH(φ) ]},j =

= [ σ−ijH(−ψ) + σ+
ijH(ψ) ] [ −nj δ(φ) +K nj δ(φ) ] +

+ [ σ−ij (−νj) δ(ψ) + σ+
ij νj δ(ψ) ] [ H(−φ) +KH(φ) ] +

+ [ σ−ij ,j H(−ψ) + σ+
ij ,j H(ψ) ] [ H(−φ) +KH(φ) ]

= (K − 1)σ−ij njH(−ψ) δ(φ) + (K − 1)σ+
ij njH(ψ) δ(φ) + (2.25)

+ ( σ+
ij − σ

−
ij ) νj δ(ψ) +

+ [ σ−ij ,j H(−ψ) + σ+
ij ,j H(ψ) ] [ H(−φ) +KH(φ) ] .

Substituting eq. (2.25) into eq. (2.22) yields

[ (ρ−ü−i − σ
−
ij ,j −f

−
i )H(−ψ)

+ (ρ+ü+
i − σ

+
ij ,j −f

+
i )H(ψ) ] [ H(−φ) +KH(φ) ] =

= ( σ+
ij − σ

−
ij ) νj δ(ψ) + (2.26)

+(K − 1)σ−ij nj H(−ψ) δ(φ) + (K − 1)σ+
ij nj H(ψ) δ(φ) .
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The last two terms can be unified in one term

(K − 1) σij nj δ(φ) . (2.27)

Then

[ ( ρ−ü−i − σ
−
ij ,j −f

−
i )H(−ψ)

+ ( ρ+ü+
i − σ

+
ij ,j −f

+
i )H(ψ) ] [ H(−φ) +KH(φ) ] = (2.28)

= ( σ+
ij − σ

−
ij ) νj δ(ψ) + (K − 1)σij nj δ(φ) .

If surface S is just a thought surface in the medium, that is, K = 1, eq. (2.28) reduces to

( ρ−ü−i − σ
−
ij ,j −f

−
i )H(−ψ) + ( ρ+ü+

i − σ
+
ij ,j −f

+
i )H(ψ) =

= ( σ+
ij − σ

−
ij ) νj δ(ψ) . (2.29)

If surface S is a free surface, that is, K = 0, eq. (2.28) becomes

[ ( ρ−ü−i − σ
−
ij ,j −f

−
i )H(−ψ) + ( ρ+ü+

i − σ
+
ij ,j −f

+
i )H(ψ) ] H(−φ) =

= ( σ+
ij − σ

−
ij ) νj δ(ψ) + ( 0− σij nj ) δ(φ) . (2.30)

We wrote the last term on the r.h.s. of eq. (2.30) in a form of the last two terms on the r.h.s. of
the integral strong-form equation (2.13) in order to point out the meaning of the term. We call
eq. (2.28) or eqs. (2.29) and (2.30) together with boundary condition (2.1) a discontinuous strong
formulation for our canonical problem. The developed representation was motivated by the idea
of Zahradnı́k and Priolo (1995) who used Heaviside step function to represent planar material
interface.

2.6 Comparison of Formulations

The strong formulation, SF, eqs. (2.1) - (2.5), weak formulation, WF, eq. (2.11), integral strong
formulation, ISF, eq. (2.13), and discontinuous strong formulation, DSF, eq. (2.28) are four
alternative formulations we are able to find for our canonical problem with the welded material
interface (Fig. 2.1). The formulations are given in Tab. 2.1 for a convenient visual comparison.

In addition to the basic differences explained in the chapter on the equation of motion for
a smooth continuum we clearly see that the formulations differ in a way how they incorporate
boundary conditions at interface Σ and surface S.

For completeness we also give summary of the alternative formulations for the ’Earth-like
configuration’ shown in Fig. 2.2 in Tab. 2.2.

There are three principal situations for a point of continuum for which one may try to find
appropriate FD targets: a point in a smooth medium, point at a welded interface, and point at
a free surface. A point in a continuous medium is easier to treat compared to the two latter
situations. Later we will apply the above general formulations (SF, ISF and DSF) to the welded
interface and free surface.
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Tab. 2.1. Summary of formulations for the 3D canonical problem with the welded material interface
(Fig. 2.1). WF - weak formulation, SF - strong formulation, ISF - integral strong formulation, DSF -
discontinuous strong formulation.
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ü

+ i
−
σ

+ ij
, j
−f

+ i
)w

i
d
V

=

� Σ
(σ

+ ij
−
σ
− ij
)ν

j
w

i
d
S

+

� S
(p

i
−
σ

ij
n

j
)w

i
d
S

u
− i

=
u

+ i

D
S
F

(ρ
−
ü
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Tab. 2.2. Summary of formulations for the alternative ’Earth-like configuration’ shown in Fig. 2.2. WF -
weak formulation, SF - strong formulation, ISF - integral strong formulation, DSF - discontinuous strong
formulation.
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Tab. 2.3. Summary of formulations for the 1D canonical problem with the welded material interface
(Fig. 2.3). WF - weak formulation, SF - strong formulation, ISF - integral strong formulation, DSF -
discontinuous strong formulation.
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S0 - free surface or an integration surface

Σ  - welded material interface

Sb - free surface or an integration surface

medium ’−’

medium ’+’

z
b

a

0

Fig. 2.3. Geometrical configuration of the 1D canonical problem with a welded material interface Σ be-
tween media ’−’ and ’+’.

2.7 Formulations for a 1D Canonical Problem With a Material Interface

Here we apply the above formulations to a 1D problem. Although the 1D problem is relatively
far from problems for realistic models of real structures in nature, it is obvious that it is method-
ologically basic and thus important. It is also convenient for introducing basic approaches.

2.7.1 Problem Configuration

The geometrical configuration of the 1D canonical problem with the welded material interface is
shown in Fig. 2.3 The model is a 1D version of the 3D model shown in Fig. 2.1

2.7.2 The SF, WF, ISF and DSF Formulations

Considering the configuration of the 1D problem in Fig. 2.3 and normal vectors at surfaces S0,
Σ and Sb,

~n (S0) = ( 0, 0,−1 ), (2.31)
~ν (Σ) = ( 0, 0, 1 ), (2.32)
~n (Sb) = ( 0, 0, 1 ), (2.33)

it is straightforward to obtain formulations for the 1D problem from those given in Tab. 2.1 for
the 3D problem. For a convenient visual comparison, the formulations are given in Tab. 2.3.

3 Canonical Problem with a Faulting Surface

3.1 Simple Model of an Earthquake Source

In many seismological problems an earthquake fault may be represented by a surface embed-
ded in heterogeneous elastic or viscoelastic pre-stressed medium. A non-zero initial equilibrium
stress is due to tectonic loading and residual stress after previous earthquakes on the fault. An
earthquake itself may be modeled as spontaneous rupture propagation along the fault. The rup-
ture generates seismic waves which then propagate from the fault into the embedding medium.
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Fig. 3.1. Fault surface and the normal vector ~n.

In general, several ruptures can propagate along the fault at one time. Inside the rupture displace-
ment and particle-velocity vectors are discontinuous across the fault. At the same time traction
is continuous. Let ~n (xi) be a unit normal vector to the fault surface pointing from the ‘−’ to ‘+’
side of the surface (Fig. 3.1). Then slip, that is, discontinuity in displacement vector across the
fault, can be defined as

D~u(xi, t) = ~u +(x+
i , t) − ~u −(x−i , t) . (3.1)

Its time derivative, slip rate, that is, discontinuity in the particle-velocity vector across the fault,
is then

D~v(xi, t) = ~v +(x+
i , t) − ~v −(x−i , t) . (3.2)

The total traction on the fault is

~T (~n;xi, t) = ~T 0(~n;xi) + ∆~T (~n;xi, t) , (3.3)

where ~T 0 (~n;xi) is the initial traction and ∆~T (~n;xi, t) traction variation. The latter is due to
the rupture propagation. Inside the rupture the total traction is related to slip at the same point of
the fault through the friction law

~T = ~T f (D~u,D~v, θ) (3.4)

where ~T f is frictional traction and θ represents a set of state variables. Equation (3.4), a fault
constitutive law, means that the total dynamic traction on the fault is determined by the friction.
Given the initial traction and material parameters of the fault, it is the friction law which controls
initialization, propagation and healing (arrest) of the rupture.

3.2 Equations and Boundary Conditions for a Dynamic Shear Faulting

Consider further only shear faulting. This means that there is no opening of the fault and no
interpenetrating of the fault materials. Define frictional strength or fault friction as

S = µf
∣∣ ~Tn∣∣ , (3.5)

where µf and ~Tn are coefficient of friction and fault-normal component of traction on the fault,
respectively. First, assume a locked fault. If, at a point of the fault surface, the magnitude of
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the shear traction (that is, traction tangential to the fault surface) is smaller than the frictional
strength the fault remains locked and slip rate zero at the point. Should the shear traction exceed
the frictional strength, slip occurs. The shear traction then varies following the friction law and
eventually falls down to the dynamic frictional level. The slipping is opposed by the friction.

Let subscripts sh and n denote the shear and normal components with respect to the fault
surface. The boundary conditions on the fault can be formulated, Day (1982), Day et al. (2005),
as follows.

Shear faulting:

D~un = 0, D~vn = 0, D~ush 6= 0, D~vsh 6= 0 . (3.6)

Shear traction bounded by the frictional strength:∣∣ ~Tsh ∣∣ ≤ S . (3.7)

Colinearity of the shear traction and slip rate:

S D~vsh − ~Tsh (~n) |D~vsh| = 0 . (3.8)

The fact that the frictional traction opposes the slipping is consistent with the colinearity require-
ment because we consider vector ~n oriented in the direction from the ‘−’ to ‘+’ side of the fault
and slip as the relative motion of the ‘+’ side with respect to the ‘−’ side of the fault: both ~T (~n)
and D~v are viewed from the same side of the fault. If slip was defined as the relative motion of
the ‘−’ side with respect to the ‘+’ side of the fault, requirement of the antiparallelism with the
‘+’ sign in eq. (3.8) would be consistent with the frictional traction opposing the relative motion
of the fault faces.

3.3 Friction Law

When a rupture front reaches a point of the fault and slip starts at that point (that is, the two
originally neighboring points, one at the ‘−’ and the other at the ‘+’ side of the fault, start
slipping), the total dynamic traction varies following the friction law and eventually falls down
to the dynamic frictional level. Obviously, before the traction at the point reaches the dynamic
frictional level, points of the fault in front of the considered point start slipping. Thus, the process
of the traction degradation obviously occurs within a finite zone behind the so-called crack tip.
This zone is termed cohesive zone or breakdown zone. The friction law determines processes
and phenomena in the cohesive zone.

Following Bizzarri and Cocco (2005), the coefficient of friction can be function of several
quantities,

µf = µf ( l, |D~v| ,Ψ1, ...,ΨN , T,H, λc, hm, g, Ce ) , (3.9)

where l is the slip path length

l =
∫ t

0

|D~v|(t′) dt′ , (3.10)
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|D~v| is modulus of the slip rate, Ψ1, ...,ΨN state variables, T temperature accounting for ducti-
lity, plastic flow, rock melting and vaporization, H humidity, λc characteristic length of the fault
surface accounting for roughness and topography of asperity contacts and possibly responsible
for mechanical lubrication, hm material hardness, g gouge parameter accounting for surface
consumption and gouge formation during sliding episodes, Ce chemical environment parameter.
In general, fault-normal traction in eq. (3.5) should stand for a time-dependent effective normal
traction accounting for a pore fluid pressure (which reduces the normal traction).

Equation (3.9) is in its full generality a very complicated constitutive law and one can expect
that its incorporation in the numerical simulation of rupture propagation is far from trivial one for
at least two reasons – methodological complexity and determination of values of all parameters.

According Cocco and Bizzarri (2002) and Bizzarri and Cocco (2003), two main groups of
the friction laws were proposed – slip-dependent (Barenblatt, 1959; Ida, 1972; Palmer and Rice,
1973; Andrews, 1976a,b; Ohnaka and Yamashita, 1989) and rate- and state-dependent (Dieterich,
1979, 1986; Ruina, 1980, 1983; Okubo and Dieterich, 1984; Okubo, 1989; Beeler et al., 1994,
other authors).

Here we restrict to the linear slip-weakening (SW) friction law as formulated by Ida (1972)
and Andrews (1976a,b), and the rate- and state-dependent (R&S) friction law as formulated by
Beeler et al. (1994).

3.3.1 Linear Slip-weakening (SW) Friction Law

Value of the coefficient of friction in the linear SW friction law decreases linearly from the value
of the coefficient of static friction, µs, down to the value of the coefficient of kinematic (also
called dynamic) friction, µd, over a characteristic (also called critical) distance Dc :

µf = µs −
µs − µd
Dc

l ; l < Dc ,

µf = µd ; l ≥ Dc .
(3.11)

Equivalently, the SW friction law can be expressed in terms of the corresponding shear tractions:

|~T fsh| = |~T ssh| −
|~T ssh| − |~T dsh|

Dc
l ; l < Dc ,

|~T fsh| = |~T dsh| ; l ≥ Dc .

(3.12)

Here |~T ssh| and |~T dsh| are the static (also called yield) and kinematic frictional shear tractions, re-
spectively. In other words, the frictional strength depends only on a cumulative slip path length.
Considering the SW friction law means that the evolution of the traction on the fault is ‘pre-
scribed’ a priori. Though the SW friction law is relatively very simple, in practical applications
it is, in fact, very difficult to estimate or determine reasonable values of coefficients of the static
and kinematic frictions, and value of the critical distance.
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3.3.2 Rate- and State-dependent (R&S) Friction Law

Value of the coefficient of friction in the R&S friction law depends on modulus of the slip rate,
|D~vsh|, and one state variable, Ψ :

µf = µ ( |D~vsh| ,Ψ ) ,

dΨ
dt

= g ( |D~vsh| ,Ψ ) .
(3.13)

Depending on the functional form for µ and g , there are several constitutive relations, see, for
example, Beeler et al. (1994). The most commonly used R&S friction law is the law presented
by Dieterich (1986):

µf = µr − a ln
vr
|D~vsh|

+ b ln
Ψ vr
L

,

dΨ
dt

= 1 − Ψ |D~vsh|
L

.

(3.14)

Here a, b and L are constitutive parameters, µr and vr reference values. The second equations
in (3.13) and (3.14) describe evolution of the state variable. Unlike the SW friction law, the yield
and kinematic frictional tractions are not prescribed a priori, they depend on the slip rate and state
variable. Though the R&S friction law as formulated by eq. (3.14) does not explicitly include
dependence on the slip path length, the law yields the slip-weakening Cocco and Bizzarri (2002).
Cocco and Bizzarri (2002) and Bizzarri and Cocco (2003, 2005) compared the two friction laws
in detail.

It is obvious that the implementation of the R&S friction law in the numerical-simulation
methods is more complicated compared to the SW friction law.

3.4 Traction-at-Split-Nodes (TSN) Method

The discontinuity of displacement vector and particle-velocity vector together with the friction
law pose a nontrivial boundary condition. While semi-analytical boundary integral equation
(BIE) method is perhaps the most accurate method to account for the fault boundary condi-
tions, especially on non-planar faults (e.g., Aochi and Fukuyama, 2002), its application is lim-
ited because it cannot include heterogeneity of the medium. Because the grid methods as the
finite-difference, finite-element or spectral-element methods are computationally more efficient
in accounting for material heterogeneity, they have been extensively applied to study source dy-
namics. Having in mind the grid numerical methods we explain here probably the most efficient
method of incorporation of the fault boundary conditions for computation of rupture propagation
and wave radiation, the traction-at-split-nodes (TSN) method. The TSN method has been devel-
oped independently by Andrews (1973, 1976a,b, 1999) and Day (1977, 1982); see also Day et
al. (2005). For a brief review of other approaches in the grid methods see Moczo et al. (2007).

In the split-node approach the fault is represented by a grid surface of split (partial) nodes.
Here, the grid simply means a set of discrete points properly distributed on the fault surface. At
a grid point, each of the two partial nodes belongs to only one side of the fault and the two nodes
may experience a relative motion (slip) along the fault.
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Fig. 3.2. Halfspaces H− and H+, partial nodes p.n.− and p.n.+, and the normal vector ~n.

Consider a halfspace H− covered by a grid and a partial node p.n.− on the free surface of
the halfspace. Similarly, consider halfspace H+ and a partial node p.n.+ on its free surface
(Fig. 3.2). Correspondingly, the partial nodes at one position differ in the ’halfspace’ proper-
ties/quantities (for example, mass, displacement, particle-velocity, forces, material parameters).
However, they share the same grid position and the ’fault’ properties/quantities (for example,
slip, slip-rate, friction, coefficients of friction).

Define an outer normal vector ~n to the surface of the halfspaceH− pointing to the halfspace
H+ (i.e., ~n is in the ‘p.n.− → p.n.+ ’ direction). LetM− andM+ be masses of the two partial
nodes. The partial node p.n.− is accelerated by a force ~F− which is due to deformation in the
halfspace H− and, possibly, by body forces acting in the halfspace. Similarly, the partial node
p.n.+ is accelerated by a force ~F+ . Thus, the accelerations are

~a± =
~F±

M±
. (3.15)

In order to simulate a fault, halfspaces H− and H+ can be coupled along their surfaces. The
coupling can be accomplished by a constraint surface traction acting at the contact. Consider a
traction ~T c(~n) quantifying a contact force with which material inH+ acts upon material inH−.
Let A be an area of the fault surface associated with each partial node. The acceleration ~a− of
the partial node p.n.− is contributed by force ~F− due to deformation in halfspace H− and by
the constraint force

~F c,− = ~F c = A · ~T c(~n) (3.16)

due to the action of halfspace H+. Then the acceleration is

~a− =
1
M−

(
~F− + ~F c,−

)
=

1
M−

(
~F− +A · ~T c

)
. (3.17)

Similarly, the acceleration ~a+ of the partial node p.n.+ is contributed by force ~F+ due to defor-
mation in halfspace H+ and by the constraint force

~F c,+ = −~F c = −A · ~T c(~n) (3.18)

due to the action of halfspace H−. The acceleration of the partial node p.n.+ is then

~a+ =
1
M+

(
~F+ + ~F c,+

)
=

1
M+

(
~F+ −A · ~T c

)
. (3.19)
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Consider some initial equilibrium state described by initial traction ~T 0(~n) . The traction does
not contribute to the acceleration of the partial node p.n.−. If ~T c is the total traction, only the
difference ~T c − ~T 0 contributes to the acceleration. Then accelerations at time t are

~a±(t) =
1
M±

{
~F±(t) ∓ A ·

[
~T c(t)− ~T 0

]}
. (3.20)

Though the initial traction is nonzero, the initial strain is considered zero. Then forces ~F±

correspond to deformations caused only by the dynamic changes due to rupture. The particle
velocities and displacements of the partial nodes in the 2nd-order approximation are then

~v±
(
t+

dt
2

)
= ~v±

(
t− dt

2

)
+

dt
M±

{
~F±(t) ∓ A ·

[
~T c(t) − ~T 0

]}
(3.21)

and

~u±(t+ dt) = ~u±(t) + dt · ~v±
(
t+

dt
2

)
. (3.22)

For the slip rate we obtain from eq. (3.21)

D~v

(
t+

dt
2

)
=̇

D~v

(
t− dt

2

)
+ dt B

{
M− ~F+(t) −M+ ~F−(t)

A · (M− +M+)
−
[
~T c(t) + ~T 0

]}
,

(3.23)

where

B = A
M− +M+

M−M+
. (3.24)

Find a constraint traction ~T c(t) = ~T ct(t) that assures zero slip rate before two partial nodes
start slipping as well as vanishing slip rate when the slipping ceases. Because ~T ct(t) has to
be evaluated at each time level at each grid point on the fault and compared with the frictional
strength, it is called trial traction. The question is how to time condition D~v = 0 . If D~v(t) =
0 is required, the trial traction acts for the interval from t−dt/2 to t+dt/2 and can reverse the
slipping (that is, produce back-slip) by the time it is integrated all the way up to t+ dt/2 . This
results in the traction driving slip rather than opposing it and thus in violating conservation of
energy (Day, 2005, personal communication). Therefore, D~v (t+ dt/2) = 0 has to be required.
Assuming D~v (t+ dt/2) = 0 in eq. (3.23) we obtain the trial traction

~T ct(t) =̇ ~T 0 +
dt−1M−M+D~v

(
t− dt

2

)
+ M− ~F+(t)−M+ ~F−(t)

A · (M− +M+)
. (3.25)

We also have to find a constraint traction during the slip, that is, frictional traction ~T csh(t) =
~T fsh(t) such that D~v (t+ dt/2) 6= 0. Assuming first D~v (t+ dt/2) 6= 0 for ~T csh(t) = ~T fsh(t)
in eq. (3.23), and then D~v (t+ dt/2) = 0 for ~T c(t) = ~T ct(t) leads to

D~vsh

(
t+

dt
2

)
=̇ dt B

[
~T ctsh(t) − ~T fsh(t)

]
. (3.26)
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Recall the colinearity condition (3.8):

S(t) D~vsh(t) − ~T fsh(t) |D~vsh(t) | = 0 . (3.27)

Using approximation

D~vsh(t) =̇ 1
2

[
D~vsh

(
t− dt

2

)
+ D~vsh

(
t+

dt
2

) ]
(3.28)

and eq. (3.26) we obtain from the colinearity (3.27)[
|D~vsh(t)| + S(t)

dt
2
B

]
~T fsh(t) =̇

S(t)
2

[
D~vsh

(
t− dt

2

)
+ dt B ~T ctsh(t)

]
. (3.29)

Define an auxiliary vector ~γ

~γ = D~vsh

(
t− dt

2

)
+ dtB ~T ctsh(t) . (3.30)

Equations (3.29) and (3.30) imply that ~T fsh(t) has the direction of vector ~Υ = ~γ / |~γ| .
Therefore, the enforcement of the boundary conditions on the fault can be formulated as follows:

If
∣∣~T ctsh(t)

∣∣ ≤ S(t) then ~T c(t) = ~T ct(t) . (3.31)

If
∣∣~T ctsh(t)

∣∣ > S(t) then ~T csh(t) = S(t) ~Υ , ~T cn(t) = ~T ctn (t) . (3.32)

The above approach, based on finding trial traction ~T ct(t) ensuring D~v (t+ dt/2) = 0, and
colinearity requirement at time t, can cause in some rare cases large oscillations of rake direction
just around the time of rupture arrest (Day, 2005, personal communication). Day avoids the
problem by modifying the colinearity condition:

S(t) D~vsh

(
t+

dt
2

)
− ~T fsh(t)

∣∣D~vsh(t+
dt
2

) ∣∣ =̇ 0 . (3.33)

Substitution of eq. (3.26) into eq. (3.33) yields[
S(t) +

∣∣ ~T ctsh(t) − ~T fsh(t)
∣∣ ] ~T fsh(t) =̇ S(t) ~T ctsh(t). (3.34)

Equation (3.34) means that ~T fsh(t) has the same direction as ~T ct(t). Then condition (3.32) is
replaced by the following condition:

If
∣∣ ~T ctsh(t)

∣∣ > S(t) then ~T csh(t) = S(t)
~T ctsh(t)∣∣ ~T ctsh(t)

∣∣ ,
~T cn (t) = ~T ctn (t) .

(3.35)
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The modified approach behaves always well (Day, 2005, personal communication).
The slip rate is then

D~vsh

(
t+

dt
2

)
=̇ dt B

[
~T ctsh(t) − ~T csh(t)

]
, (3.36)

where ~T csh(t) is given by eq. (3.31) or eq. (3.35).
Note that an assumption of the small displacements is necessary for the TSN method. The

assumption means that the accumulating slip does not change the configuration of the partial
nodes adjacent to each other. This means that h � |D~ush| , where h is a spatial grid spacing.
Another necessary condition is that the time-stepping algorithm is explicit and a force at a node
accelerates only that node.

Accuracy of the TSN implementation heavily depends on the accuracy of calculation of the
body forces ~F± due to deformations in the halfspaces. Formally, at each time the surfaces of the
halfspaces are the free surfaces.

3.5 Kinematic Model of an Earthquake Source

In many applications kinematic models of the earthquake source are used instead of the dynamic
models. In the kinematic models rupture propagation is simulated using a set of point sources
distributed along the fault surface. Each point source acts independently of other point sources.
Each point source is a body-force equivalent (acting in a continuous medium) to a point with a
nonzero slip (displacement discontinuity) – both produce the same displacement field. Timing of
the point sources along the fault surface and their source-time functions (a source-time function
corresponds to a time history of slip at a point) are determined prior a numerical simulation
itself by a so-called kinematic inversion of the earthquake source. The kinematic inversion is
a procedure aiming to fit records of earthquake motion at different observation points around
the ruptured fault. It is clear that in the kinematic modeling the point sources do not physically
interact with the medium.

In some applications it is sufficient to consider only an effective point-source approximation
to a true finite faulting surface.

The corresponding theory is well explained in many textbooks and monographs, e.g., Aki and
Richards (1980, 2002), Kostrov and Das (1988), Gubbins (1990), Kennett (2001), Pujol (2003).
Here we restrict to a very brief review of basic relations necessary for later explanation of the
simulation of the kinematic sources in the grid numerical methods.

The displacement at ~x and time t due to faulting surface Σ can be expressed by the repre-
sentation theorem

un(~x, t) =
∫

Σ

mpq ∗Gnp,q dΣ . (3.37)

Here mpq is the moment-density tensor

mpq (~ξ, t) = cpqrs (~ξ) Dur(~ξ, t) ns(~ξ) , (3.38)

where ~ξ specifies a position on a fault surface Σ, cpqrs is a tensor of elastic moduli, D~u is a
slip vector and ~n is a fault normal. Gnp,q is a derivative of the Green’s tensor. Gnp,q is
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physically an equivalent of having a single couple with an arm in the q-direction and forces in
the p-direction on a fault surface Σ at ~ξ . Convolution mpq ∗ Gnp,q is a displacement at ~x
due to couples at ~ξ , and mpq is the strength of the (p, q) couple.

In the point-source approximation surface Σ can be considered as a system of couples lo-
cated at a point:

un(~x, t) =
(∫

Σ

mpq dΣ
)
∗Gnp,q . (3.39)

The moment tensor Mpq is defined as

Mpq =
∫

Σ

mpq dΣ . (3.40)

Then displacement is given by

un(~x, t) = Mpq ∗Gnp,q , (3.41)

where Mpq is the strength of the resulting (p, q) couple at the point.
In the case of a tangential slip, ~n · ~ν = 0 ; D~u = Du · ~ν (see Fig. 3.3) in an isotropic

medium, the moment-density tensor takes a simple form

mpq = µ ( np Duq + nq Dup ) (3.42)

or
mpq = µ Du ( np νq + nq νp ) . (3.43)

Then the moment tensor is

Mpq =
∫

Σ

µ Du ( np νq + nq νp ) dΣ . (3.44)

Assuming a homogeneous medium in the source region or average µ we get

Mpq = µ ( np νq + nq νp )
∫

Σ

Du (~ξ , t) dΣ . (3.45)

The integral can be approximated:∫
Σ

Du (~ξ , t) dΣ =̇ Du (t)
∫

Σ

dΣ =̇ Du (t) A =̇ Du s(t) A , (3.46)

where

s (t) =
Du (t)
Du

; Du = Du (t→∞) . (3.47)

Then the moment tensor takes a simple form

Mpq = µ A Du s (t) ( np νq + nq νp ) . (3.48)
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Fig. 3.3. Definition of the fault-orientation parameters and the coordinate system: ΦS is strike, δ dip, λ
rake, ~n fault normal, D~u = Du · ~ν , and slip D~u is taken as the movement of the hanging wall relative
to the foot wall.

The scalar seismic moment M0 is defined as

M0 = µA Du . (3.49)

Eventually we obtain for the tangential slip

Mpq = M0 ( np νq + nq νp ) s (t) . (3.50)

In the coordinate system shown in Fig. 3.3 the components of vector ~ν and the fault normal
vector ~n are:

νx = cosλ cos ΦS + cos δ sinλ sin ΦS ,
νy = cosλ sin ΦS − cos δ sinλ cos ΦS ,
νz = − sinλ sin δ ,

(3.51)

and

nx = − sin δ sin ΦS ,
ny = sin δ cos ΦS ,
nz = − cos δ .

(3.52)

From eqs. (3.50) – (3.52) we can obtain

Mxy(t) = M0 ( sin δ cosλ cos 2ΦS + 1
2 sin 2δ sinλ sin 2ΦS ) s(t) ,

Myz(t) = − M0 ( cos δ cosλ sin ΦS − cos 2δ sinλ cos ΦS ) s(t) ,
Mzx(t) = − M0 ( cos δ cosλ cos ΦS + cos 2δ sinλ sin ΦS ) s(t) ,
Mxx(t) = − M0 ( sin δ cosλ sin 2ΦS + sin 2δ sinλ sin2 ΦS ) s(t) ,
Myy(t) = M0 ( sin δ cosλ sin 2ΦS − sin 2δ sinλ cos2 ΦS ) s(t) ,
Mzz(t) = M0 sin 2δ sinλ s(t) .

(3.53)

The moment tensor is symmetric:

Mxy = Myx , Myz = Mzy , Mzx = Mxz . (3.54)
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Fig. 4.1. Hooke body

4 Constitutive Law, Rheological Models of Continuum

Equation of motion is a general governing equation for a continuous medium. If we want to
apply the equation to a specific type of continuum we have to specify how stress relates to strain
for that type of medium (material). Such a relation is called a constitutive law. An application
of the same stress to two different material bodies under the same conditions yields different
deformations. On the other hand, one and the same material body can respond differently to
different loads – depending on the magnitude of stress, duration of its application, and also other
factors as, e.g., temperature. A variety of rheological models of continuum reflects a variety of
material behaviors.

We will focus on those models that approximate behavior of the Earth’s material when it re-
sponds to sudden stress variations due to seismic sources, as earthquakes or explosions. Seismic
waves and motion produced by seismic sources are attenuated. Observations, e.g. Mc Donal et al.
(1958), Liu et al. (1976), Spencer (1981), Murphy (1982), show that the internal friction (a mea-
sure of attenuation) in the Earth, Q−1, is nearly constant over the seismic frequency range (from
the seismic body waves to the Earth’s free oscillations, that is for periods from approximately
0.01 s up to 1 hour). This is a consequence of the fact that the Earth’s material is composed of
different minerals and the attenuation in each of them is contributed by several processes.

We start with two extreme models – perfectly elastic and viscous media. Realizing their
extremely different idealized behaviors we will obtain a reasonable indication for a more realistic
model of the real material – viscoelastic medium.

4.1 Linear Elastic Body

4.1.1 Simple Mechanical Model – Hooke Body

Linear elastic body, Hooke body (Hooke model, Hooke element, elastic spring), represents be-
havior of a perfectly elastic (lossless) solid material. Stress is proportional to strain:

σ (t) = M · ε (t) . (4.1)

Here σ (t) is the stress as a function of time t, ε (t) strain, and M the time-independent elastic
modulus. An application of a load yields an instantaneous deformation. A removal of the load
yields instantaneous and total recovery. Hooke body does not have a memory: stress at a given
time only depends on the deformation at the same time. Model of the Hooke body is illustrated
in Fig. 4.1. The strain-time diagram for a constant stress applied at time t0 and removed at time
t1 is shown in Fig. 4.2, left, the stress-strain diagram in Fig. 4.2, right.
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Fig. 4.2. Left: The strain-time diagram for a constant stress applied at time t0 and removed at time t1.
Right: The stress-strain diagram.

Hereafter we will use symbol F for the direct and F−1 for the inverse Fourier transforms

F{x(t)} =
∫ ∞
−∞

x(t) exp(− iωt) dt , (4.2)

F−1{X(ω)} =
1

2π

∫ ∞
−∞

X (ω) exp(iωt) dω . (4.3)

Here ω is the angular frequency. An application of the Fourier transform to eq. (4.1) gives

σ (ω) = M · ε (ω) . (4.4)

An equivalent to eq. (4.1) is

ε (t) = C · σ (t) , (4.5)

where

C =
1
M

(4.6)

is the compliance.

4.1.2 Stress-Strain Relation in Linear Elastic Continuum

Cauchy’s generalization of the original Hooke’s law in tensor form reads

σij = cijkl εkl , (4.7)

where cijkl is a tensor of elastic constants (they are constant with respect to the strain-tensor
components, not necessarily with respect to spatial position). Equation (4.7) assumes that each
stress-tensor component is a linear combination of all components of the strain tensor. Symmetry
of the stress and strain tensors implies symmetries

cijkl = cjikl , cijkl = cijlk , (4.8)
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Fig. 4.3. Stokes body

respectively. Application of the first law of thermodynamics yields additional symmetry,

cijkl = cklij . (4.9)

Symmetries (4.8) - (4.9) reduce the number of independent elastic constants from 81 down to 21
that describe the most general anisotropic medium. The situation dramatically simplifies in the
case of the isotropic medium. The behavior of the isotropic elastic medium is described by two
independent elastic constants. The stress-strain relation can be written in the form

σij = κ εkk δij + 2µ ( εij − 1
3εkk δij) , (4.10)

where κ and µ are bulk and shear moduli, respectively, and

δij =
{

1 ; i = j
0 ; i 6= j

(4.11)

defines the Kronecker delta. Equation (4.10) corresponds to decomposition of the stress tensor
into dilatational and deviatoric components. Alternatively the stress-strain relation can be written
using Lamé constants λ and µ in the form

σij = λ εkkδij + 2µ εij . (4.12)

4.2 Linear Viscous Body

Linear viscous body, Stokes body (Stokes model, Stokes element, Stokes dashpot; also Newton
model, Newton element, viscous dashpot) represents the other extreme behavior in the variety of
linear rheological bodies, the behavior of the viscous fluid. Stress is proportional to strain rate:

σ (t) = η · ε̇ (t) . (4.13)

Here η is the time-independent viscosity. An application of a load yields non-instantaneous
linearly increasing deformation. A removal of the load does not yield removal of deformation –
there is no recovery. Stokes body has extreme or absolute memory. Model of the Stokes body
is illustrated in Fig. 4.3. The strain-time diagram for a constant stress applied at time t 0 and
removed at time t 1 is shown in Fig. 4.4 (left), the stress – strain-rate diagram in Fig. 4.4 (right).
An application of the Fourier transform to eq. (4.13) gives

σ (ω) = iωη · ε (ω) . (4.14)
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Fig. 4.4. Left: The strain-time diagram for a constant stress applied at time t0 and removed at time t1.
Right: The stress - strain-rate diagram.

4.3 More Realistic Models of the Earth’s Material

Let us summarize and compare the two types of material behaviors. Perfectly elastic material can
store mechanical energy without loss; it cannot dissipate the energy. Viscous fluid can dissipate
energy but not store it. Certainly, more realistic rheological models of real materials should have
both properties.

Stress of a linear elastic body only depends on an instantaneous deformation. For example,
a sudden application of a constant stress (unit step function of stress) to the elastic body causes
instantaneous deformation which remains constant. If an additional constant stress is applied at
some later time, the elastic body deforms instantaneously and proportionally only to the total
stress applied at that time, no matter how long the previous stress was applied. In other words,
the elastic body does not have memory – deformation does not depend on the previous history.

A sudden application of a constant stress to a viscous fluid does not cause instantaneous
deformation. Instead, deformation starts growing steadily from zero value at the moment of the
stress application. If an additional constant stress is applied at some later time, the deformation
at that very moment depends only on the previous history – because the fluid is not capable to
respond instantaneously with nonzero deformation to the additional stress load. We could say, in
contrast to the elastic body, that the viscous fluid has an absolute memory.

Obviously, more realistic rheological models of real materials should have both properties –
capability to respond immediately and memory of the previous stress-strain history. Viscoelastic
models combine the very different properties of the elastic and viscous models.

For a basic detailed text on the rheology of the Earth we refer to monograph by Ranalli
(1995).

4.4 Viscoelastic Continuum

4.4.1 Stress-Strain Relation in Viscoelastic Medium

The stress-strain relation in a viscoelastic medium can be defined as

σij(t) =
∫ t

−∞
ψijkl(t− τ) ε̇kl(τ) dτ , (4.15)
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where ψijkl is a tensor of relaxation functions describing behavior of the material. An alterna-
tive form of the stress-strain relation is the strain-stress relation

εij(t) =
∫ t

−∞
χijkl(t− τ) σ̇kl(τ) dτ , (4.16)

where χijkl is a tensor of creep functions which also describe behavior of the material.
For the isotropic medium the stress-strain relation can be written as

σij(t) = δij

∫ t

−∞
κ(t− τ) ε̇kk(τ) dτ

+ 2
∫ t

−∞
µ(t− τ)

[
ε̇ij(τ) − 1

3 δij ε̇kk(τ)
]

dτ ,
(4.17)

where κ(t) and µ(t) are relaxation functions; compare with time-independent bulk and shear
moduli in eq. (4.10). Alternatively, eq. (4.17) can be rewritten as

σij(t) = δij

∫ t

−∞
λ(t− τ) ε̇kk(τ) dτ + 2

∫ t

−∞
µ(t− τ) ε̇ij(τ) dτ . (4.18)

Relations (4.15), (4.17) and (4.18) are formulations of the Boltzmann superposition and causality
principle. For a complete and rigorous treatment we refer to Christensen (1971).

Later we will use formulation (4.17) to obtain equations for wave propagation in attenuating
medium. Here, for simplicity, we continue with a 1D problem in order to clarify basic mathe-
matical description and physics of viscoelastic continuum.

In a simple scalar notation Boltzmann superposition and causality principle takes the form

σ(t) =
∫ t

−∞
ψ (t− τ) ε̇ (τ) dτ , (4.19)

where σ(t) is stress, ε̇(t) time derivative of strain, and ψ(t) stress relaxation function - a stress
response to Heaviside unit step function in strain. According to eq. (4.19), the stress at a given
time t is determined by the entire history of the strain until time t. The upper integration limit en-
sures the causality. Mathematically, the integral in eq. (4.19), also called the hereditary integral,
represents a time convolution of the relaxation function and strain rate. We can use symbol ∗ for
the convolution. Equation (4.19) then can be written as

σ(t) = ψ(t) ∗ ε̇(t) . (4.20)

Due to properties of convolution,

σ(t) = ψ̇(t) ∗ ε(t) . (4.21)

Since ψ(t) is the stress response to a unit step function in strain, its time derivative,

M(t) = ψ̇(t) , (4.22)
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is the stress response to the Dirac δ-function in strain. Equation (4.21) can be written as

σ(t) = M(t) ∗ ε(t) . (4.23)

We can compare eq. (4.23) with eq. (4.1): whereas the stress-strain relation for the elastic
body is a simple linear relation with a constant elastic modulus, the stress-strain relation for
the viscoelastic body has a convolutory form as a consequence of the time-dependent modulus
M(t).

An application of the Fourier transform to eq. (4.23) gives

σ (ω) = M (ω) · ε (ω) , (4.24)

where

M (ω) = F {M(t) } = F
{
ψ̇(t)

}
(4.25)

is the complex, frequency-dependent viscoelastic modulus. An application of the inverse Fourier
transform to eq. (4.25) gives

ψ̇(t) = F−1{M(ω)} (4.26)

and, due to properties of the Fourier transform,

ψ(t) = F−1

{
M(ω)

iω

}
. (4.27)

Equation (4.24), in comparison with eq. (4.19), clearly indicates that the incorporation of the
linear viscoelasticity and consequently attenuation into the frequency-domain computations is
much easier than those in the time-domain computations – real frequency-independent moduli
are simply replaced by complex, frequency-dependent quantities (the correspondence principle
in the linear theory of viscoelasticity).

The time derivative of the stress is, see eq. (4.21),

σ̇(t) = ψ̇(t) ∗ ε̇(t) (4.28)

or, due to eq. (4.22),

σ̇(t) = M(t) ∗ ε̇(t) . (4.29)

Consider eq. (4.25):

M (ω) = F
{
ψ̇(t)

}
=
∫ ∞
−∞

ψ̇(t) exp(−iωt) dt . (4.30)

Because ψ(t) is the stress response to Heaviside unit step function in strain,

ψ(t) = ψ̃(t) H(t) : ψ̃(0) = ψ(0) , ψ̃(t) = ψ(t) ; t > 0 . (4.31)
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Here and hereafter in this chapter, the Heaviside function is equal to 1 for zero argument. Equiv-
alently, ψ̃(t) = ψ(t) ; t ≥ 0 . Then

ψ̇(t) = ˙̃
ψ(t) H(t) + ψ̃(t) δ(t) (4.32)

and

M(ω) =
∫ ∞
−∞

[ ˙̃
ψ(t) H(t) + ψ̃(t) δ(t)

]
exp(−iωt) dt (4.33)

= ψ(0) +
∫ ∞

0

ψ̇(t) exp(−iωt) dt

= ψ(0) +
∫ ∞

0

d
dt

[ψ(t)− ψ(∞)] exp(−iωt) dt

= ψ(0) + [ψ(t) − ψ(∞)] exp(−iωt)|∞0

−
∫ ∞

0

[ψ(t)− ψ(∞)]
d
dt

[exp(−iωt)] dt

= ψ(0) − [ψ(0) − ψ(∞)] −
∫ ∞

0

[ψ(t)− ψ(∞)] (−iω) exp(−iωt) dt

= ψ(∞) + iω
∫ ∞

0

[ψ(t) − ψ(∞)] exp(−iωt) dt .

We found that

M(ω) = ψ(∞) + iω
∫ ∞

0

[ψ(t) − ψ(∞)] exp(−iωt) dt . (4.34)

It follows from eq. (4.34) that

M(ω = 0) = ψ(t =∞) . (4.35)

Alternatively to eq. (4.33) we can consider

M(ω) =
∫ ∞
−∞

[ ˙̃
ψ(t) H(t) + ψ̃(t) δ(t)

]
exp(−iωt) dt

= ψ(0) +
∫ ∞

0

ψ̇(t) exp(−iωt) dt (4.36)

= ψ(0) + ψ̇(t)
exp(−iωt)
−iω

∣∣∣∞
0
−
∫ ∞

0

ψ̈(t)
exp(−iωt)
−iω

dt .

Then

lim
ω→∞

M(ω) = ψ(0) + lim
ω→∞

[
ψ̇(t)

exp(−iωt)
−iω

∣∣∣∞
0
−
∫ ∞

0

ψ̈(t)
exp(−iωt)
−iω

dt
]

= ψ(0) + 0 . (4.37)
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Consequently,

M(ω =∞) = ψ(t = 0) . (4.38)

Having found relations (4.35) and (4.38), we can define the following characteristics: An instan-
taneous elastic response of the viscoelastic material is given by the so-called unrelaxed modulus
MU , a long-term equilibrium response is given by the relaxed modulus MR

MU = lim
t→0

ψ(t) , MR = lim
t→∞

ψ(t) . (4.39)

In the frequency domain

MU = lim
ω→∞

M (ω) , MR = lim
ω→0

M (ω) . (4.40)

The modulus defect or relaxation of modulus is

δM = MU − MR . (4.41)

An application of a unit-step strain, ε(t) = H(t), causes decrease of ψ (t), that is, relaxation,
from the unrelaxed state with ψ(0) = MU to the relaxed state with ψ(∞) = MR .

Given the viscoelastic modulus, the quality factor Q(ω) is

Q (ω) =
ReM (ω)
ImM (ω)

. (4.42)

It can be shown that 1/Q(ω) is a measure of internal friction in a linear viscoelastic body.
As already indicated a numerical integration of the stress-strain relation (4.19) is practically

intractable due to the large computer time and memory requirements. This led many modelers to
incorporate only oversimplified Q (ω) laws in the time-domain computations.

An alternative to the stress-strain relation (4.19) is the strain-stress relation. The strain at a
given time t is determined by the entire history of the stress until time t :

ε(t) =
∫ t

−∞
χ (t− τ) σ̇ (τ) dτ (4.43)

or

ε(t) = χ(t) ∗ σ̇(t) . (4.44)

Here χ(t) is the creep function - a strain response to Heaviside unit step function in stress. Due
to properties of the convolution, eq. (4.44) can be rewritten as

ε(t) = χ̇(t) ∗ σ(t) . (4.45)

Since χ(t) is the strain response to a unit step function in stress, its time derivative,

C(t) = χ̇(t) , (4.46)
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is the strain response to the Dirac δ-function in stress. Equation (4.45) can be written as

ε(t) = C(t) ∗ σ(t) . (4.47)

An application of the Fourier transform to eq. (4.47) yields

ε (ω) = C (ω) · σ (ω) , (4.48)

where

C (ω) = F {C(t) } = F {χ̇(t) } (4.49)

is the complex, frequency-dependent creep compliance. An application of the inverse Fourier
transform to eq. (4.49) gives

χ̇(t) = F−1 {C (ω)} (4.50)

and, due to properties of the Fourier transform,

χ(t) = F−1

{
C (ω)

iω

}
. (4.51)

Relations

CU = lim
t→0

χ(t) , CR = lim
t→∞

χ(t) (4.52)

define the unrelaxed compliance CU and relaxed compliance CR . Relaxation of compliance is
defined as

δC = CR − CU . (4.53)

An application of a unit-step stress, σ(t) = H(t), causes increase of χ(t), that is, creep, from
the unrelaxed state with χ(0) = CU to the relaxed state with χ(∞) = CR. Using eqs. (4.21)
and (4.45), and properties of convolution we can write

σ(t) = ψ̇(t) ∗ ε(t)

= ψ̇(t) ∗ [ χ̇(t) ∗ σ(t) ]

= [ ψ̇(t) ∗ χ̇(t) ] ∗ σ(t) .

(4.54)

It follows from eq. (4.54) that

ψ̇(t) ∗ χ̇(t) = δ(t) (4.55)

and, consequently,

M (ω) · C (ω) = 1 . (4.56)

For the unrelaxed and relaxed states it follows that

CU =
1
MU

, CR =
1
MR

. (4.57)
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Tab. 4.1. Time-domain and frequency-domain rules for linear rheological models
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�4.4.2 Time-domain and Frequency-domain Rules for Linear Viscoelastic Models

Models which quite well approximate rheological properties and behavior of the real Earth’s
material can be constructed by connecting the simplest rheological elements, Hooke and Stokes
elements, in parallel or series. The properties of the models can be analyzed in the time and
frequency domains. There are relatively simple rules in both domains that allow obtaining math-
ematical representations of the models. The time-domain and frequency-domain rules for linear
rheological models are given in Table 4.1.

4.4.3 Simplest Linear Viscoelastic Models

Maxwell Body. One of the simplest viscoelastic models is Maxwell body (Fig. 4.5, top panel).
We can easily derive the basic characteristics of this rheological model. An application of the
frequency-domain rules leads to:

Hooke body:

σHB (ω) = M εHB (ω) . (4.58)

Stokes body:

σSB (ω) = iωη εSB(ω) . (4.59)

Maxwell body = Hooke body connected in series with Stokes body:

σ = σHB = σSB , ε = εHB + εSB , (4.60)

ε (ω) =
σ (ω)
M

+
σ (ω)
iωη

, (4.61)
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Fig. 4.5. The simplest rheological models of viscoelastic materials. HB denotes Hooke body, p means
connection in parallel, and s means connection in series.

σ (ω) =
(

iωηM
M + iωη

)
ε (ω) , (4.62)

σ (ω) = M(ω) ε (ω) ; M(ω) =
iωM

ω r + iω
. (4.63)

Here,

ω r =
M

η
. (4.64)

From the frequency-dependent modulus we easily obtain the relaxed and unrelaxed moduli

MR = lim
ω→0

M(ω) = 0 , (4.65)
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and

MU = lim
ω→∞

M(ω) = M . (4.66)

Relations (4.65) and (4.66) mean that Maxwell body under the application of a unit-step strain
relaxes from value MU (at the time of application of the unit-step strain) down to a zero stress.
Because, eq. (4.57),

CR =
1
MR

, (4.67)

Maxwell body creeps forever under the application of a unit-step stress.
Find now the stress relaxation function. Using eqs. (4.27) and (4.63) we have

ψ(t) = F−1

{
M (ω)

i ω

}
= F−1

{
M

ω r + iω

}
(4.68)

and

ψ(t) = M exp(−ωr t)H(t) = M exp(−t/τσ)H(t) . (4.69)

Here,

τσ =
1
ωr

=
η

M
(4.70)

is the stress relaxation time (also Maxwell relaxation time). Then ωr can be called the relax-
ation frequency. The relaxation time τσ characterizes time during which stress falls down by a
characteristic value. Using eq. (4.22) we can also find the time-dependent modulus

M(t) = ψ̇(t) = M exp(−ωr t) [ δ(t) − ωrH(t) ] . (4.71)

An application of the time-domain rules leads to:

Hooke body:

σHB (t) = M εHB (t) . (4.72)

Stokes body:

σSB (t) = η ε̇SB (t) . (4.73)

Maxwell body = Hooke body connected in series with Stokes body:

σ = σHB = σSB , ε = εHB + εSB , (4.74)

ε̇ (t) =
σ̇ (t)
M

+
σ (t)
η

, (4.75)
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σ (t) + τ r σ̇ (t) = τ rM ε̇ (t) . (4.76)

The use of eqs. (4.29) and (4.71) yields

σ(t) = M(t) ∗ ε(t) (4.77)

=
∫ t

−∞
M exp (−ω r(t− τ)) [ δ(t− τ) − ω rH(t− τ) ] ε (τ) dτ

= M ε(t) −
∫ t

0

M exp (−ω r(t− τ)) ω r ε (τ) dτ

and

σ(t) = M ε(t) − ω rM

∫ t

0

exp (−ω r(t− τ)) ε (τ) dτ . (4.78)

Assume σ(t) = H(t) in eq. (4.75) and integrate the equation with respect to time in the interval
〈 0, t 〉 :

χ(t) = ε(t) =
1
M

∫ t

0

δ (ξ) dξ +
1
η

∫ t

0

H (ξ) dξ

=
1
M

(
1 +

M

η
t

)
.

(4.79)

Then, using definition (4.70),

χ(t) =
1
M

(
1 +

t

τσ

)
; t ≥ 0 . (4.80)

The first term on the right-hand side of eq. (4.80) represents the elastic deformation that
appears instantaneously at the time of application of the unit-step stress. This deformation is
instantaneously removed upon removal of the stress. The second term represents viscous defor-
mation that grows with time and that will remain after the stress is removed. The behavior of
Maxwell body is illustrated in Figs. 4.6 and 4.7.

Kelvin-Voigt Body. Another simplest viscoelastic models is Kelvin-Voigt body (Fig. 4.5, mid-
dle panel). We can easily derive the basic characteristics of this rheological model. An applica-
tion of the frequency-domain rules leads to:

Hooke body:

σHB (ω) = M εHB (ω) . (4.81)

Stokes body:

σSB (ω) = iωη εSB (ω) . (4.82)
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Fig. 4.6. Creep in Maxwell (MB), Kelvin-Voigt (KV) and Zener (standard linear) (ZB) bodies: strain-time
diagrams for a constant stress applied at time t0 and removed at time t1.
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Fig. 4.7. Stress relaxation in Maxwell, Kelvin-Voigt and Zener (standard linear) bodies: stress-time dia-
grams for a constant strain applied at time t0.

Kelvin-Voigt body = Hooke body connected in parallel with Stokes body:

σ = σHB + σSB , ε = εHB = εSB , (4.83)

σ (ω) = (M + iωη ) ε (ω) , (4.84)

σ (ω) = M(ω) ε (ω) ; M(ω) = M + iωη , (4.85)
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MR = lim
ω→0

M (ω) = M , (4.86)

ψ̇(t) = M(t) = F−1 {M (ω)} = F−1 {M + iωη} , (4.87)

M(t) = M δ(t) + η δ̇ (t) , (4.88)

ψ(t) = M H(t) + η δ (t) , (4.89)

MU = lim
t→0

ψ (t) = M + η δ(0) . (4.90)

An application of the time-domain rules leads to:

Hooke body:

σHB (t) = M εHB (t) . (4.91)

Stokes body:

σSB (t) = η ε̇SB (t) . (4.92)

Kelvin-Voigt body = Hooke body connected in parallel with Stokes body:

σ = σHB + σSB , ε = εHB = εSB , (4.93)

σ (t) = M ε (t) + η ε̇ (t) . (4.94)

We would obtain eq. (4.94) also by using eqs. (4.23) and (4.88). It follows from eq. (4.56) that
the compliance is

C (ω) =
1

M + iωη
(4.95)

and from eq. (4.50) that the time derivative of the creep function is

χ̇(t) = F−1

{
1

M + iωη

}
=

1
η

exp
(
−M t

η

)
H(t) . (4.96)

Then the creep function is obtained by the time integration

χ(t) =
∫ t

0

1
η

exp
(
−M ϑ

η

)
H(ϑ) dϑ (4.97)
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that gives

χ(t) =
1
M

[
1 − exp

(
− t

τε

)]
; t ≥ 0 . (4.98)

Here,

τε =
η

M
(4.99)

is the strain relaxation time (also called retardation time). This terminology comes from the
exponential character of increase of the creep function. It follows from eqs. (4.52) and (4.98)
that

CU = 0 . (4.100)

The latter result means that the Kelvin-Voigt body has zero creep (zero strain) at the time of the
application of the unit-step stress. At the same time, as

MU =
1
CU

= ∞ , (4.101)

the instantaneous stress response at the time of the application of the unit-step strain is singular.
The behavior of the Kelvin-Voigt body is illustrated in Figs. 4.6 and 4.7.

Zener Body ( Standard Linear Body). A more general than Maxwell and Kelvin-Voigt
bodies is still relatively simple viscoelastic Zener (also standard linear) body (Fig. 4.5, bottom
panel). There are two equivalent models: HB – p – MB (Hooke body connected in parallel with
Maxwell body) and HB – s – KVB (Hooke body connected in series with Kelvin-Voigt body). It
is easier to see the meaning of the elastic moduli in the HB – p – MB model. At the time of the
application of the unit-step strain, the instantaneous, that is, unrelaxed, stress will be given by the
sum of moduli of the two elastic springs, MU = MR + δM . At the same time deformation of
the dashpot will start to grow from zero. The growth of the viscous deformation will gradually
release stress of the spring connected in series with the dashpot (that is, spring in Maxwell body).
In the limit, the relaxed stress, MR , will be only in the spring connected in parallel with Maxwell
body. We can easily derive the basic characteristics of this rheological model. An application of
the frequency-domain rules leads to:

Hooke body:

σHB (ω) = MR εHB (ω) . (4.102)

Maxwell body, eq. (4.62):

σMB (ω) =
(

iωη δM
δM + iωη

)
εMB (ω) . (4.103)

Zener body = Hooke body connected in parallel with Maxwell body:

σ = σHB + σMB , ε = εHB = εMB , (4.104)
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σ (ω) = MR ε (ω) +
iωη δM

δM + iωη
ε (ω)

= MR

1 + iω
η

δM

MU

MR

1 + iω
η

δM

ε (ω) . (4.105)

Define stress and strain relaxation times, τσ and τε ,

τσ =
η

δM
, τε =

η

δM

MU

MR
. (4.106)

Note that stress relaxation time τσ is defined in the same way as that for the Maxwell body, eq.
(4.70). Then

σ (ω) = M(ω) ε (ω) ; M(ω) = MR
1 + iω τε
1 + iω τσ

. (4.107)

Taking limits of M(ω) we verify our interpretation of the meaning of the elastic moduli:

lim
ω→∞

M (ω) = MU = MR + δM , lim
ω→0

M (ω) = MR. (4.108)

From eqs. (4.106) we have the simple relation between the unrelaxed and relaxed moduli:

MU = MR
τε
τσ
. (4.109)

We can now determine the stress relaxation function using eqs. (4.27) and (4.107):

ψ(t) = F−1

{
M (ω)

iω

}
= F−1

{
MR

[
− i
ω

+
iτε

i − τσ ω
− iτσ

i − τσ ω

]}
. (4.110)

It is now easy to find

ψ(t) = MR

[
1−

(
1− τε

τσ

)
exp

(
− t

τσ

)]
H(t) . (4.111)

It is also easy to obtain the creep function of Zener body as

χ(t) =
1
MR

[
1−

(
1− τσ

τε

)
exp

(
− t

τε

)]
H(t) . (4.112)

The behavior of Zener body is illustrated in Figs. 4.6 and 4.7.

4.4.4 Attenuation in the Simplest Models

Viscoelastic modulus M and attenuation 1/Q for Maxwell and Kelvin-Voigt bodies are illus-
trated in Fig. 4.8. Recalling the observation that attenuation is nearly constant over the seismic
frequency range it is obvious that neither Maxwell body nor Kelvin-Voigt body provide suitable
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Fig. 4.8. Viscoelastic modulus M and attenuation 1/Q as functions of frequency f . The horizontal
axis (frequency) is logarithmic, the vertical axis decadic. Modulus for Maxwell body is calculated using
eq. (4.63), modulus for Kelvin-Voigt body using eq. (4.85). Frequency dependence of 1/Q is calculated
using eq. (4.42).
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rheology for implementation of realistic attenuation in the modeling of seismic wave propaga-
tion.

Figure 4.9 (the left column) shows viscoelastic modulus and attenuation 1/Q for Zener
body. The attenuation curve suggests that a superposition of several Zener bodies with properly
distributed relaxation frequencies could make a rheological viscoelastic model suitable for ap-
proximating nearly constant attenuation over modeled/desired frequency range. This was a basic
idea of Liu et al. (1976) who introduced generalized Zener body (GZB, Fig. 4.10) in order to
account for realistic attenuation of seismic waves.

Recall what we explained before. Incorporation of the linear viscoelasticity and conse-
quently attenuation into the frequency-domain computations is relatively easy, see eq. (4.24):
real frequency-independent moduli are simply replaced by complex, frequency-dependent quan-
tities (the correspondence principle in the linear theory of viscoelasticity). On the other hand, in
the time domain, the stress-strain relation has convolutory form, see eq. (4.19). Having in mind
time-domain numerical methods for structurally complex heterogeneous media, for example grid
methods as the finite-difference, finite-element or spectral-element methods, it is easy to under-
stand that it is practically intractable to keep in memory the entire strain history at each grid point
and evaluate convolution integral at each grid point at each time level. This is the key problem
in incorporation of the realistic attenuation in the time-domain methods. The only solution is to
convert the convolutory stress-strain relation into a differential form, that is, to find equivalent
differential equations additional to the equation of motion and apply a chosen numerical method
to the set of differential equations.

Thus, having the GZB model itself as a suitable viscoelastic model is not enough. We need
to convert the convolutory stress-strain relation into a suitable differential form. We will follow
a historic development in solving the problem.

4.4.5 Conversion of the Convolutory Stress-Strain Relation into a Differential Form

Consider M (ω) as a rational function

M (ω) =
Pm(iω)
Qn(iω)

(4.113)

with

Pm(iω) =
m∑
l=1

p l(iω) l , Qn(iω) =
n∑
l=1

q l(iω) l . (4.114)

An application of the inverse Fourier transform to eq. (4.24) with M (ω) given by eq. (4.113)
leads to

n∑
l=1

q l
d lσ(t)

dt l
=

m∑
l=1

p l
d lε(t)

dtl
, (4.115)

the nth-order differential equation for σ(t) , which can be eventually numerically solved much
more easily than the convolution integral. In other words, the convolution integral in eq. (4.19)
can be converted into a differential form if M (ω) is a rational function of iω . Day and Minster
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Fig. 4.9. Viscoelastic modulus M and attenuation 1/Q as functions of frequency f . The horizontal
axis (frequency) is logarithmic, the vertical axis decadic. Modulus for Zener body is calculated using
eq. (4.107) with relaxation times τσ = 1/2π and τε = 101 τσ/99 (the value for τε is chosen in order
to have Q = 100), modulus for GMB-EK body using eq. (4.121) with n = 3 and relaxation frequencies
f1 = 0.1 Hz, f2 = 1 Hz, and f3 = 10 Hz. The other parameters are chosen in order to have one and the
same value for Q at relaxation frequencies. Frequency dependence of 1/Q is calculated using eq. (4.42).
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Fig. 4.10. Rheological model of the Generalized Zener Body (GZB). For a classical Zener body (standard
linear body) there are two equivalent models: HB – p – MB, that is, Hooke element connected in parallel
with Maxwell body, and HB – s – KVB, that is, Hooke element connected in series with Kelvin-Voigt body.
In the HB – p – MB model it is easier to recognize the relaxed modulus MRl and modulus defect δM .
M1l and M2l in the HB – s – KVB model denote elastic moduli. In both models ηl stands for viscosity.

(1984) assumed that, in general, the viscoelastic modulus is not a rational function. Therefore
they suggested approximating a viscoelastic modulus by an nth-order rational function and deter-
mining its coefficients by the Padé approximant method. They obtained n ordinary differential
equations for n additional internal variables, which replace the convolution integral. The sum
of the internal variables multiplied by the unrelaxed modulus gives an additional viscoelastic
term to the elastic stress. The revolutionary work of Day and Minster not only developed one
particular approach but, in fact, indirectly suggested the future evolution – a direct use of the
rheological models whose M (ω) is a rational function of iω.
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Emmerich and Korn (1987) realized that an acceptable relaxation function corresponds to
rheology of what they defined as the generalized Maxwell body – n Maxwell bodies and one
Hooke element (elastic spring) connected in parallel; see Fig. 4.11. Note that the generalized
Maxwell body in the literature on rheology is defined without the additional single Hooke ele-
ment. Therefore, we denote the model considered by Emmerich and Korn (1987) by GMB-EK.

Because, in fact, any model consisting of linear springs and dashpots (Stokes elements) con-
nected in series or parallel has its viscoelastic modulus in form of a rational function of iω , the
GMB-EK allowed replacing the convolution integral by a differential form. Emmerich and Korn
(1987) obtained for the new variables similar differential equations as Day and Minster (1984). In
order to fit an arbitrary Q (ω) law they chose the relaxation frequencies logarithmically equidis-
tant over a desired frequency range and used the least-square method to determine weight factors
of the relaxation mechanisms (classical Maxwell bodies). Emmerich and Korn (1987) demon-
strated that their approach is better than the approach based on the Padé approximant method in
both accuracy and computational efficiency.

Independently, Carcione et al. (1988a,b), in accordance with the approach of Liu et al. (1976),
assumed the generalized Zener body (GZB) - n Zener bodies, that is, n standard linear bodies,
connected in parallel; see Fig. 4.10. Carcione et al. developed a theory for the GZB and intro-
duced term memory variables for the obtained additional variables.

We will briefly review the GMB-EK and GZB presented in papers by Emmerich and Korn
(1987) and Carcione et al. (1988a,b), respectively.

4.4.6 Generalized Maxwell Body and Generalized Zener Body

Generalized Maxwell Body (GMB-EK). Using the frequency-domain rules for the linear vis-
coelastic models we easily find for the GMB-EK, shown in Fig. 4.11,

M (ω) = MH +
n∑
l=1

iMlω

ω l + iω
(4.116)

with relaxation frequencies

ωl =
Ml

η l
; l = 1, ..., n . (4.117)

We find relaxed and unrelaxed moduli

MR = lim
ω→0

M (ω) = MH , MU = lim
ω→∞

M (ω) = MR +
n∑
l=1

Ml . (4.118)

Since MU = MR + δM ,

Ml = δMl . (4.119)

Without any simplification we can consider

δMl = al δM ;
n∑
l=1

al = 1 . (4.120)
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Fig. 4.11. Rheological model of the Generalized Maxwell Body (GMB-EK) defined by Emmerich and Korn
(1987). MB denotes Maxwell body, MH and Ml denote elastic moduli, ηl viscosity.

Then

M (ω) = MR + δM

n∑
l=1

ial ω
ω l + iω

. (4.121)

Using relation (4.27) we easily obtain the relaxation function

ψ(t) =

[
MR + δM

n∑
l=1

al e
−ωl t

]
·H(t) , (4.122)

where H(t) is the Heaviside unit step function. The above formulas were presented by Em-
merich and Korn (1987).

Generalized Zener Body (GZB). From the two equivalent models of the GZB (see Fig. 4.10)
we choose the one in which a single ZB is of the HB-p-MB type (Hooke element in parallel
with Maxwell body). This is because we can immediately see the meaning ( MR l, δMl ) of the
elastic moduli of both Hooke elements in each ZB. For the GZB we easily obtain a well-known

M (ω) =
n∑
l=1

MR l
1 + i τεlω
1 + i τσlω

(4.123)
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with relaxation times

τεl =
ηl
δMl

MU l

MR l
, τσl =

ηl
δMl

,
τεl
τσl

=
MU l

MR l
(4.124)

and

MU l = MR l + δMl . (4.125)

The unrelaxed and relaxed moduli are

MR = lim
ω→0

M (ω) =
n∑
l=1

MR l ,

MU = lim
ω→∞

M (ω) =
n∑
l=1

MR l
τεl
τσl

= MR +
n∑
l=1

δMl .

(4.126)

Using relation (4.27) we easily obtain the relaxation function

ψ(t) =

{
n∑
l=1

MR l

[
1−

(
1− τεl

τσl

)
exp

(
− t

τσl

)] }
·H(t) . (4.127)

Assuming simplification (Carcione, 2001)

MR l =
1
n
MR (4.128)

we get

M (ω) =
MR

n

n∑
l=1

1 + iτεlω
1 + iτσlω

,

ψ(t) = MR

[
1 − 1

n

n∑
l=1

(
1 − τεl

τσl

)
exp

(
− t

τσl

)]
·H(t) .

(4.129)

Formulas (4.128) and (4.129) were presented by Carcione (2001). As far as we know, papers
dealing with the incorporation of the attenuation based on the GZB, starting from (Liu et al.,
1976), had the same error – the missing factor 1/n in the viscoelastic modulus and relaxation
function (1/L in most of the papers, L being the number of classical Zener bodies, that is, the
number of relaxation mechanisms).

Equivalence of the GMB-EK and GZB. After papers by Emmerich and Korn (1987) and
Carcione et al. (1988a,b) different authors decided either for the GMB-EK or GZB.

The GMB-EK formulas were used by Emmerich (1992), Fäh (1992), Moczo and Bard (1993),
and in many other papers. Moczo et al. (1997) applied the approach also in the finite-element
method and hybrid finite-difference – finite-element method. An important aspect was that in
the papers one memory variable was defined for one displacement component. Later Xu and
McMechan (1995) introduced term composite memory variables which, however, did not differ
from the variables used from the very beginning in the above papers.
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Robertsson et al. (1994) implemented the memory variables based on the GZB rheology into
the staggered-grid velocity-stress finite-difference scheme. Their numerical results do not suffer
from the missing factor 1/n because they were performed for n = 1 . Blanch et al. (1995)
suggested an approximate single-parameter method, τ -method, to approximate constant Q (ω)
law. Xu and McMechan (1998) used simulated annealing for determining a best combination of
relaxation mechanisms to approximate a desired Q (ω) law. In the two latter papers the factor
1/n was missing in the relaxation functions.

As far as we know, in many following papers the authors using the GZB did not comment
on the rheology of the GMB-EK and the corresponding time-domain algorithms, and the authors
using the GMB-EK did not comment those for the GZB. Thus, two parallel sets of papers and
algorithms had been developed during years.

Moczo and Kristek (2005) analyzed the two models and showed that they are equivalent.
Here we follow the derivation by Moczo and Kristek (2005). Consider again the ZB (HB – p

– MB) model. The application of the frequency-domain rules (Table 4.1) to the l-th ZB, that is
to (HB – p – MB), gives

σl (ω) ·
(

1
δMl

+
1

iηlω

)
=
(

1 +
MR l

δMl
+

MR l

iηl ω

)
· ε (ω) . (4.130)

Defining

ω l =
δMl

ηl
(4.131)

and rearranging eq. (4.130) we get

σl (ω) = Ml (ω) · ε (ω) ; Ml (ω) = MR l +
iδMl ω

ω l + iω
. (4.132)

For n ZB (H – p – M) connected in parallel, that is, for the GZB (Fig. 4.10), the stress is

σ (ω) =
n∑
l=1

σl (ω) =

[
n∑
l=1

Ml (ω)

]
· ε (ω) (4.133)

and thus

M (ω) =
n∑
l=1

MR l +
n∑
l=1

iδMl ω

ω l + iω
. (4.134)

Because

MR =
n∑
l=1

MR l , MU = MR +
n∑
l=1

δMl , MU = MR + δM , (4.135)

without loss of generality we can consider

δMl = al δM ;
n∑
l=1

al = 1 (4.136)
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and get

M (ω) = MR + δM

n∑
l=1

ialω
ωl + iω

. (4.137)

We see that for the GZB (HB – p – MB), Fig. 4.10, we obtained exactly the same M (ω) as it
has been obtained by Emmerich and Korn (1987) for their GMB-EK (Fig. 4.11). It is also easy
to get the same for the GZB (HB – s – KVB) or to rewrite non-simplified ψ(t) for the GZB,
eq. (4.127), into the form of ψ(t) for the GMB-EK, eq. (4.122), without any simplification. In
other words, the rheology of the GMB-EK and GZB is one and the same. As a consequence, we
can continue with the GMB-EK and its simpler-form relations compared to those developed in
papers on the GZB with two relaxation times. Also note that there is no need for a simplification
(4.128) in eqs. (4.129).

Viscoelastic modulus M and attenuation 1/Q as functions of frequency f are illustrated in
the right column of Fig. 4.9.

4.4.7 Anelastic Functions (Memory Variables)

We will use term anelastic functions instead of memory variables. It is easy to rewrite the vis-
coelastic modulus (4.137) and relaxation function (4.122) using the unrelaxed modulus,

M (ω) = MU − δM

n∑
l=1

al ωl
ωl + iω

(4.138)

and

ψ(t) =

[
MU − δM

n∑
l=1

al
(
1− e−ωlt

)]
·H(t) , (4.139)

and obtain the time derivative of the relaxation function

M(t) = ψ̇(t)

= − δM
n∑
l=1

al ωl e
−ωl t ·H(t) +

[
MU − δM

n∑
l=1

al
(
1− e−ωlt

)]
· δ(t) . (4.140)

Inserting eq. (4.140) into eq. (4.23) gives

σ(t) = −
∫ t

−∞
δM

n∑
l=1

alωle
−ωl(t−τ) ·H(t− τ) · ε (τ) dτ

+
∫ t

−∞
MU · δ(t− τ) · ε (τ) dτ

−
∫ t

−∞
δM

n∑
l=1

al

(
1− e−ωl(t−τ)

)
· δ(t− τ) · ε (τ) dτ

(4.141)
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and

σ(t) = MU · ε(t) − δM

n∑
l=1

alω l

∫ t

−∞
ε (τ) · e−ωl(t−τ) dτ . (4.142)

Now it is possible to replace the convolution integral by additional functions (anelastic functions,
internal variables, new variables, memory variables). Day and Minster (1984), Emmerich and
Korn (1987) and Carcione et al. (1988a,b) defined the additional functions as dependent also on
the material properties.

For an important reason that will be explained later, Kristek and Moczo (2003) defined their
anelastic functions as independent of the material properties. Here we follow derivation by Kris-
tek and Moczo (2003). Defining an anelastic function

ζ l(t) = ωl

∫ t

−∞
ε (τ) · e−ωl(t−τ) dτ , l = 1, ..., n (4.143)

we get the stress-strain relation in the form

σ(t) = MU · ε(t)−
n∑
l=1

δM al ζ l(t) . (4.144)

Applying time derivative to eq. (4.143) we get

ζ̇ l(t) = ωl
d
dt

∫ t

−∞
ε (τ) · e−ωl(t−τ) dτ

= ωl

[
−ωl

∫ t

−∞
ε (τ) · e−ωl(t−τ) dτ + ε(t)

]
= ωl [−ζ l(t) + ε(t) ]

(4.145)

and

ζ̇ l(t) + ωl ζ l(t) = ωl ε(t) ; l = 1, ..., n . (4.146)

Equations (4.144) and (4.146) define the time-domain stress-strain relation for the viscoelastic
medium whose rheology corresponds to rheology of the GMB-EK (and to its equivalent – the
GZB).

In the so-called velocity-stress formulation (the next chapter) the time derivative of the stress
is needed. In such a case, M(t) given by eq. (4.140) is inserted into relation (4.29) and the
above procedure of obtaining the anelastic functions and stress-strain relation can be followed
with time derivatives of the stress and strain instead of the stress and strain themselves. An
alternative procedure is to apply time derivatives to eqs. (4.144) and (4.146), and define the
anelastic function as the time derivative of the anelastic function (4.143). In either case we
obtain

σ̇(t) = MU · ε̇(t) −
n∑
l=1

δM al ξl(t) (4.147)
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and

ξ̇l(t) + ωl ξl(t) = ωl ε̇(t) ; l = 1, ..., n . (4.148)

It is useful to define anelastic coefficients

Yl = al
δM

MU
; l = 1, ..., n . (4.149)

Then the stress-strain relations (4.144) and (4.147) become

σ(t) = MU · ε(t) −
n∑
l=1

MU Yl ζ l(t) (4.150)

and

σ̇(t) = MU · ε̇(t) −
n∑
l=1

MU Yl ξl(t) . (4.151)

The related eqs. (4.146) and (4.148) are unchanged. It is clear that the stress or its time derivative
can be calculated if the unrelaxed modulus and anelastic coefficients are known. The unrelaxed
modulus is directly related to the elastic speed of wave propagation, the anelastic coefficients
have to be determined from Q(ω)-law.

Using the anelastic coefficient, the elastic modulus and viscosity in the l-th MB are MU Yl

and
1
ωl

MU Yl , respectively, the relaxed modulus is

MR = MU

(
1−

n∑
l=1

Yl

)
,

and viscoelastic modulus

M (ω) = MU

[
1−

n∑
l=1

Yl
ωl

ωl + iω

]
. (4.152)

(Note that Emmerich and Korn (1987), used slightly less numerically accurate yl = al δM/MR;
l = 1, ..., n.) The quality factor (4.42) is

1
Q (ω)

=

n∑
l=1

Yl
ωl ω

ω2
l + ω2

1 −
n∑
l=1

Yl
ω2
l

ω2
l + ω2

. (4.153)

From eq. (4.153) we can get

Q−1 (ω) =
n∑
l=1

ωl ω + ω2
l Q
−1 (ω)

ω2
l + ω2

Yl . (4.154)
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Equation (4.154) can be used to numerically fit any Q (ω)-law. Emmerich and Korn (1987)
demonstrated that a sufficiently accurate approximation to nearly constant Q(ω) is obtained if
the relaxation frequencies ωl cover the frequency range under interest logarithmically equidis-
tantly. If, for example, Q (ω) values are known at frequencies ω̃k ; k = 1, ..., 2n − 1 , with
ω̃1 = ω1, ω̃2n−1 = ωn, eq. (4.154) can be solved for the anelastic coefficients using the least
square method.

A more detailed discussion of the frequency range and its sampling by frequencies ω̃k can
be found in the paper by Graves and Day (2003, equations 13 and 14).

In practice, a phase velocity at certain reference frequency ωr , instead of the elastic velocity
corresponding to the unrelaxed modulus, is known from measurements. The phase velocity c (ω)
is given by

1
c (ω)

= Re

[(
M (ω)
ρ

)−1/2
]
. (4.155)

From equations (4.152) and (4.155) we get (Moczo et al., 1997) for the phase velocity c (ωr)

MU = ρ c2 (ωr)
R+ Θ1

2R2
, (4.156)

where

R =
(
Θ2

1 + Θ2
2

)1/2
,

Θ1 = 1−
n∑
l=1

Yl
1

1 + (ωr/ωl)
2 , Θ2 =

n∑
l=1

Yl
ωr/ωl

1 + (ωr/ωl)
2 .

(4.157)

Thus, using equations (4.156) and (4.157), the unrelaxed modulus can be determined from the
anelastic coefficients Yl ; l = 1, ..., n, and phase velocity c (ωr).

Before we continue with a 3D problem, for completeness we briefly mention formalism used
specifically for the GZB model, that is, before the equivalence of the GZB and GMB rheologies
was presented by Moczo and Kristek (2005). Using eqs. (4.127), (4.22), (4.29) and (4.126) we
can obtain the following equations that are equivalent to those presented by Robertsson et al.
(1994):

σ̇(t) = MU · ε̇(t) −
n∑
l=1

rl(t) , (4.158)

rl(t) =
MRl

τσl

(
1− τεl

τσl

)∫ t

−∞
ε̇ (τ) · exp

(
− t − τ

τσl

)
dτ , l = 1, ..., n , (4.159)

ṙl(t) +
1
τσl

rl(t) =
MRl

τσl

(
1− τεl

τσl

)
ε̇(t) , l = 1, ..., n . (4.160)
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As already explained, the anelastic functions (memory variables) rl(t) in eqs. (4.158) - (4.160)
depend on material.

Rheology of a 3D isotropic medium, see eq. (4.17), can be assumed as made of rheologies
of two GMB-EK bodies. One is for time-dependent relaxation function κ(t) or, equivalently,
for the complex frequency-dependent bulk modulus κ(ω) . The other is for time-dependent
relaxation function µ(t) or, equivalently, for the complex frequency-dependent shear modulus
µ(ω) .

Analogously to the 1D problem we can obtain the stress-strain relation corresponding to the
assumed superposition of two GMB-EK (or, equivalently, two GZB) bodies for the 3D rheology
Kristek and Moczo (2003):

σij = κ εkk δij + 2µ
(
εij − 1

3εkk δij
)

−
n∑
l=1

[
κY κl ζ

kk
l δij + 2µY µl

(
ζijl −

1
3ζ
kk
l δij

) ]
.

(4.161)

Here, i, j, k ∈ {1, 2, 3}, the equal-index summation convention applies to index k but does not
apply to index l. κ (x1, x2, x3) and µ (x1, x2, x3) are unrelaxed (elastic) bulk and shear mod-
uli, and Y κl and Y µl are the corresponding anelastic coefficients. Assuming a measured or esti-
mated Qα (ω) for the P- and Qβ (ω) for the S-waves, the corresponding anelastic coefficients
Y αl and Y βl are obtained using, compare with eq. (4.154),

Q−1
ν (ω̃k) =

n∑
l=1

ωl ω̃k + ω2
l Q
−1
ν (ω̃k)

ω2
l + ω̃2

k

Y νl ; k = 1, ..., 2n−1 ; ν ∈ {α, β} , (4.162)

where

α =
(
κ+ 4

3µ

ρ

)1/2

, β =
(
µ

ρ

)1/2

(4.163)

are the elastic (that is, corresponding to unrelaxed moduli) P- and S-wave velocities. Then the
anelastic coefficients Y κl and Y µl are given by

Y κl =
(
α2 Y αl − 4

3 β
2 Y βl

) / (
α2 − 4

3β
2
)

; l = 1, ..., n , (4.164)

and

Y µl = Y βl ; l = 1, ..., n , (4.165)

respectively. For each of 6 independent strain-tensor components we have n material-indepen-
dent anelastic functions ζ ijl . The anelastic functions satisfy equations

ζ̇ ijl + ωl ζ
ij
l = ωl εij ; l = 1, ..., n . (4.166)

Note that the equal-index summation convention does not apply to index l. Thus, the relation
between the stress and strain tensors in the viscoelastic medium with rheology of the GMB-EK
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is given by eqs. (4.161) and (4.166) with anelastic functions given by eqs. (4.164) and (4.165).
As mentioned before, in the case of the velocity-stress formulation of the equation of motion,
time derivative of the stress tensor is needed. It is easy to obtain from eqs. (4.161) and (4.166)

σ̇ij = κ ε̇kk δij + 2µ
(
ε̇ij − 1

3 ε̇kk δij
)

−
n∑
l=1

[
κY κl ξ

kk
l δij + 2µY µl

(
ξijl −

1
3 ξ

kk
l δij

) ] (4.167)

and

ξ̇ijl + ωl ξ
ij
l = ωl ε̇ij ; l = 1, ..., n . (4.168)

Incorporation of attenuation for anisotropic media is a little bit more complicated; see, e.g.,
Carcione and Cavallini (1994) and Carcione (2001).

5 Displacement, Displacement-velocity-stress, Displacement-stress, and
Velocity-stress Formulations of the Equation of Motion

Having the equation of motion and constitutive law we can introduce alternative formulations in
terms of which field quantity is considered as an unknown function. Here we restrict to the strong
formulation for elastic and isotropic medium. We can easily obtain four alternative formulations.
Their names clearly indicate which quantities (that is, displacement vector, particle-velocity vec-
tor, stress tensor) are chosen as unknown functions. They are

displacement-stress

ρ üi = σij ,j + fi

σij = κ εkk δij + 2µ
(
εij − 1

3εkk δij
)

or

σij = λ εkk δij + 2µ εij

(5.1)

displacement-velocity-stress

ρ v̇i = σij ,j + fi

vi = u̇i

σij = κ εkk δij + 2µ
(
εij − 1

3εkk δij
)

or

σij = λ εkk δij + 2µ εij

(5.2)
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velocity-stress

ρ v̇i = σij ,j + fi

σ̇ij = κ ε̇kk δij + 2µ
(
ε̇ij − 1

3 ε̇kk δij
)

or

σ̇ij = λ ε̇kk δij + 2µ ε̇ij

(5.3)

displacement

ρ üi = [(κ− 2
3µ) uk,k ],i + (µui,j ),j + (µuj ,i ),j + fi

or

ρ üi = [λ uk,k ],i + (µui,j ),j + (µuj ,i ),j + fi .

(5.4)

For brevity, the strain tensor

εi j = 1
2 (ui,j + uj ,i ) (5.5)

and its time derivative

ε̇i j = 1
2 ( vi,j + vj ,i ) (5.6)

were used here in the first three formulations. The equations can be easily generalized for the
case of viscoelastic, eq. (4.161) or (4.167), or anisotropic media, eqs. (4.7).

6 Numerical Methods

6.1 Introduction

Analytical mathematical methods do not provide solutions to problems for structurally complex
models. Such models are, however, necessary if they should reasonably approximate real struc-
tures in the Earth. Approximate methods have to be applied. Numerical methods transform an
original differential or integral formulation of a problem into a system of algebraic equations.
This is because algebraic operations can be efficiently performed using computers.

A continuous function has to be represented by a finite set of numbers. Numerical methods
differ in how they solve this task. They also differ in a way how they approximate spatial and
time derivatives of functions.

There are two other basic aspects of each numerical method: accuracy and computational
efficiency (in terms of the computer memory and time). One can guess that these two aspects are
in most cases contradictory and a practical decision-making has to consider a trade-off between
the accuracy and computational efficiency.

If a computational domain is covered by a discrete space-time grid, that is, if continuous
medium and continuous functions are somehow represented using a set of discrete space-time
positions, we could speak of grid methods. Some authors (for example Durran, 1999), how-
ever, distinguish grid-point methods (such as the finite-difference or finite-volume methods) and
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series-expansion methods (such as the spectral or finite-element methods) though all they use set
of discrete points.

In general, grid-point methods are simpler and easier to implement in the computer codes,
compared to the series-expansion methods. Likely because of this, they have been in use for a
longer time than the series-expansion methods.

In the grid-point methods each function is represented by its values at grid points. The space-
time distribution of grid points may be, in principle, arbitrary but it significantly affects properties
of the resulting numerical approximation. In the finite-difference method usually no assumption
is made about functional values in-between the grid points. A derivative of a function is approx-
imated using a finite-difference formula which makes use of function values at a specified set of
grid points.

In the finite-volume method some assumption is made about the functional values in-between
the grid points. A value at a grid point is averaged over a grid cell. A derivative of a function
obviously is determined by the assumed space-time structure of the approximate function. The
finite-difference and finite-volume schemes are very close if the approximate function is smooth.

In the series-expansion methods an unknown function is usually represented by a linear com-
bination of a finite number of continuous expansion functions (shape functions). Consequently,
a finite set of coefficients of the expansion functions describe an approximate solution. Given the
chosen expansion functions, a spatial derivative is determined analytically. The time derivatives
are usually approximated using the finite-difference formulas.

In the spectral-element and finite-element methods a computational domain is covered by
a mesh of elements (they nodal points form a grid of discrete points). In the spectral-element
method the expansion functions form an orthogonal set. In the finite-element method the ex-
pansion functions are nonzero only in one element. If the expansion functions are chosen to be
piece-wise linear functions, the resulting finite-element scheme may be similar to those obtained
from the grid-point methods.

In the following we will focus on the finite-difference and finite-element methods.

6.2 The Finite-difference Method (FDM)

The application of the method to a particular differential problem includes a.) construction of a
discrete FD model of the problem (coverage of the computational domain by a space-time grid,
FD approximations to derivatives, functions, initial and/or boundary condition all at the grid
points, construction of a system of the finite-difference, i.e., algebraic, equations), b.) analysis of
the FD model (consistency and order of the approximation, stability, convergence), c.) numerical
computations. The analysis of the FD model or numerical computations may lead to redefinition
of the grid and FD approximations, if numerical behavior is not satisfactory.

6.2.1 Grids

Consider a Cartesian coordinate system (x, y, z) and a computational domain in the four-dimen-
sional space of variables (x, y, z, t) with t meaning time. A set of discrete space-time points
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(positions)

(xI , yJ , zK , tm); xI = x0 + I ∆x ,
yJ = y0 + J ∆y ,
zK = z0 +K ∆z ,
tm = t0 +m∆t ,

(6.1)

and I, J, K, m ∈ {0, 1, 2, ...} define a space-time grid. The spatial increments ∆x , ∆y and
∆z are usually called grid spacings, ∆t is the time step. In many applications, the regular (uni-
form) rectangular grid with the grid spacings ∆x = ∆y = ∆z = h is a natural and reasonable
choice. The value of a function u at a grid position (xI , yJ , zK , tm), that is u (I, J,K,m) or
umI,J,K , is approximated by a grid function UmI,J,K = U(xI , yJ , zK , tm) .

Other than Cartesian coordinate systems can be used to define a grid. A particular choice
should be problem-dependent. Whereas, for example, spherical coordinates are convenient for
the whole Earth’s models, cylindrical coordinates are suitable for modeling boreholes. The
choice of the grid determines the structure and properties of the FD approximations to deriva-
tives and consequently the properties of the FD equations. In the following we will restrict to FD
schemes constructed for grids corresponding to the Cartesian coordinate systems.

The use of a uniform grid usually yields algorithmically simplest FD schemes. This, however,
may contradict the computational efficiency. In some problems it may be advantageous to define
a non-uniform grid. Examples are grids with irregularly varying size of the grid spacing or
discontinuous (combined) grids with a sudden change in size of the grid spacing. Such grids can
better accommodate geometry of the model or reduce the total number of grid points covering
the computational space.

If at a grid point the neighbor grid points are always known (for example, if they are defined
using some mathematical rule) we speak about structured grids. If at a grid point some addi-
tional information is needed about the neighbor grid points we speak about unstructured grids.
Obviously, structured grids usually yield computationally faster algorithms compared to those
on unstructured grids.

In a conventional grid, all functions are approximated at the same grid positions. In a partly-
staggered grid, displacement or particle-velocity components are located at one grid position
whereas the stress-tensor components are located at another grid position. In a staggered grid,
each displacement and/or particle-velocity component and each shear stress-tensor component
has its own grid position. The normal stress-tensor components share another grid position. The
staggered distribution of quantities in space is related (through the equation of motion) to the
staggered distribution of quantities in time. In all types of grids, an effective density is assigned
to a grid position of each displacement or particle-velocity component while an effective elastic
modulus is assigned to each grid position of the stress-tensor components. The so-called grid
cells of the conventional, partly-staggered and staggered grids are illustrated in Fig. 6.1.
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Fig. 6.1. Spatial grid cells in the conventional, partly-staggered and staggered grids. All displacement-
vector components U , V and W are located at each grid position in the conventional grid. Either displace-
ment or particle-velocity components U , V and W share the same grid positions whereas stress-tensor
components T xx, T yy , T zz , T xy , T yz , and T zx share other grid positions in the partly-staggered grid.
Displacement and/or particle-velocity components U , V and W are located at different grid positions as
well as stress-tensor components T xx, T yy , T zz , T xy , T yz , and T zx are in the staggered grid. Because
the normal stress-tensor components are determined by the same spatial derivatives of the displacement
components, they share one grid position.



246 FD and FE Modeling in Seismology

6.2.2 Finite-difference Approximations

For function φ (x) with a continuous first derivative, limits

dφ
dx

(x0) = lim
h→0

φ (x0 + h)− φ (x0)
h

,

dφ
dx

(x0) = lim
h→0

φ (x0) − φ (x0 − h)
h

,

dφ
dx

(x0) = lim
h→0

φ (x0 + h)− φ (x0 − h)
2h

(6.2)

give one and the same result. Because, however, in the FD grid the size of h is bounded by
the size of the grid spacing (distance between two neighboring grid points in the x-direction in
this case), the limits cannot be evaluated. Instead, the so-called forward-difference, backward-
difference and central-difference formulas,

dφ
dx

(x0) =
φ (x0 + h)− φ (x0)

h
+ O(h1) ,

dφ
dx

(x0) =
φ (x0) − φ (x0 − h)

h
+ O(h1) ,

dφ
dx

(x0) =
φ (x0 + h)− φ (x0 − h)

2h
+ O(h2) ,

(6.3)

approximate the first derivative. The leading term of the truncation error in the two first one-sided
formulas is proportional to the grid spacing h - the approximations are just 1st-order accurate.
The central-difference formula gives approximation of the 2nd-order. Obviously, in general, the
three FD formulas will give different approximate values for the same derivative. Moreover, the
use of a particular approximation leads to a particular FD (algebraic) equation.

A 2nd-order FD approximation frequently used to approximate the second derivative in the
conventional displacement FD schemes is

d2φ

dx2
(x0) =

φ (x0 − h)− 2φ (x0) + φ (x0 + h)
h2

+ O(h2) . (6.4)

The most frequently used 4th-order approximation to the first derivative in the staggered-grid FD
schemes reads

dφ
dx

(x0) =
1
h
{ a

[
φ
(
x0 + 3

2h
)
− φ

(
x0 − 3

2h
)]

+

+ b
[
φ
(
x0 + 1

2h
)
− φ

(
x0 − 1

2h
)] }

+ O(h4) .
(6.5)

Here a = −1/24 and b = 9/8. Using Taylor expansions it is very easy to find a desired
approximation to a derivative. In solving a particular problem we may need to approximate
a derivative at a given grid point using function values at a certain set of neighboring grid points
and with a necessary/desired order of accuracy. Obviously, a reachable order of accuracy in
general depends on the configuration of the set of grid positions. An approximated derivative is
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expresses in a form of a linear combination of function values at chosen grid positions. All values
are Taylor expanded. By equating coefficients for equal powers of the argument increment we
then construct a set of algebraic equations for the unknown coefficients of the linear combination
such that the linear combination approximates the desired derivative with a desired structure of
the truncation error. In non-optimized approximations the only criterion applied to the truncation
error is the order of the leading term of the truncation error. The procedure is applicable in the
1D, 2D and 3D as well as in the 4D space-time domain. In the following chapters we will derive
several FD approximations of different properties. Here we finish the brief introduction with
references to more detailed explanations or treatments: Anderson et al. (1984), Dablain (1986),
Fornberg (1988), Geller and Takeuchi (1995, 1998), Klimeš (1996), and Cohen (2002), Moczo
et al. (2004b).

6.2.3 Heterogeneous Schemes

If the medium is homogeneous or smoothly heterogeneous (material properties are described by
smooth continuous functions of spatial coordinates) it is relatively easy to find a FD scheme. It
usually is a suitable FD approximation of the strong form of the equation of motion. If functions
describing material properties are discontinuous, that is, if material interfaces (material disconti-
nuities) are present, situation gets considerably more complicated. Motion at points away from
the interface is governed by the equation of motion. However, motion at points at the material
interface is constrained by boundary conditions. As it is clear from the chapter on the canonical
problem with a welded material interface a FD scheme should be a discrete approximation to
one of the alternative formulations (we presented four formulations – SF, WF, ISF and DSF).
Application of the SF most naturally leads to the so-called homogeneous approach – one scheme
is used for points away from the interface, other scheme(s) is (are) used for points at the inter-
face. It is quite obvious that this approach may pose a problem – a homogeneous FD scheme
may be specific for a particular problem. Some other problem may require other FD scheme(s).
Therefore its application to complex models with curved material discontinuities is, in general,
relatively difficult and impractical. Moreover, finding a stable and sufficiently accurate FD ap-
proximation to the boundary conditions is not a trivial problem, see, e.g., Kummer and Behle
(1982), Slawinski and Krebes (2002).

In the alternative heterogeneous approach only one FD scheme is used for all interior grid
points (points not lying on boundaries of a grid) no matter what their positions are with respect
to the material discontinuity. The presence of the material discontinuity is accounted for only
by assigning appropriate values of elastic moduli and density. Therefore, except for treating the
free surface, the heterogeneous approach has been much more popular since the beginning of
the seventies. The problem is that in most cases heterogeneous FD schemes were obtained by
approximating the equation of motion itself, that is, without proper incorporation of the boundary
conditions. In other words, in most cases heterogeneous FD schemes were not consistent with
the boundary conditions, mainly with the traction continuity.

6.2.4 Explicit and Implicit Schemes

In an implicit scheme, the motion at a given time level is calculated simultaneously at all spatial
grid points from the motion values at previous time levels using the inverse of a matrix. In an
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explicit scheme, the motion at any (one) spatial grid point can be updated for the next time level
using an explicit FD formula which uses only values of motion at previous time levels. Clearly,
the explicit schemes are computationally simpler. Therefore explicit FD schemes have been used
in most earthquake ground motion modeling and exploration seismology studies. An interesting
example is the numerical realization of the optimally-accurate schemes. The optimization yields
an implicit FD scheme. In order to avoid solving large systems of algebraic equations, Geller
and Takeuchi (1998) applied a predictor-corrector scheme. For the implicit schemes see, e.g.,
Emerman et al. (1982), Mufti (1985).

6.2.5 Properties of the FD Schemes

As we mentioned in the introduction to this chapter, a FD scheme should be analyzed for its
properties before it is applied. A FD scheme should be consistent with the original problem,
stable and convergent. Though intuitively these concepts seem quite clear and obvious, they
have to be clearly defined and formulated. Here we closely follow Moczo et al. (2004b, 2007).
Let PDE denote a partial differential equation and FDE a FD equation(s). (A FD scheme may be
used instead of FDE.)

Consistency. A FDE is consistent with the PDE if the difference between the FDE and the PDE
(the truncation error) vanishes as the sizes of the time step and spatial grid spacing go to zero
independently, that is,

lim
h→0, ∆t→0

|PDE− FDE| = 0 . (6.6)

In most cases there is no relation between h and ∆t required. If, however, condition (6.6) is
true only when a certain relationship is satisfied between ∆t and h , the FDE is conditionally
consistent.

Stability. A FDE is stable if it produces a bounded solution when the exact solution is bounded,
and is unstable if it produces an unbounded solution when the exact solution is bounded. If
the solution of the FDE is bounded for all values of ∆t and h , the FDE is unconditionally
stable. If the solution of the FDE is bounded only for certain values of ∆t and h , the FDE is
conditionally stable. If the solution of the FDE is unbounded for all values of ∆t and h , the
FDE is unconditionally unstable.

The stability analysis can be performed only for linear PDE. A nonlinear PDE must be first
linearized locally. The FDE of the linearized PDE can be analyzed for stability. The most
commonly used method for the stability analysis is the von Neumann method. The basic idea of
the von Neumann method is to represent a discrete solution at a time m∆t and spatial point I h ,
that is at one grid point, by a finite Fourier series, and examine stability of the individual Fourier
components. Thus, the method investigates the local stability. The discrete solution is stable if
and only if each Fourier component is stable. Von Neumann analysis is applicable to linear FDE
with constant coefficients. Though a spatial periodicity is assumed for the finite Fourier series,
the analysis can give a useful result even if this is not the case.

Convergence. A FDE is convergent if the solution of the FDE approaches the exact solution of
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the PDE as the sizes of the time step and spatial grid spacing go to zero. Denoting the solutions
obtained by the PDE and FDE as umI,J,K and UmI,J,K , respectively, the convergence means

lim
h→0, ∆t→0

(
UmI,J,K − umI,J,K

)
= 0 . (6.7)

It is important to note that the consistency is the property of the FDE because it relates the FDE
to the PDE. On the other hand, stability and convergence are properties of the numerical solution
of the FDE.

Lax equivalence theorem. In general, while it is easy to analyze the consistency, proving con-
vergence can be a very difficult mathematical problem. Therefore, it is very helpful that the
convergence is related to the consistency and the stability: It follows from the Lax equivalence
theorem that if the FDE is consistent and stable, it is also convergent.

Grid dispersion. Because FD solution is a discrete approximation to a true solution, the phase
and group velocities in the grid differ from the true velocities in the medium. The grid veloc-
ities depend on the spatial sampling ratio s = h/λ , where λ is the wavelength that is to be
propagated in the grid, and also on Courant number c∆t/h , where c is the true phase velocity.
The grid dispersion is a very important grid phenomenon. It has a cumulative effect on the wave
propagation – the longer the travel distance, the larger the effect of the difference between the
grid and true velocity. Therefore, the grid dispersion has to be analyzed prior to the numerical
calculations. Given the desired travel path one has to choose appropriate spatial sampling of the
minimum wavelength to be propagated with a desired level of accuracy.

Because viscoelastic medium is intrinsically dispersive one has to face a possible superposi-
tion of two dispersion effects. Investigation of the grid dispersion in viscoelastic media is thus
even more important than in the case of the elastic media; see, for example, Robertsson et al.
(1994).

The grid-dispersion relation, that is, relation between grid velocity, spatial grid spacing, time
step and material properties, can be obtained from the stability analysis. Such analysis may be
complicated for heterogeneous media. In such cases effects of the grid dispersion should be
examined by numerical experiments.

For a detailed analysis of stability, grid dispersion and accuracy of the FD schemes solving
the equation of motion on the conventional and staggered-grid schemes in 2D and 3D problems
in homogeneous media see, for example, papers by Marfurt (1984), Crase et al. (1992), Igel et al.
(1995), Geller and Takeuchi (1995, 1998), Klimeš (1996), Takeuchi and Geller (2000), Mizutani
et al. (2000), Moczo et al. (2000a, 2004b).

6.3 The Finite-Element Method (FEM)

In principle we could follow most of standard textbooks on the finite-element method (FEM),
e.g., Strang and Fix (1988), Zienkiewicz and Taylor (1989), Hughes (2000), Felippa (2005),
Reddy (2006), and develop a discrete approximation to the equation of motion in its weak for-
mulation (1.11). Here we present an alternative approach based on the idea of Michlin (1970).
We will directly derive the semi-discrete weak form of the equation of motion from the strong
(differential) form of the equation of motion (1.6). The equation can be written in the vector
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form:

ρ ~̈u = div~~σ + ~f. (6.8)

Equation (6.8) expresses the fact that three acting forces have to be in equilibrium:
1. Density of the inertial force ρ ~̈u = (ρ üx, ρ üy, ρ üz)T .
2. Density of the restoring (elastic) force

~r =

 rxry
rz

 = div~~σ =

 σxx,x +σxy,y +σxz,z
σyx,x +σyy,y +σyz,z
σzx,x +σzy,y +σzz,z

 . (6.9)

3. Density of the (external) loading force ~f = (fx, fy, fz)T .
The stress-strain relation for an isotropic elastic medium, eq. (4.12), can be written in the

matrix form:
σxx
σyy
σzz
σxy
σyz
σxz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




u x,x
u y,y
u z,z

u x,y + u y,x
u y,z + u z,y
u x,z + u z,x

 . (6.10)

Consider spatial domain Ω̄ = Ω ∪ Γ , where Ω is the interior and Γ is the boundary of
the domain. In general, assume Dirichlet boundary condition at part ΓD of boundary Γ , and
Neumann boundary condition at part ΓN of boundary Γ , respectively, where Γ = ΓD ∪ ΓN .
We also assume initial values of displacements and particle velocities in Ω̄ .

The application of the FE method to the specified differential problem can be summarized in
the four basic steps:

1. Divide domain Ω̄ into sub-domains (elements) Ωe such that Ω̄ = ∪Ωe, where e is the
sequential number of an element.

2. Discretize equation for each element Ωe. The discretization yields a system of ordinary
differential (in time) equations for each element - a local system of equations.

3. Assemble local systems of equations into one global system of equations.

4. Solve the global system of equations.

In the following we will explain the four steps in detail.
The element is a geometrical entity defined by positions of nodes. A shape of the element and

the number of nodes will be discussed later. Domain Ω̄ has to be covered by elements without
holes and overlapping.

Assume an approximate solution in one element in the form of linear combinations

u x =
k∑
i=1

u xi si , u y =
k∑
i=1

u yi si , u z =
k∑
i=1

u zi si , (6.11)
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where uxi, uyi and uzi are time-dependent interpolation coefficients, and si are the interpo-
lation functions (or shape functions). Substituting the assumed approximate solution (6.11) into
eq. (6.8) we obtain residual

~R = ρ ~̈u − ~r − ~f . (6.12)

Equation (6.8) is satisfied in the functional space generated by the base si = (s1, s2, s3, ..., sk)T ,
if and only if ~R = 0. In other words, the residual must be orthogonal to the whole functional
space in which a solution is assumed. Therefore∫

Ωe

~R si dΩ = 0 ; i ∈ {1, 2, 3, ..., k} . (6.13)

The system of equations (6.13) can be written in the form∫
Ωe

ρ üx si dΩ =
∫

Ωe

(σxx,x +σxy,y +σxz,z ) si dΩ +
∫

Ωe

fx si dΩ ,∫
Ωe

ρ üy si dΩ =
∫

Ωe

(σyx,x +σyy,y +σyz,z ) si dΩ +
∫

Ωe

fy si dΩ , (6.14)∫
Ωe

ρ üz si dΩ =
∫

Ωe

(σzx,x +σzy,y +σzz,z ) si dΩ +
∫

Ωe

fz si dΩ ,

i ∈ {1, 2, 3, ..., k} .

Using integration by parts and Green’s theorem we can ‘move’ the spatial derivative from stress
tensor to basis functions:∫

Ωe

ρ üx si dΩ =
∫

Ωe

( σxxsi,x +σxysi,y +σxzsi,z ) dΩ

+
∫

Γe

pxsi dΓ +
∫

Ωe

fxsi dΩ ,∫
Ωe

ρ üy si dΩ =
∫

Ωe

( σyxsi,x +σyysi,y +σyzsi,z ) dΩ

+
∫

Γe

pysi dΓ +
∫

Ωe

fysi dΩ , (6.15)∫
Ωe

ρ üz si dΩ =
∫

Ωe

( σzxsi,x +σzysi,y +σzzsi,z ) dΩ

+
∫

Γe

pzsi dΓ +
∫

Ωe

fzsi dΩ ,

i ∈ {1, 2, 3, ..., k} ,

where px, py and pz are components of prescribed traction. Before this operation we required
that solution ux, uy and uz be twice differentiable and shape functions si integrable. After
the operation we require that solution ux, uy and uz as well as shape function si be once
differentiable.
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Fig. 6.2. The transformation of the quadrilateral element in the global coordinates (a) into the master
element in the local coordinates (b).

6.3.1 The FEM Formulation with the Stiffness Matrix

We have to choose the shape functions si. The choice of the shape functions is an important step
which will determine many aspects and properties of the approximate solution. Here we will
use the Lagrange polynomials. In this case the interpolation coefficients uxi, uyi and uzi are
the discretized displacements at the nodes of element. As a consequence, the number of shape
functions has to be equal to the number of the nodes. Let nn be the number of the nodes in
the element. Then the choice of the Lagrange polynomials as the shape functions means the
following nn conditions for each shape function:

si(xek, y
e
k, z

e
k) = δik ; i, k ∈ {1, 2, ..., nn} , (6.16)

where (xek, y
e
k, z

e
k ) are the nodal coordinates. Given the number of the nodes, nn , we choose

such Lagrange polynomials for which the system has a unique solution. The number of the
nodes is very closely related to the geometrical shape of the element and order of approximation.
Examples in the 2D problem are 3-node linear triangle or 4-node bi-linear quadrilateral elements.
Examples in the 3D problem are 4-node linear tetrahedra or 8-node tri-linear hexahedra elements.

Solving system (6.16) yields the shape functions for one element. Obviously, we have to find
shape functions for all elements covering the computational domain. At the same time it is clear
that the calculating, storing and working with different sets of the shape functions for different
elements is very impractical. We can avoid such tedious treatment by the use of the so-called
master element. The idea is simple: an element from the global coordinate system (x, y, z) can
be transformed to a master element in the local coordinate system ( ξ, η, ζ ) . This is illustrated
in Fig. 6.2 for the case of the quadrilateral element. If we can find such a transformation it is
then enough to find or define shape functions only for the master element.

Consider an 8-node hexahedra element (HEX8) with nodes in the corners of the hexahedron.
The HEX8 master element has nodes with the local coordinates given by these vectors/sequences
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ξk ∈ {−1, 1, −1, 1, −1, 1, −1, 1 } ,
ηk ∈ {−1, −1, 1, 1, −1, −1, 1, 1 } ,
ζk ∈ {−1, −1, −1, −1, 1, 1, 1, 1 } .

(6.17)

The shape functions si for the HEX8 master element can be written in the form

s =



s1

s2

s3

s4

s5

s6

s7

s8


=

1
8



(1− ξ) (1− η) (1− ζ)
(1 + ξ) (1− η) (1− ζ)
(1− ξ) (1 + η) (1− ζ)
(1 + ξ) (1 + η) (1− ζ)
(1− ξ) (1− η) (1 + ζ)
(1 + ξ) (1− η) (1 + ζ)
(1− ξ) (1 + η) (1 + ζ)
(1 + ξ) (1 + η) (1 + ζ)


. (6.18)

The transformation of coordinates can be expressed in the form

x = sTx, y = sTy, z = sT z, (6.19)

where x, y and z are vectors of the global coordinates of the nodes in the element,

x = (x1, x2, x3, x4, x5, x6, x7, x8 )T ,

y = ( y1, y2, y3, y4, y5, y6, y7, y8 )T ,

z = ( z1, z2, z3, z4, z5, z6, z7, z8 )T .

(6.20)

Using the vector notation we can also rewrite the approximate solution (6.11) in the form

ux = sTux, uy = sTuy, uz = sTuz, (6.21)

where

ux = (ux1, ux2, ux3, ux4, ux5, ux6, ux7, ux8 )T ,

uy = (uy1, uy2, uy3, uy4, uy5, uy6, uy7, uy8 )T ,

uz = (uz1, uz2, uz3, uz4, uz5, uz6, uz7, uz8 )T
(6.22)

are vectors of the discretized displacements at nodes.
Application of eqs. (6.18), (6.19) and (6.21) to eq. (6.15) yields a system of ordinary differ-

ential equations for one element e :

Me üe + Ke ue = bce + fe . (6.23)

The equation can be written in the partly expanded formM 0 0
0 M 0
0 0 M

üxüy
üz

 +

K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

uxuy
uz

 =

bcx
bcy
bcz

 +

fxfy
fz

 , (6.24)
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where fx, fy and fz are the nodal forces due to body forces acting in the whole element,

fx =
∫

Ωe

fxs dΩ , fy =
∫

Ωe

fys dΩ , fz =
∫

Ωe

fzs dΩ , (6.25)

and bcx, bcy and bcz are the nodal forces due to tractions acting at the boundary of the
element,

bcx =
∫

Γe

pxs dΓ , bcy =
∫

Γe

pys dΓ , bcz =
∫

Γe

pzs dΓ . (6.26)

Matrix Me is the local mass matrix

Me =

M 0 0
0 M 0
0 0 M

= ρ

H 0 0
0 H 0
0 0 H

 , (6.27)

where

H =
∫

ΩM

(
s sT det J

)
dΩ . (6.28)

Here, ΩM relates to a volume of the master element, and the Jacobian of transformation (6.19),
is

J =

x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

 . (6.29)

Matrix Ke is the local stiffness matrix

Ke =

K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

 . (6.30)

The sub-matrices have the form

K11 = (λ+ 2µ) Hxx + µ Hyy + µ Hzz ,

K22 = µ Hxx + (λ+ 2µ) Hyy + µ Hzz ,

K33 = µ Hxx + µ Hyy + (λ+ 2µ) Hzz ,

K12 = λ Hxy + µ Hyx ,

K13 = λ Hxz + µ Hzx ,

K23 = λ Hyz + µ Hzy ,

(6.31)

where

Hij =
∫

ΩM

(
s,i s,Tj det J

)
dΩ ; i, j ∈ {x, y, z} . (6.32)

Integrals (6.28) and (6.32) are evaluated for the master element, that is, in the local coordinates.
The shape function are defined in the local coordinates, see eq. (6.18). In eq. (6.32) we, however,
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need derivatives of the shape functions with respect to the global coordinates. Using the chain
rule we can write

s,x = s,ξ ξ,x + s,η η,x + s,ζ ζ,x ,

s,y = s,ξ ξ,y + s,η η,y + s,ζ ζ,y ,

s,z = s,ξ ξ,z + s,η η,z + s,ζ ζ,z . (6.33)

The derivatives of the local coordinates with respect to the global coordinates are the elements
of the inverse Jacobian of transformation (6.19),

J−1 =

ξ,x ξ,y ξ,z
η,x η,y η,z
ζ,x ζ,y ζ,z

 . (6.34)

If we knew conditions at boundary of an element, we could find a solution for one element
e , that is, a solution in domain Ωe , by solving equations (6.23). Because the conditions include
interaction between the element and all neighboring elements, we have to assemble systems of
equations (6.23) for all the elements into one global system of equations and find a solution for
the whole domain Ω̄ . The global system can be written in the form

M1 0 0 . . .
0 M2 0 . . .
0 0 M3 . . .
...

...
...

. . .



ü1

ü2

ü3

...

 +


K1 0 0 . . .
0 K2 0 . . .
0 0 K3 . . .
...

...
...

. . .



u1

u2

u3

...

 =


bc1

bc2

bc3

...

 +


f1

f2

f3

...

 . (6.35)

This system is not directly solvable in this form because the number of equations is much larger
then the number of unknown variables.

There are nodes in the mesh which belong to more than one element. At such a node the
total (that is, global) nodal force is the sum of forces acting at that node and due to all elements
sharing that node. This fact can be used to reduce the number of equations. By summing up all
the lines and rows belonging to the same node we will obtain a system of ordinary differential
equations for the whole domain Ω̄ :

M ü + Ku = bc + f . (6.36)

Here M and K are the global mass and stiffness matrices, respectively, bc is the global
boundary-condition term, and f is the global loading-force term. The system of equations (6.36)
represents the standard FEM formulation with the global stiffness matrix K .

Using the 2nd-order central-difference approximation for the 2nd time derivative in sys-
tem (6.36) we obtain the explicit recurrent formula for the unknown variable u

m+1 at time
t = (m+ 1) ∆t :

u
m+1 = ∆2t M−1 (−Ku

m + bc
m + f

m) + 2um − um−1 . (6.37)

Consider boundary conditions at boundaries between neighboring elements, and prescribed
boundary conditions at boundary ΓN in the process of assembling the global system of equa-
tions (6.36). The force terms due to tractions acting at boundaries between neighboring elements
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Fig. 6.3. The continuity of the displacement at the connection of two triangular elements.

will not contribute to the boundary term bc because they will cancel each other due to the trac-
tion continuity at boundaries. Consequently, the boundary term bc in system (6.36) will include
only those forces which are due to the prescribed traction pi at boundary ΓN .

The assembling process itself does not ensure the continuity of displacement. Therefore we
have to check the continuity at all possible contacts between neighboring elements, particularly
between elements of different shapes or order of approximation. Consider, for example, two
triangular elements as shown in Fig. 6.3. The assembling process ensures that the displacements
at the nodes shared by elements 1 and 2 are the same for both elements. The solutions in the two
elements make planes ϑ1 and ϑ2 , respectively. The two planes connect along the straight line
over the contact of the elements. Because the straight line is uniquely defined by two points, the
solution is continuous along the contact.

An analogous consideration can be applied to any contact between elements in which differ-
ent types of shape functions are used.

In practical applications the order of M and K can be quite large ( 106 − 108 ). In some
cases the memory requirements can be so large that the problem cannot be solved using the FEM
formulation with the global stiffness matrix. In other cases it is crucial to develop an efficient
computational algorithm with as small computer time and memory requirements as possible.
Consequently, several approaches to reduce memory requirements due to the global matrices
have been elaborated.

Matrix K is a very sparse matrix. Let Nn be the total number of nodes in the mesh. Then the
total number of elements in the matrix is 3Nn×3Nn , whereas the number of non-zero elements
for the HEX8 element is approximately 3Nn × 81 . From this, say, relative point of view,
the storage of only the non-zero elements means great reduction of the memory requirements.
Considering, however, millions to tens of millions of nodes in the relatively modest 3D numerical
modeling, we easily realize that even the latter number of the non-zero elements poses a serious
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problem.
As it is clear from eq. (6.37), the algorithm requires an inverse matrix M−1 . The construc-

tion of the inverse matrix is significantly easier, if the global mass matrix is diagonal. Because it
is not always possible to obtain strictly diagonal mass matrix, the mass matrix is often approx-
imated by a diagonal mass matrix (lumped mass matrix). The diagonal element of the lumped
mass matrix is the sum of all elements in the corresponding row in the original mass matrix.

6.3.2 The FEM Formulation with the Restoring Force

The FEM formulation with the concept of restoring forces at nodes considerably reduces memory
requirements compared to the FEM formulation with the global stiffness matrix. Our formulation
and implementation is based on the outline of the formulation presented by Ralph. J. Archuleta
(Archuleta, 1976, and personal communication) who refers to Frazier and Petersen (1974).

Equation (6.23) in principle represents the FEM formulation with the stiffness matrix for
element e. We can use the second term of the l.h.s. of the equation to define the restoring force.
Considering eq. (6.30) we define the local vector of the restoring force as

re =

 rx
ry
rz

 = −Ke ue = −

K11ux + K12uy + K13uz
KT

12ux + K22uy + K23uz
KT

13ux + KT
23uy + K33uz

 . (6.38)

Substituting eqs. (6.31) and (6.32) into eq. (6.38), and considering

ui,j = s,Tj ui for i, j ∈ {x, y, z} (6.39)

and

Hij uk =
∫

ΩM

s,i uk,j det J dΩ ; i, j, k ∈ {x, y, z} (6.40)

we obtain

rx = −
∫

ΩM

( s,x σxx + s,y σxy + s,z σxz) det J dΩ ,

ry = −
∫

ΩM

( s,x σxy + s,y σyy + s,z σyz) det J dΩ , (6.41)

rz = −
∫

ΩM

( s,x σxz + s,y σyz + s,z σzz) det J dΩ ,

where

σxx = (λ+ 2µ) s,Tx ux + λ s,Ty uy + λ s,Tz uz ,

σyy = λ s,Tx ux + (λ+ 2µ) s,Ty uy + λ s,Tz uz ,

σzz = λ s,Tx ux + λ s,Ty uy + (λ+ 2µ) s,Tz uz ,

σxy = µ ( s,Ty ux + s,Tx uy ) ,

σxz = µ ( s,Tz ux + s,Tx uz ) ,

σyz = µ ( s,Tz uy + s,Ty uz ) .

(6.42)
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Substituting eq. (6.38) into eq. (6.23) we obtain a system of ordinary differential equations for
one element e:

Me üe = re + bce + fe. (6.43)

Equation (6.43) represents the FEM formulation with the restoring force for one element.
We can assemble systems of equations (6.43) for the all elements into one global system.

In principle, we can follow the same procedure as we used for the formulation with the global
stiffness matrix. As a result we obtain the global system of differential equations

M ü = r + bc + f , (6.44)

where r is the global restoring force vector, that is, the global vector of components of the restor-
ing forces at nodes. Approximating again the second time derivative by the central difference
formula we obtain the explicit FE scheme

u
m+1 = ∆2t M−1( rm + bc

m + f
m) + 2um − u

m−1 . (6.45)

Vector r contains 3Nn values. It is 81 times less than the number of non-zero elements
in the global stiffness matrix. As a consequence, the FE scheme (6.45) needs 81 times smaller
memory compared to that required by the FE scheme with the global stiffness matrix.

At the same time note that the stiffness matrix was time-independent and thus it is computed
once at the beginning of computation. The restoring force is time-dependent and therefore it has
to be updated at each time level. This means that the restoring force reduces memory require-
ments but it may be very time consuming.

For completeness note that the stiffness matrix is time-independent only if material parame-
ters are time-independent. If we considered non-linear behavior of a medium, the stiffness matrix
would vary with time, that is, it would have to be updated at each time level. In other words, the
stiffness-matrix formulation would loose the advantage of smaller computer time.

6.3.3 The FEM Formulations for Viscoelastic Medium

Here we will describe how the realistic attenuation based on rheology of the generalized Maxwell
body (GMB-EK) can be implemented into the two FEM formulations.

The rheology of GMB-EK is described in detail in section 4.4.6. For convenience, recall only
the time-domain stress-strain relation for GMB-EK in the displacement formulation, eqs. (4.161)
and (4.166):

σij = κ εkk δij + 2µ
(
εij − 1

3 εkk δij
)

−
n∑
l=1

[
κY κl ζ

kk
l δij + 2µY µl

(
ζ ijl −

1
3 ζ

kk
l δij

)] (6.46)

and

ζ̇ ijl + ωl ζ
ij
l = ωl εij ; l ∈ {1, . . . , n} . (6.47)
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The anelastic coefficients Y κl and Y µl are defined by relations (4.162), (4.164) and (4.165).
Rewrite the stress-strain relation (6.46) in the form more suitable for the FEM implementation,

σij = σEij −
n∑
l= 1

σA lij , (6.48)

where σEij is the elastic part given by Hooke’s law (6.10), and σA lij are the anelastic parts for the
lth relaxation frequency,

σA lxx

σA lyy

σA lzz

σA lxy

σA lxz

σA lyz


=



Y + Y − Y − 0 0 0
Y − Y + Y − 0 0 0
Y − Y − Y + 0 0 0

0 0 0 µY µl 0 0
0 0 0 0 µY µl 0
0 0 0 0 0 µY µl





ζ xxl
ζ yyl
ζ zzl

2ζ xyl
2ζ xzl
2ζ yzl


, (6.49)

where

Y + = κY κl + 4
3 µY

µ
l and Y − = κY κl − 2

3 µY
µ
l . (6.50)

Next, we will use the approach by Kristek and Moczo (2003) to solve eq. (6.47). Because the
stress-tensor components in eq. (6.46) are known for time level m, the equation for anelastic
functions (6.47) has to be specified for time level m:

ζ̇ ijl (m) + ωl ζ
ij
l (m) = ωl εij(m) ; l ∈ {1, . . . , n} . (6.51)

Approximating the time derivative using the second order central difference formula and ζ ijl (m)
by the arithmetic average

ζ ijl (m) =
ζ ijl (m− 1

2 ) + ζ ijl (m+ 1
2 )

2
(6.52)

we obtain a recurrent formula for ζ ijl (m+ 1
2 ) ,

ζ ijl (m+ 1
2 ) =

2ωl∆t ε ij(m) + (2− ωl∆t) ζ ijl (m− 1
2 )

2 + ωl∆t
. (6.53)

Substituting relation (6.53) into (6.52) we obtain ζ ijl (m).
The strain-tensor components can be computed using relations (6.39). We get

εxx = s,Tx ux ,

εyy = s,Ty uy ,

εzz = s,Tz uz ,

εxy = 1
2 ( s,Ty ux + s,Tx uy) ,

εxz = 1
2 ( s,Tz ux + s,Tx uz) ,

εyz = 1
2 ( s,Tz uy + s,Ty uz) .

(6.54)
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The Formulation with the Restoring Force. The restoring force for one element e is given
by eq. (6.41). In the case of viscoelastic media we have to adopt the stress-strain relation (6.48).
The elastic part of the stress tensor is given by Hooke’s law (6.42), the anelastic part is given by
relation (6.49). The anelastic functions are updated to the time level m using relations (6.52)
and (6.53). The rest of the FEM procedure is the same as for the elastic media.

The restoring force is computed using a numerical quadrature. This requires anelastic func-
tions at all integration points. The integration points are determined by a chosen type of the
numerical integration. The update of the anelastic functions to the time-level m+ 1/2, requires
values of the anelastic functions at time time-level m − 1/2. Therefore the anelastic func-
tions have to be stored in computer memory. The standard numerical quadratures for element
HEX8 use 8 integration points. The memory requirements to store the anelastic functions at 8
integration points can by estimated using the number of the necessary quantities: 8 integration
points × 6 components of the anelastic functions × 4 relaxation frequencies × Ne (the number
of elements in the mesh). This gives 192Ne. It is clear that the incorporation of the attenua-
tion dramatically increases the memory requirements: the number of quantities required by the
restoring force itself is only 3Nn. Consequently, computations for vicoelastic media would be
impossible in many reasonable problem configurations. (Note: The number of nodesNn and the
number of elements Ne for large models are approximately the same.)

The very large additional memory requirements due to incorporation of the realistic attenua-
tion can be significantly reduced using the coarse spatial distribution of the anelastic functions.
The latter will be described in detail in sections 7.2.5 and 8.1.4. If the FEM algorithm is not ad-
justed specifically for a structured spatial mesh, the FE mesh is in general treated as an unstruc-
tured mesh. In such a case we evaluate the anelastic functions only at the center of an element,
that is, at one point per element. In other words, for calculation of the anelastic functions using
relation (6.53) we consider constant strain within an element. The value of the constant strain
is that at the center of the element. In this way we can reduce the number of quantities to store
down to 24Ne.

The Formulation with the Stiffness Matrix. Substituting the stress-strain relation (6.48) into
the definition equations for for the restoring force (6.41) we can express the restoring force as
the sum of the elastic and anelastic restoring forces:

ri = rEi −
n∑
l= 1

rA li ; i ∈ {x, y, z} . (6.55)

Here

rEx = −
∫

ΩM

( s,x σExx + s,y σExy + s,z σExz ) det J dΩ ,

rEy = −
∫

ΩM

( s,x σExy + s,y σEyy + s,z σEyz ) det J dΩ ,

rEz = −
∫

ΩM

( s,x σExz + s,y σEyz + s,z σEzz ) det J dΩ ,

rA lx = −
∫

ΩM

( s,x σA lxx + s,y σA lxy + s,z σA lxz ) det J dΩ ,
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rA ly = −
∫

ΩM

( s,x σA lyx + s,y σA lyy + s,z σA lyz ) det J dΩ ,

rA lz = −
∫

ΩM

( s,x σA lxz + s,y σA lyz + s,z σA lzz ) det J dΩ .

(6.56)

Considering eqs. (6.38) and (6.41), and using the fact that σEij is determined by Hooke’s law we
can write rEx

rEy
rEz

 = −Ke ue. (6.57)

Substituting eq. (6.57) into eq. (6.55) and then the modified eq. (6.55) into eq. (6.43) we obtain

Me üe + Ke ue − reA = bce + fe , (6.58)

where

reA =



n∑
l=1

rA l
x

n∑
l=1

rA l
y

n∑
l=1

rA l
z

 . (6.59)

Assembling equations for all elements into one system, analogously to the elastic case, we obtain
the global system of differential equations

M ü + Ku − rA = bc + f , (6.60)

and also the recurrent formula for updating the unknown displacements

u
m+1 = ∆2t M−1(−Ku

m + r
m
A + bc

m + f
m) + 2um − u

m−1. (6.61)

As we can see, vector rA is time-dependent and has to be updated at each time-level. For
completeness we note that the anelastic functions are updated using the equations (6.52) and
(6.53).

It is clear from eq. (6.61) that we have introduced a new global variable - vector rA with
3Nn values. Evaluation of the local vector rA using the numerical quadrature requires anelastic
functions at all integration points. In the case of the HEX8 element we would need to store
192Ne anelastic functions. For comparison we recall that the global stiffness matrix itself has
approximately 243Nn non-zero values. We see that in this case the memory requirements due
the anelastic part (the anelastic functions and vector rA ) and the elastic part (the stiffness matrix)
are comparable. From this point of view we can say that in this case there is no need to use a
special approach to reduce the memory requirements. At the same time we should point out
that the memory requirements due the the stiffness matrix itself are huge. It is possible to apply
the same coarse spatial sampling of the anelastic functions as in the case of the restoring-force
formulation and reduce the additional memory requirements.
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Fig. 6.4. Bilinear transformation.

6.3.4 Efficient Computation of the Restoring Force Using the e-invariants

The e-invariants are new local coordinates for an efficient computation of the local restoring
force. The efficiency is due to the fact that e-invariants contain only minimum necessary infor-
mation for the computation of the local restoring force. The approach was introduced for the 2D
quadrilateral element by Balazovjech and Halada (2006). The approach can be used for different
types of elements and equations.

The e-invariants for the 2D Quadrilateral Elements. Consider the quadrilateral element with
four nodes at the corners. Such element is determined by the positions of its nodes in the global
coordinates

x = (x1, x2, x3, x4 )T , y = ( y1, y2, y3, y4 )T . (6.62)

The first two e-invariants, denote them x(0) and y(0) , generate point α(0) in the global coordi-
nates, that is, in the quadrilateral domain. This point corresponds to the (0, 0) point in the master
element, that is, in the local coordinates, as shown in Fig. 6.4. Coordinates of point α(0) are

x(0) = 1
4 ( x1 + x2 + x3 + x4 ) , y(0) = 1

4 ( y1 + y2 + y3 + y4 ) . (6.63)

Point α(0) determines the location of the quadrilateral element in the computational domain
independently of the rotation and/or change of shape of the element. Therefore the coordinates
of point α(0) are not needed for the computation of the restoring force vector.

Next two e-invariants are vectors

α(1) =
(
x(1), y(1)

)
, α(2) =

(
x(2), y(2)

)
, (6.64)

where

x(1) = 1
4 (− x1 + x2 − x3 + x4 ) , y(1) = 1

4 (− y1 + y2 − y3 + y4 ) ,

x(2) = 1
4 (− x1 − x2 + x3 + x4 ) , y(2) = 1

4 (− y1 − y2 + y3 + y4 ) ,
(6.65)
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or, equivalently,

x(1) = 1
2 (x2 + x4 ) − x(0) , y(1) = 1

2 ( y2 + y4 ) − y(0) ,

x(2) = 1
2 (x3 + x4 ) − x(0) , y(2) = 1

2 ( y3 + y4 ) − y(0) .
(6.66)

Positions of vectors α(1) and α(2) are shown in Fig. 6.4. Vectors α(1) and α(2) correspond to
vectors

a(1) = ( 1, 0 ) and a(2) = ( 0, 1 ) (6.67)

in the master element, respectively. Both vectors are independent of the position of the quadri-
lateral element. The magnitudes of the vectors are∣∣∣α(1)

∣∣∣ =
√
x(1)x(1) + y(1)y(1) ,

∣∣∣α(2)
∣∣∣ =

√
x(2)x(2) + y(2)y(2) . (6.68)

The angle between the vectors is

β = Arcos

x(1)y(1) + x(2)y(2)∣∣α(1)
∣∣ ∣∣α(2)

∣∣
 . (6.69)

The magnitudes
∣∣α(1)

∣∣ and
∣∣α(2)

∣∣ and the angle β are independent of the rotation of the
element.

The last e-invariant is vector

α(12) =
(
x(12), y(12)

)
, (6.70)

where

x(12) = 1
4 ( + x1 − x2 − x3 + x4 ) ,

y(12) = 1
4 ( + y1 − y2 − y3 + y4 ) ,

(6.71)

or, equivalently,

x(12) = x(0) − 1
2 (x2 + x3 ) ,

y(12) = y(0) − 1
2 ( y2 + y3 ) .

(6.72)

The magnitude of vector α(12) ,∣∣∣α(12)
∣∣∣ =

√
x(12)x(12) + y(12)y(12) , (6.73)

is independent of the element position and its rotation. Vector α(12) can be used as a measure of
deformation of an element from the parallelogram because α(12) is zero for the parallelogram
and non-zero for other convex quadrilaterals.
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The Efficient Computation of the Restoring Force for the 2D Quadrilateral Elements Using
the e-invariants in the Elastic Medium. In the case of the quadrilateral element the vector of
discretized displacements can be written in the form

ux = (ux1, ux2, ux3, ux4 )T and uy = (uy1, uy2, uy3, uy4 )T . (6.74)

Considering transformation (6.19) between the element and the master element, and approxima-
tion (6.21) we can define vector c :

c =


x
y
ux
uy

 =


x1 x2 x3 x4

y1 y2 y3 y4

ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4



s1

s2

s3

s4

 = Vs . (6.75)

The components of the vector of the shape functions, see eq. (6.18),

s =


s1

s2

s3

s4

 =
1
4


(1 − ξ) (1 − η)
(1 + ξ) (1 − η)
(1 − ξ) (1 + η)
(1 + ξ) (1 + η)

 , (6.76)

are Lagrange-family interpolation polynomials defined in 〈−1, 1〉×〈−1, 1〉 , that is, in the master
element. Omitting the z-coordinate in the eqs. (6.41) and (6.42) we obtain

rx = −
∫ 1

−1

∫ 1

−1

( s,x σxx + s,y σxy) det J dη dξ ,

ry = −
∫ 1

−1

∫ 1

−1

( s,x σxy + s,y σyy) det J dη dξ ,
(6.77)

and

σxx = (λ+ 2µ) s,Tx ux + λ s,Ty uy ,

σyy = λ s,Tx ux + (λ+ 2µ) s,Ty uy ,

σxy = µ ( s,Ty ux + s,Tx uy ) .

(6.78)

Let s(inv) be a vector of the new shape functions for the master element, that is, in the unit
square,

s(inv) =
[

1, ξ, η, ξη
]T
, (6.79)

where ξ and η are the local coordinates in the master element. We define a transformation
matrix

T =


+1 +1 +1 +1
−1 +1 −1 +1
−1 −1 +1 +1
+1 −1 −1 +1

 (6.80)
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with properties

s(inv) = Ts and 1
4 TTT = I , (6.81)

where I is the unit matrix. As we will see later, these properties are very important. Vector c ,
eq. (6.75), can be expressed using the new shape functions:

c = Vs = VI s = V
(

1
4 TTT

)
s =

(
V 1

4 TT
)

(Ts) = V(inv) s(inv) . (6.82)

In the matrix form

c =


x
y
ux
uy

 =


x(0) x(1) x(2) x(12)

y(0) y(1) y(2) y(12)

u
(0)
x u

(1)
x u

(2)
x u

(12)
x

u
(0)
y u

(1)
y u

(2)
y u

(12)
y




1
ξ
η
ξη

 , (6.83)

where x(k), y(k); k ∈ { 0, 1, 2, 12 } are the e-invariants, see eqs. (6.63), (6.66), and (6.72), and
u

(k)
x , u(k)

y ; k ∈ { 0, 1, 2, 12 } are the time-dependent interpolation coefficients of approximation
to solution using the new shape functions s(inv).

Let us note that the relation between vector c, eq. (6.75), and product of matrix of the
e-invariants and vector of the new shape functions makes the basis of the new way of computation
of the local restoring force.

The spatial derivatives of displacement can be written in the form

ux,x = s,Tx ux = s,Tx
(

1
4 TTT

)
ux =

(
s,TxTT

) (
1
4 Tux

)
= s,(inv)T

x u(inv)
x . (6.84)

Analogously we obtain

ux,y = s,Tx ux = s,(inv)T
y u(inv)

x ,

uy,x = s,Tx uy = s,(inv)T
x u(inv)

y ,

uy,y = s,Ty uy = s,(inv)T
y u(inv)

y .

(6.85)

Substituting relations (6.84) and (6.85) into eq. (6.78) we can compute stress at the quadrature
points:

σxx = (λ+ 2µ) s,(inv)T
x u (inv)

x + λ s,(inv)T
y u (inv)

y ,

σyy = λ s,(inv)T
x u (inv)

x + (λ+ 2µ) s,(inv)T
y u (inv)

y ,

σxy = µ s,(inv)T
y u (inv)

x + µ s,(inv)T
x u (inv)

y .

(6.86)

The spatial derivatives of the shape functions s,x and s,y in definitions (6.77) can be expressed
using properties (6.81) as

s,x = T−1s,(inv)
x = 1

4 TT s,(inv)
x ,

s,y = T−1s,(inv)
y = 1

4 TT s,(inv)
y .

(6.87)
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Substituting these expressions into eq. (6.77) we obtain

rx = − 1
4 TT

∫ 1

−1

∫ 1

−1

(
s,(inv)
x σxx + s,(inv)

y σxy

)
det J dη dξ ,

ry = − 1
4 TT

∫ 1

−1

∫ 1

−1

(
s,(inv)
x σxy + s,(inv)

y σyy

)
det J dη dξ .

(6.88)

The derivatives of the shape functions s(inv) with respect to the global coordinates, that is,
s,(inv)
x and s,(inv)

y , are

s,(inv)
x =


0
ξ,x
η,x

ξ,x η + ξ η,x

 , s,(inv)
y =


0
ξ,y
η,y

ξ,y η + ξ η,y

 , (6.89)

where the derivatives of the local coordinates with respect to the global coordinates are the com-
ponents of the inverse Jacobian of transformation (6.19). From relation (6.34) we obtain for our
2D problem

J−1 =
[
ξ,x ξ,y
η,x η,y

]
. (6.90)

We will illustrate the implementation of the presented approach on the example of the square
element. Transformation of the local coordinates in the master element into the global coordi-
nates in the physical element is given by

x = 1
4 (x1 + x2 + x3 + x4 ) + ξ = x(0) + ξ ,

y = 1
4 ( y1 + y2 + y3 + y4 ) + η = y(0) + η .

(6.91)

It is easy to see that

J =
[
x,ξ x,η
y,ξ y,η

]
=
[

1 0
0 1

]
, det J = 1 , (6.92)

and the derivatives of vector s(inv) with respect to x and y have a very simple form

s,(inv)
x =


0
ξ,x
η,x

(ξη),x

 =


0
1
0
η

 , s,(inv)
y =


0
η,y
ξ,y

(ξη),y

 =


0
0
1
ξ

 . (6.93)

Using the relations (6.93) in (6.84) and (6.85) we can compute derivatives of displacement:

ux,x = u
(1)
x + η u

(12)
x , ux,y = u

(2)
x + ξ u

(12)
x ,

uy,x = u
(1)
y + η u

(12)
y , uy,y = u

(2)
y + ξ u

(12)
y .

(6.94)
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Tab. 6.1. Comparison of the numbers of operations in different algorithms for computation of the restoring
force.

Algorithm dividing multiplying add/substr. assigning
standard for the Q4 element 4 236 236 196

e-invariants for the Q4 element 4 169 150 127
e-invariants for the square element 0 11 32 29

The stress-tensor components then take form

σxx = (λ+ 2µ)
(
u

(1)
x + η u

(12)
x

)
+ λ

(
u

(2)
y + ξ u

(12)
y

)
,

σyy = (λ+ 2µ)
(
u

(2)
y + ξ u

(12)
y

)
+ λ

(
u

(1)
x + η u

(12)
x

)
,

σxy = µ
[(
u

(2)
x + ξ u

(12)
x

)
+

(
u

(1)
y + η u

(12)
y

)]
.

(6.95)

The local restoring force vector is obtained by exact evaluation of integrals (6.88) and the result
is very simple:

rx = 1
4 TT


0

(λ+ 2µ)u(1)
x + λu

(2)
y

µ (u(1)
x + u

(2)
y )

4
3 [(λ+ 2µ) + µ]u(12)

x

 ,

ry = 1
4 TT


0

µ (u(1)
x + u

(2)
y )

(λ+ 2µ)u(2)
y + λu

(1)
x

4
3 [(λ+ 2µ) + µ]u(12)

y

 .
(6.96)

To compare the efficiency of the different approaches, Balazovjech and Halada (2006) devel-
oped an algorithm for computation of the restoring force using the e-invariants for the quadri-
lateral element and analogous algorithm for the square element. They compared the number of
algebraic operations in the two algorithms with the number of operations in the standard algo-
rithm for computation of the restoring force. The comparison is shown in Tab. 6.1.

It is clear that the algorithm for the quadrilateral (Q4) element based on the e-invariants
reduces the number of operations by approximately 30%. In the case of the square element, the
number of operations is reduced by one order. Given the fact that in many practical applications
square elements cover major part of the computational domain, the reduction is significant. It is
likely that considerable-to-significant reduction can be expected also in the 3D problem we are
about to complete.

The Efficient Computation of the Restoring Force for the 2D Quadrilateral Elements Using
the e-invariants in the Viscoelastic Medium. The stress-tensor components in relations for
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the restoring-force components (6.88) will be given by eq. (6.48) in the viscoelastic medium.
The elastic part σEij for the 2D problem is determined by the relations (6.78), (6.84) and (6.85).
The anelastic part can be written in the form σ

A l
xx

σA lyy

σA lxy

 =

 Y
+ Y − 0

Y − Y + 0
0 0 µY µl


 ζ xxl

ζ yyl
2 ζ xyl

 , (6.97)

where

Y + = κY κl + 4
3 µY

µ
l and Y − = κ Y κl − 2

3 µ Y
µ
l . (6.98)

The anelastic functions ζ ijl can be computed using relations (6.52) and (6.53), where the strain-
tensor components can be efficiently computed using the e-invariants:

εxx = s,(inv)T
x u(inv)

x ,

εyy = s,(inv)T
y u(inv)

y ,

εxy = 1
2

(
s,(inv)T
y u(inv)

x + s,(inv)T
x u(inv)

y

)
.

(6.99)

The rest of the procedure is the same as that for the FEM formulation with the restoring force
for the viscoelastic medium. Note that the e-invariants do not reduce additional memory require-
ments due to incorporation of the attenuation. The coarse spatial distribution of the anelastic
functions can be applied.

7 Finite-difference Schemes for Grid Points in a Smooth Medium

Although we focus in this chapter on schemes applicable to smooth medium and do not discuss
the presence of a material interface (discontinuity), we start presentation of each type of the FD
schemes with a general brief historic introduction that relates to a particular type of scheme and
makes no distinction between schemes for a smooth medium or medium with material interfaces.

7.1 Conventional Schemes

Brief Historic Introduction. In the early days of application of the FD method to earthquake
seismology and seismic exploration, the displacement formulation of the equation of motion
and conventional grid were used. Representative studies include papers by Alterman and Karal
(1968), Alterman and Rotenberg (1969), Alterman and Loewenthal (1970), Boore (1970, 1972),
Alford et al. (1974), Ilan et al. (1975), Kelly et al. (1976), and Marfurt (1984). Although
Virieux (1984) introduced staggered-grid schemes into modeling of seismic wave propagation
and staggered-grid schemes became the most popular, some seismologists tried to improve the
conventional displacement schemes even in the staggered-grid era. We can mention, for example,
schemes by Kummer et al. (1987), Zahradnı́k (1995), Zahradnı́k and Priolo (1995), and Moczo
et al. (1999).
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The conventional displacement FD schemes approximated eq. (5.4),

ρ üi = [(κ− 2
3µ) uk,k ],i + (µui,j ),j + (µuj ,i ),j + fi (7.1)

or the alternative form

ρ üi = (λ uk,k ),i + (µui,j ),j + (µuj ,i ),j +fi . (7.2)

The first papers addressed 1D and 2D (SH and P-SV) problems, later schemes for the full 3D
problem appeared.

The 2nd-order Displacement Conventional Scheme. Here we restrict to the scheme pre-
sented by Moczo et al. (1999). It is clear from eqs. (7.1) and (7.2) that we need to find proper
approximations for, say, non-mixed and mixed spatial derivatives. Define, for example, an auxil-
iary function φ,

φ = µu,x . (7.3)

We need FD approximations to non-mixed derivative φ,x and mixed derivative φ,z .
A 2nd-order approximation to φ,x is

φ,x |I,J,K =̇
1
h

( φI+1/2,J,K − φI−1/2,J,K ) . (7.4)

Find now approximations to φI+1/2,J,K and φI−1/2,J,K . From eq. (7.3) we have

φ

µ
= u,x . (7.5)

Integrate eq. (7.5) along the grid line between points I, J,K and I + 1, J,K :∫ xI+1,J,K

xI,J,K

φ

µ
dx =

∫ xI+1,J,K

xI,J,K

u,x dx . (7.6)

Applying the mean-value theorem to the left-hand side integral and approximating the mean
value by φI+1/2,J,K , we obtain

φI+1/2,J,K

∫ xI+1,J,K

xI,J,K

1
µ

dx =̇ UI+1,J,K − UI,J,K . (7.7)

Define an effective material grid parameter as an integral harmonic average

µxHI+1/2,J,K =

[
1
h

∫ xI+1,J,K

xI,J,K

1
µ

dx

]−1

. (7.8)

Then we get from eq. (7.7) the following approximation at time level m:

φI+1/2,J,K =̇
1
h
µxHI+1/2,J,K ( UI+1,J,K − UI,J,K ) . (7.9)
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Finally we get for the non-mixed derivative

∂

∂x

(
µ
∂u

∂x

)∣∣∣∣
I,J,K

=̇
1
h2

[
µxHI+1/2,J,K ( UI+1,J,K − UI,J,K )

− µxHI−1/2,J,K ( UI,J,K − UI−1,J,K )
]
.

(7.10)

It is obvious that the two key points in obtaining the approximation were the integration of
eq. (7.5) and definition of the harmonic average (7.8) as the effective material grid parameter.
Note that the integration leading to the integral harmonic averaging of the elastic modulus C(x)
was originally suggested by Tikhonov and Samarskii (see, e.g. Boore, 1972; Mitchell, 1969,
p. 23) as a mathematical tool to avoid the derivative of modulus µ . The trick was used then by
some authors in 2D and 3D modeling because they recognized good numerical results obtained
with the schemes obtained using the harmonic averaging.

It is more difficult to approximate the mixed-derivative term φ,z . Probably the most accurate
displacement schemes based on the trick were developed by Zahradnı́k (1995), and Zahradnı́k
and Priolo (1995) for the 2D case. Moczo et al. (1999) generalized Zahradnı́k’s approach in the
3D case.

A 2nd-order approximation to φ,z is

φ,z |I,J,K =̇
1
h

( φI,J,K+1/2 − φI,J,K−1/2 ) . (7.11)

Find approximations to φI,J,K+1/2 and φI,J,K−1/2 . From eq. (7.3) we have again

φ

µ
= u,x . (7.12)

Integrate eq. (7.12) along the grid line between points I, J,K and I, J,K + 1 :∫ zI,J,K+1

zI,J,K

φ

µ
dz =

∫ zI,J,K+1

zI,J,K

u,x dz . (7.13)

Approximate both integrals:

h

µzHI,J,K+1/2

φI,J,K+1/2 =̇ h u,x | I,J,K+1/2 . (7.14)

Approximating the right-hand side,

h u,x | I,J,K+1/2 =̇ 1
4 ( UI+1,J,K+1 − UI−1,J,K+1 + UI+1,J,K − UI−1,J,K ) , (7.15)

we get

φI,J,K+1/2 =̇
1

4h
µzHI,J,K+1/2

(
UI+1,J,K+1 − UI−1,J,K+1

+ UI+1,J,K − UI−1,J,K

)
.

(7.16)
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Finally,

∂

∂z

(
µ
∂u

∂x

)∣∣∣∣
I,J,K

=̇
1

4h2

[
µzHI,J,K+1/2 ( UI+1,J,K+1 − UI−1,J,K+1

+ UI+1,J,K − UI−1,J,K )

− µzHI,J,K−1/2 ( UI+1,J,K − UI−1,J,K

+ UI+1,J,K−1 − UI−1,J,K−1)
]
.

(7.17)

The full FD scheme for the U , V and W components of the displacement vector can be written
in a concise form:

Um+1
I,J,K = 2UmI,J,K − Um−1

I,J,K

+
∆2t

ρI,J,K

[
Lxx(λ,U) + 2Lxx(µ,U) + Lyy(µ,U) + Lzz(µ,U)

Lyx(λ, V ) + Lzx(λ,W ) + Lxy(µ, V ) + Lxz(µ,W )
]

+ F x,mI,J,K ,

(7.18)

V m+1
I,J,K = 2V mI,J,K − V m−1

I,J,K

+
∆2t

ρI,J,K

[
Lxx(µ, V ) + Lyy(λ, V ) + 2Lyy(µ, V ) + Lzz(µ, V )

Lyx(µ,U) + Lzx(λ,U) + Lzy(λ,W ) + Lyz(µ,W )
]

+ F y,mI,J,K ,

(7.19)

Wm+1
I,J,K = 2Wm

I,J,K − Wm−1
I,J,K

+
∆2t

ρI,J,K

[
Lxx(µ,W ) + Lyy(µ,W ) + Lzz(λ,W ) + 2Lzz(µ,W )

Lzx(µ,U) + Lzy(µ, V ) + Lxz(λ,U) + Lyz(λ, V )
]

+ F z,mI,J,K ,

(7.20)

where we used the 2nd-order approximation (6.4) for the time derivative, subscript m denotes
a time level, operator Lγ γ(a, φ) ; γ ∈ {x, y, z} , a ∈ {λ, µ} , φ ∈ {U, V,W} has the form

Lγ γ(a, φ) =
1
h2

[
aγ+

(
φm+ − φm

)
− aγ−

(
φm − φm−

) ]
(7.21)

and subscripts ± stand for I ± 1, J,K, I, J ± 1,K or I, J,K ± 1 if γ = x, y or z,
respectively. No subscript means I, J,K. The effective parameters aγ+ and aγ− are defined as

aγ+ =
[

1
h

∫ γn+1

γn

1
a

dγ
]−1

, aγ− =

[
1
h

∫ γn

γn−1

1
a

dγ

]−1

, (7.22)
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where n stands for I, J,K, and n± 1 stands for I ± 1, J,K, I, J ± 1,K or I, J,K ± 1 if
γ = x, y or z, respectively. Operator Lγ η; γ 6= η and γ, η ∈ {x, y, z} has the form

Lγ η(a, φ) =
1

4h2

[
aη+(φm2+ + φm3+ − φm2− − φm3−)

− aη−(φm1+ + φm2+ − φm1− − φm2−)
] (7.23)

where subscripts 1±, 2± and 3± stand for

xz xy yz

1± I ± 1, J,K − 1 I ± 1, J − 1,K I, J ± 1,K − 1
2± I ± 1, J,K I ± 1, J ,K I, J ± 1,K
3± I ± 1, J,K + 1 I ± 1, J + 1,K I, J ± 1,K + 1

zx yx zy

1± I − 1, J,K ± 1 I − 1, J ± 1,K I, J − 1,K ± 1
2± I , J,K ± 1 I , J ± 1,K I, J ,K ± 1
3± I + 1, J,K ± 1 I + 1, J ± 1,K I, J + 1,K ± 1

(7.24)

Determination of the effective density ρI,J,K is not clear from the derivation of the scheme
itself. Intuitively, an arithmetic average for the grid cell can be considered appropriate. Another
important aspect is that in the mentioned papers still the fundamental and true reason for the
harmonic averaging in heterogeneous media was not recognized. We will clarify this in the next
chapter.

The scheme is applicable to smooth heterogeneous elastic medium. If it is applied to homo-
geneous medium, the scheme is 2nd-order accurate in time and space.

Aboudi (1971) found sufficient stability condition for the displacement scheme in a homoge-
neous medium:

∆t ≤ h/
√

2 (α2 + 2β 2) . (7.25)

Here α and β are the P- and S-wave velocities. Numerical tests of several seismologists show
that less restrictive condition,

∆t ≤ h/
√
α2 + β 2, (7.26)

that is, the stability condition for the 2D P-SV displacement scheme (Alterman and Loewenthal,
1970) can be used.

Many modelers adopted a rough estimate, based on visual evaluation of the grid-dispersion
curves, that taking 10-12 grid spacing per minimum wavelength is a reasonable and sufficient
spatial sampling. Such sampling criterion was widely used in earthquake motion simulations.
Effect of the grid dispersion obviously is cumulative. Therefore one has to determine a proper
spatial sampling according to the length of travel path and a desired/necessary level of accuracy.

Moczo et al. (1999) performed numerical tests of the scheme against the semianalytical dis-
crete-wavenumber method of Bouchon (1981). The scheme was shown to be sufficiently accurate
in the heterogeneous media if the P-to-S wave velocity ratio was smaller than approximately 2.2.

In principle, a 4th-order accurate scheme (in the homogeneous medium) is possible to find.
As far as we know, however, the 4th-order conventional displacement schemes have not been
used in seismology.
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7.2 Staggered-grid Schemes

7.2.1 Brief Historic Introduction

As indicated above, the conventional displacement schemes have some limitations. Problems
with instabilities in models with high-velocity contrasts and with grid dispersion in media with
high Poisson’s ratio,

σ =
2− α2/β2

2 (1− α2/β2 )
, (7.27)

that is with large P-to-S wave velocity ratio, led Virieux (1984, 1986) to introduce the staggered-
grid velocity-stress FD schemes for modeling seismic wave propagation. Virieux followed
Madariaga (1976) who introduced the staggered-grid formulation to seismology by his dynamic
modeling of the earthquake rupture. In order to decrease spatial sampling ratio (the number of
grid points per minimum wavelength that is to be propagated with a desired accuracy) and thus
increase computational efficiency, Levander (1988) introduced the 4th-order staggered-grid FD
schemes which in 2D and 3D need at least four and eight times less memory, respectively, com-
pared to the 2nd-order schemes. In terms of CPU the improvement is 5-8 times in 2D and 10-16
in 3D (Moczo et al., 2007). This is related to the grid dispersion.

The staggered-grid FD schemes have become the dominant type of schemes in the FD mod-
eling of seismic wave propagation and earthquake motion. In order to further reduce the mem-
ory requirements, Luo and Schuster (1990) suggested a staggered-grid displacement-stress 2D
P-SV FD scheme which they called a parsimonious scheme. Because the scheme does not in-
tegrate stress in time, the stress-tensor components are only temporary quantities. Thus, the
displacement-stress scheme in 3D needs only 75% of the memory needed by the velocity-stress
scheme. Rodrigues (1993), and Yomogida and Etgen (1993) used the 8th-order 3D displacement-
stress FD schemes, Ohminato and Chouet (1997) applied the 2nd-order while Moczo et al.
(2000a, 2002) the 4th-order approximations. Moczo et al. (2000a) analyzed the grid disper-
sion of the displacement-stress schemes (4th and 2nd order) and pointed out that the stability
and grid dispersion of the displacement-stress, displacement-velocity stress and velocity-stress
schemes are the same. The advantage of the displacement-velocity-stress scheme is that both
displacement and particle-velocity are calculated at no extra cost. At the same time, most FD
modelers use the velocity-stress formulation.

Graves (1996) was the first who properly described how effective material grid parameters
are determined in his 4th-order velocity-stress staggered-grid scheme. In order to increase com-
putational efficiency Pitarka (1999) used a spatial grid with a varying size of the grid spacing
for the same type of scheme. Moczo et al. (2002) presented a 4th-order staggered-grid scheme
based on a heterogeneous formulation of the equation of motion and numerically demonstrated
superior accuracy of their scheme compared to previous staggered-grid schemes. The improve-
ment in accuracy was achieved by a proper treatment of the effective material grid parameters.
The treatment was due to analysis of consistency of the scheme with a boundary conditions on
material interface.
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7.2.2 The 4th-order Velocity-stress Staggered-grid Scheme

If we do not pay a special attention to the question of determination of the effective material grid
parameters, it is relatively very easy to obtain, for example, a 4th-order velocity-stress staggered-
grid scheme by simple application of the 4th-order FD approximation (6.5) to the first spatial
derivatives appearing in the velocity-stress formulation of the equation of motion (5.3). The first
time derivative is approximated by the 2nd-order central-difference formula. We obtain

U
m+1/2
I,J+1/2,K+1/2 = U

m−1/2
I,J+1/2,K+1/2 +

∆t
ρAI,J+1/2,K+1/2

F x,mI,J+1/2,K+1/2 +

+
∆t
h

1
ρAI,J+1/2,K+1/2

[
a
(
T xx,mI+3/2,J+1/2,K+1/2 − T xx,mI−3/2,J+1/2,K+1/2

)
+ b ( T xx,mI+1/2,J+1/2,K+1/2 − T xx,mI−1/2,J+1/2,K+1/2 )

+ a
(
T xy,mI,J+2,K+1/2 − T xy,mI,J−1,K+1/2

)
+ b

(
T xy,mI,J+1,K+1/2 − T xy,mI,J,K+1/2

)
+ a

(
T zx,mI,J+1/2,K+2 − T zx,mI,J+1/2,K−1

)
+ b

(
T zx,mI,J+1/2,K+1 − T zx,mI,J+1/2,K

)]
,

(7.28)

V
m+1/2
I+1/2,J,K+1/2 = V

m−1/2
I+1/2,J,K+1/2 +

∆t
ρAI+1/2,J,K+1/2

F y,mI+1/2,J,K+1/2 +

+
∆t
h

1
ρAI+1/2,J,K+1/2

[
a
(
T yy,mI+1/2,J+3/2,K+1/2 − T yy,mI+1/2,J−3/2,K+1/2

)
+ b

(
T yy,mI+1/2,J+1/2,K+1/2 − T yy,mI+1/2,J−1/2,K+1/2

)
+ a

(
T xy,mI+2,J,K+1/2 − T xy,mI−1,J,K+1/2

)
+ b

(
T xy,mI+1,J,K+1/2 − T xy,mI,J,K+1/2

)
+ a

(
T yz,mI+1/2,J,K+2 − T yz,mI+1/2,J,K−1

)
+ b

(
T yz,mI+1/2,J,K+1 − T yz,mI+1/2,J,K

)]
,

(7.29)

W
m+1/2
I+1/2,J+1/2,K = W

m−1/2
I+1/2,J+1/2,K +

∆t
ρAI+1/2,J+1/2,K

F z,mI+1/2,J+1/2,K +

+
∆t
h

1
ρAI+1/2,J+1/2,K

[
a
(
T zz,mI+1/2,J+1/2,K+3/2 − T zz,mI+1/2,J+1/2,K−3/2

)
+ b

(
T zz,mI+1/2,J+1/2,K+1/2 − T zz,mI+1/2,J+1/2,K−1/2

)
+ a

(
T zx,mI+2,J+1/2,K − T zx,mI−1,J+1/2,K

)
+ b

(
T zx,mI+1,J+1/2,K − T zx,mI,J+1/2,K

)
+ a

(
T yz,mI+1/2,J+2,K − T yz,mI+1/2,J−1,K

)
+ b

(
T yz,mI+1/2,J+1,K − T yz,mI+1/2,J,K

)]
,

(7.30)
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T xx,m+1
I+1/2,J+1/2,K+1/2 = T xx,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κHI+1/2,J+1/2,K+1/2 + 4

3µ
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)]
+
(
κHI+1/2,J+1/2,K+1/2 −

2
3µ

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)
+a

(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]}
,

(7.31)

T yy,m+1
I+1/2,J+1/2,K+1/2 = T yy,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κHI+1/2,J+1/2,K+1/2 + 4

3µ
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)]
+
(
κHI+1/2,J+1/2,K+1/2 −

2
3µ

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)
+a

(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]}
,

(7.32)

T xy,m+1
I,J,K+1/2 = T xy,mI,J,K+1/2 +

+
∆t
h
µHI,J,K+1/2

[
a
(
U
m+1/2
I,J+3/2,K+1/2 − U

m+1/2
I,J−3/2,K+1/2

)
+ b

(
U
m+1/2
I,J+1/2,K+1/2 − U

m+1/2
I,J−1/2,K+1/2

)
+ a

(
V
m+1/2
I+3/2,J,K+1/2 − V

m+1/2
I−3/2,J,K+1/2

)
+ b

(
V
m+1/2
I+1/2,J,K+1/2 − V

m+1/2
I−1/2,J,K+1/2

) ]
,

(7.33)
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T zz,m+1
I+1/2,J+1/2,K+1/2 = T zz,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κHI+1/2,J+1/2,K+1/2 + 4

3µ
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]
+
(
κHI+1/2,J+1/2,K+1/2 −

2
3µ

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)
+a

(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)]}
,

(7.34)

T zx,m+1
I,J+1/2,K = T zx,mI,J+1/2,K +

+
∆t
h
µHI,J+1/2,K

[
a
(
U
m+1/2
I,J+1/2,K+3/2 − U

m+1/2
I,J+1/2,K−3/2

)
+ b

(
U
m+1/2
I,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K−1/2

)
+ a

(
W

m+1/2
I+3/2,J+1/2,K −W

m+1/2
I−3/2,J+1/2,K

)
+ b

(
W

m+1/2
I+1/2,J+1/2,K −W

m+1/2
I−1/2,J+1/2,K

) ]
,

(7.35)

T yz,m+1
I+1/2,J,K = T yz,mI+1/2,J,K +

+
∆t
h
µHI+1/2,J,K

[
a
(

V
m+1/2
I+1/2,J,K+3/2 − V

m+1/2
I+1/2,J,K−3/2

)
+ b

(
V
m+1/2
I+1/2,J,K+1/2 − V

m+1/2
I+1/2,J,K−1/2

)
+ a

(
W

m+1/2
I+1/2,J+3/2,K −W

m+1/2
I+1/2,J−3/2,K

)
+ b

(
W

m+1/2
I+1/2,J+1/2,K −W

m+1/2
I+1/2,J−1/2,K

) ]
.

(7.36)

Here U , V and W denote components of the particle velocity vector, and a = −1/24 and
b = 9/8. Moczo et al. (2002) defined effective grid moduli as integral volume harmonic averages
and effective grid densities as integral volume arithmetic averages, for example,

κHI+1/2, J+1/2, K+1/2 =
[

1
h3

∫ xI+1

xI

∫ yJ+1

yJ

∫ zK+1

zK

1
κ

dxdy dz
]−1

, (7.37)

µHI+1/2, J+1/2, K+1/2 =
[

1
h3

∫ xI+1

xI

∫ yJ+1

yJ

∫ zK+1

zK

1
µ

dxdy dz
]−1

(7.38)
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and

ρAI, J+1/2, K+1/2 =
1
h3

∫ x
I+ 1

2

x
I− 1

2

∫ yJ+1

yJ

∫ zK+1

zK

ρ dxdy dz . (7.39)

These definitions will be discussed in the next chapter.
Stability and grid dispersion of the 4th-order staggered-grid schemes were analyzed and nu-

merically demonstrated in detail by Moczo et al. (2000a). A similar investigation for the 2D
P-SV staggered-grid schemes can be found in Moczo et al. (2000b). The stability condition for
the scheme for homogeneous medium is

∆t ≤ 6
7
√

3
h

α
. (7.40)

An interesting feature of the scheme is the anisotropy of the grid dispersion. Grid dispersion is
strongest for a wave propagating along a coordinate axis and weakest for a wave propagating
along a body diagonal; see Fig. 7.1.

7.2.3 Incorporation of the Attenuation

As explained in section 4.4.7 the attenuation corresponding to rheology of the generalized Max-
well body (GMB-EK) can be incorporated if the stress-strain relation for the perfectly elas-
tic medium is replaced by the stress-strain relation for the GMB-EK medium. In the case of
the velocity-stress scheme we can apply the stress-strain relation in the form (4.167) with the
additional system of ordinary differential equations for the anelastic functions (memory vari-
ables) (4.168).

With the 2nd-order accuracy we can write for the anelastic functions in eqs. (4.168)

ξijl (tm+1/2) =̇
1
2

[
ξijl (tm+1) + ξijl (tm)

]
(7.41)

and

ξ̇ijl (tm+1/2) =̇
1

∆ t

[
ξijl (tm+1)− ξijl (tm)

]
. (7.42)

Substituting eqs. (7.41) and (7.42) into eq. (4.168) we obtain

ξijl (tm+1) =
2ωl ∆t

2 + ωl∆t
ε̇ij (tm+1/2) +

2− ωl ∆t
2 + ωl ∆t

ξijl (tm) ; l = 1, . . . , n . (7.43)

Then value of ξijl (tm+1/2) needed in the stress-strain relation (4.167) can be obtained from
eq. (7.41). Equation (7.41) however means that two values, ξijl (tm) and ξijl (tm+1) , have to be
kept in memory for each spatial grid position at one time. Kristek and Moczo (2003) therefore
modified this procedure. Substituting eq. (7.41) into eq. (7.43) it is easy to eliminate ξijl (tm)
and obtain

ξijl (tm+1/2) = − ωl ∆t
2− ωl ∆t

ε̇ij (tm+1/2) +
2

2− ωl ∆t
ξijl (tm+1) . (7.44)
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Fig. 7.1. Grid dispersion of the S-wave phase velocity in the 4th-order velocity-stress staggered-grid scheme
for three directions of wave propagation – x-axis ( δ = 90◦, ϕ = 0◦ ), the xz-plane diagonal ( δ =
45◦, ϕ = 0◦ ), and body diagonal ( δ = 54.74◦, ϕ = 45◦ ). βGRID is the phase velocity in the grid,
β true phase velocity in the medium, h grid spacing, λS wavelength of the S-wave, and p the stability
ratio.
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Fig. 7.2. A staggered-grid FD cell with positions of the wavefield variables (displacement and/or veloc-
ity vector components U, V,W ; U̇ , V̇ , Ẇ , stress-tensor components T xy, T yz, T zx, T xx, T yy, T zz , and
anelastic functions ξxyl , ξyzl , ξ

zx
l , ξxxl , ξyyl , ξzzl ), and effective material parameters (elastic bulk and shear

moduli κH , µH , µHxy, µHyz, µHzx , and anelastic coefficients Y µl , Y
κ
l , Y

µxy
l , Y µ yzl , Y µ zxl ). Indices A and H

indicate integral volume arithmetic and harmonic averages.

Substitution of ξijl (tm+1/2) from eq. (7.44) into the stress-strain relation (4.167) yields

σ̇ij
(
tm+1/2

)
= κ̃ ε̇kk

(
tm+1/2

)
δij + 2 µ̃

[
ε̇ij
(
tm+1/2

)
− 1

3 ε̇kk
(
tm+1/2

)
δij
]
−

−
n∑
l=1

{
Ỹ κl ξ

kk
l (tm+1) δij + 2 Ỹ µl

[
ξ ijl (tm+1) − 1

3 ξ
kk
l (tm+1) δij

] }
,

(7.45)

where

κ̃ = κ

(
1 +

n∑
l=1

G1l Y
κ
l

)
, µ̃ = µ

(
1 +

n∑
l=1

G1l Y
µ
l

)
,

Ỹ κl = G2l κY
κ
l , Ỹ µl = G2l µY

µ
l ,

G1l =
ωl ∆t

2− ωl ∆t
, G2l =

2
2− ωl ∆t

.

(7.46)

Thus ξijl (tm+1) are updated using scheme (7.43) and the updated values are then used in
eq. (7.45).

7.2.4 The 4th-order Velocity-stress Staggered-grid Scheme for the Viscoelastic Medium

Considering relations (7.45) and (7.46) we can easily generalize the 4th-order velocity-stress
staggered-grid scheme for the elastic medium, eqs. (7.28) - (7.36), for the case of the viscoelas-
tic medium. Positions of the particle-velocity components, stress-tensor components, anelastic
functions, density, and elastic and anelastic material parameters are illustrated in Fig. 7.2. The
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scheme reads

U
m+1/2
I,J+1/2,K+1/2 = U

m−1/2
I,J+1/2,K+1/2 +

∆t
ρAI,J+1/2,K+1/2

F x,mI,J+1/2,K+1/2 +

+
∆t
h

1
ρAI,J+1/2,K+1/2

[
a
(
T xx,mI+3/2,J+1/2,K+1/2 − T xx,mI−3/2,J+1/2,K+1/2

)
+ b ( T xx,mI+1/2,J+1/2,K+1/2 − T xx,mI−1/2,J+1/2,K+1/2 )

+ a
(
T xy,mI ,J+2 ,K+1/2 − T xy,mI ,J−1 ,K+1/2

)
+ b

(
T xy,mI ,J+1 ,K+1/2 − T xy,mI ,J ,K+1/2

)
+ a

(
T zx,mI ,J+1/2,K+2 − T zx,mI ,J+1/2,K−1

)
+ b

(
T zx,mI ,J+1/2,K+1 − T zx,mI ,J+1/2,K

)]
,

(7.47)

V
m+1/2
I+1/2,J,K+1/2 = V

m−1/2
I+1/2,J,K+1/2 +

∆t
ρAI+1/2,J,K+1/2

F y,mI+1/2,J,K+1/2 +

+
∆t
h

1
ρAI+1/2,J,K+1/2

[
a
(
T yy,mI+1/2,J+3/2,K+1/2 − T yy,mI+1/2,J−3/2,K+1/2

)
+ b

(
T yy,mI+1/2,J+1/2,K+1/2 − T yy,mI+1/2,J−1/2,K+1/2

)
+ a

(
T xy,mI+2,J,K+1/2 − T xy,mI−1,J,K+1/2

)
+ b

(
T xy,mI+1,J,K+1/2 − T xy,mI,J,K+1/2

)
+ a

(
T yz,mI+1/2,J,K+2 − T yz,mI+1/2,J,K−1

)
+ b

(
T yz,mI+1/2,J,K+1 − T yz,mI+1/2,J,K

)]
,

(7.48)

W
m+1/2
I+1/2,J+1/2,K = W

m−1/2
I+1/2,J+1/2,K +

∆t
ρAI+1/2,J+1/2,K

F z,mI+1/2,J+1/2,K +

+
∆t
h

1
ρAI+1/2,J+1/2,K

[
a
(
T zz,mI+1/2,J+1/2,K+3/2 − T zz,mI+1/2,J+1/2,K−3/2

)
+ b

(
T zz,mI+1/2,J+1/2,K+1/2 − T zz,mI+1/2,J+1/2,K−1/2

)
+ a

(
T zx,mI+2,J+1/2,K − T zx,mI−1,J+1/2,K

)
+ b

(
T zx,mI+1,J+1/2,K − T zx,mI,J+1/2,K

)
+ a

(
T yz,mI+1/2,J+2,K − T yz,mI+1/2,J−1,K

)
+ b

(
T yz,mI+1/2,J+1,K − T yz,mI+1/2,J,K

)]
,

(7.49)
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T xx,m+1
I+1/2,J+1/2,K+1/2 = T xx,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κ̃HI+1/2,J+1/2,K+1/2 + 4

3 µ̃
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)]
+
(
κ̃HI+1/2,J+1/2,K+1/2 −

2
3 µ̃

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)
+a

(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]}
−

−∆t
n∑
l=1

{(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 + 4

3 Ỹ
(µH)
l I+1/2,J+1/2,K+1/2

)
×

ξxx,m+1
l I+1/2,J+1/2,K+1/2

+
(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 −

2
3 Ỹ

(µH)
l I+1/2,J+1/2,K+1/2) ×[

ξyy,m+1
l I+1/2,J+1/2,K+1/2 + ξzz,m+1

l I+1/2,J+1/2,K+1/2

]}
,

(7.50)

T xy,m+1
I,J,K+1/2 = T xy,mI,J,K+1/2 +

+
∆t
h
µ̃HI,J,K+1/2

[
a
(
U
m+1/2
I,J+3/2,K+1/2 − U

m+1/2
I,J−3/2,K+1/2

)
+ b

(
U
m+1/2
I,J+1/2,K+1/2 − U

m+1/2
I,J−1/2,K+1/2

)
+ a

(
V
m+1/2
I+3/2,J,K+1/2 − V

m+1/2
I−3/2,J,K+1/2

)
+ b

(
V
m+1/2
I+1/2,J,K+1/2 − V

m+1/2
I−1/2,J,K+1/2

) ]
−

−∆t
n∑
l=1

2Y (µH)
l I,J,K+1/2 ξ

xy,m+1
l I,J,K+1/2 ,

(7.51)



282 FD and FE Modeling in Seismology

T yy,m+1
I+1/2,J+1/2,K+1/2 = T yy,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κ̃HI+1/2,J+1/2,K+1/2 + 4

3 µ̃
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)]
+
(
κ̃HI+1/2,J+1/2,K+1/2 −

2
3 µ̃

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)
+a

(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]}
−

−∆t
n∑
l=1

{(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 + 4

3 Ỹ
(µH)
l I+1/2,J+1/2,K+1/2

)
×

ξyy,m+1
l I+1/2,J+1/2,K+1/2

+
(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 −

2
3 Ỹ

(µH)
l I+1/2,J+1/2,K+1/2) ×[

ξxx,m+1
l I+1/2,J+1/2,K+1/2 + ξzz,m+1

l I+1/2,J+1/2,K+1/2

]}
,

(7.52)

T zx,m+1
I,J+1/2,K = T zx,mI,J+1/2,K +

+
∆t
h
µ̃HI,J+1/2,K

[
a
(
U
m+1/2
I,J+1/2,K+3/2 − U

m+1/2
I,J+1/2,K−3/2

)
+ b

(
U
m+1/2
I,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K−1/2

)
+ a

(
W

m+1/2
I+3/2,J+1/2,K −W

m+1/2
I−3/2,J+1/2,K

)
+ b

(
W

m+1/2
I+1/2,J+1/2,K −W

m+1/2
I−1/2,J+1/2,K

) ]
−

−∆t
n∑
l=1

2Y (µH)
l I,J+1/2,K ξzx,m+1

l I,J+1/2,K ,

(7.53)
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T zz,m+1
I+1/2,J+1/2,K+1/2 = T zz,mI+1/2,J+1/2,K+1/2 +

+
∆t
h

{(
κ̃HI+1/2,J+1/2,K+1/2 + 4

3 µ̃
H
I+1/2,J+1/2,K+1/2

)
×[

a
(
W

m+1/2
I+1/2,J+1/2,K+2 − W

m+1/2
I+1/2,J+1/2,K−1

)
+b
(
W

m+1/2
I+1/2,J+1/2,K+1 − W

m+1/2
I+1/2,J+1/2,K

)]
+
(
κ̃HI+1/2,J+1/2,K+1/2 −

2
3 µ̃

H
I+1/2,J+1/2,K+1/2

)
×[

a
(
U
m+1/2
I+2,J+1/2,K+1/2 − U

m+1/2
I−1,J+1/2,K+1/2

)
+b
(
U
m+1/2
I+1,J+1/2,K+1/2 − U

m+1/2
I,J+1/2,K+1/2

)
+a

(
V
m+1/2
I+1/2,J+2,K+1/2 − V

m+1/2
I+1/2,J−1,K+1/2

)
+b
(
V
m+1/2
I+1/2,J+1,K+1/2 − V

m+1/2
I+1/2,J,K+1/2

)]}
−

−∆t
n∑
l=1

{(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 + 4

3 Ỹ
(µH)
l I+1/2,J+1/2,K+1/2

)
×

ξzz,m+1
l I+1/2,J+1/2,K+1/2

+
(
Ỹ

(κH)
l I+1/2,J+1/2,K+1/2 −

2
3 Ỹ

(µH)
l I+1/2,J+1/2,K+1/2) ×[

ξxx,m+1
l I+1/2,J+1/2,K+1/2 + ξyy,m+1

l I+1/2,J+1/2,K+1/2

]}
,

(7.54)

T yz,m+1
I+1/2,J,K = T yz,mI+1/2,J,K +

+
∆t
h
µ̃HI+1/2,J,K

[
a
(

V
m+1/2
I+1/2,J,K+3/2 − V

m+1/2
I+1/2,J,K−3/2

)
+ b

(
V
m+1/2
I+1/2,J,K+1/2 − V

m+1/2
I+1/2,J,K−1/2

)
+ a

(
W

m+1/2
I+1/2,J+3/2,K −W

m+1/2
I+1/2,J−3/2,K

)
+ b

(
W

m+1/2
I+1/2,J+1/2,K −W

m+1/2
I+1/2,J−1/2,K

) ]
−

−∆t
n∑
l=1

2Y (µH)
l I+1/2,J,K ξyz,m+1

l I+1/2,J,K ,

(7.55)

where

κ̃H = κH
(

1 +
n∑
l=1

G1l Y
(κH)
l

)
, µ̃H = µH

(
1 +

n∑
l=1

G1l Y
(µH)
l

)
,

Ỹ
(κH)
l = G2l κ

H Y
(κH)
l , Ỹ

(µH)
l = G2l µ

H Y
(µH)
l ,

G1l =
ωl ∆t

2− ωl ∆t
, G2l =

2
2− ωl ∆t

.

(7.56)
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7.2.5 Coarse Spatial Distribution of the Anelastic Functions

While the GMB-EK rheology (recall its exact equivalence with the GZB rheology) enables much
more realistic model of attenuation than simplified approaches, it is obvious that its incorporation
considerably increases the number of operations and variables/parameters. Zeng (1996), and
independently Day (1998) and Day and Bradley (2001) introduced coarse spatial sampling of
the anelastic functions and coefficients in order to reduce the increased memory requirements
and also computational time. In Day’s (1998) approach, one anelastic function ξijl for one
relaxation frequency ωl is distributed with a spatial period of 2h. Then the number of relaxation
frequencies is n = 8. Considering, for example, location of the stress-tensor component T zx

at 8 corners of a grid cube h × h × h , only one of the 8ξzxl anelastic functions is assigned
to one of the 8 corners ( ξzx1 is assigned to one position, ξzx2 to other position, and so on).
Then the total number of the anelastic functions ξzxl ; l = 1, 2, . . . , 8 in the whole grid is
MX

2 · MY
2 · MZ

2 · 8 = MX ·MY ·MZ , where MX , MY and MZ are the numbers of
the grid cells in the three Cartesian directions, respectively. Because there are 6 independent
stress-tensor components, the total number of all the anelastic functions in the whole grid is
MX · MY · MZ · 6 . Since the anelastic coefficients Y κl and Y µl at the grid positions of
the normal stress-tensor components, and Y µxyl , Y µ yzl and Y µ zxl at the grid positions of the
shear stress-tensor components are distributed in the same coarse manner, the total number of the
anelastic coefficients in the grid is MX ·MY ·MZ · 5. This means that the additional memory
with the coarse distribution and 8 relaxation frequencies is equivalent to the additional memory
required by just one relaxation mechanism (that is, one relaxation frequency) without coarse
sampling. Such reduction of the memory requirements is significant. Graves and Day (2003)
analyzed stability and accuracy of the scheme with the coarse spatial sampling and defined the
effective modulus and the quality factor necessary to achieve sufficient accuracy especially in the
case of very low Q .

In a structurally complex model there are material interfaces going through grid cells in
different orientations with respect to the coordinate system. In such a case and with the originally
suggested spatial sampling it may happen that the medium from one side of the material interface
is characterized over one half of the whole considered frequency range while the medium from
the other side of the interface is characterized over the other half of the considered frequency
range. This means that the behaviors of the two media in contact are described in two disjunctive
frequency sub-intervals. Consequently, the two media cannot physically interact.

The geometry of the coarse spatial sampling shown in the papers by Day (1998) and Day
and Bradley (2001) is only one of several possible. Keeping the same spatial periodicity of the
anelastic quantities, it is possible to choose such distribution that division of a grid cell into
two parts characterized in two disjunctive frequency sub-intervals is always avoided. However,
with any type of geometric distribution the best possible situation would be characterization of
one medium in contact using, for example, relaxation frequencies ω1, ω3, ω5, ω7 and charac-
terization of the other medium in contact using ω2, ω4, ω6, ω8 . This is much better than two
disjunctive frequency subintervals but still not really satisfactory.

It follows from eq. (4.167) or (7.45) that the sum in the anelastic term needs anelastic func-
tions and coefficients at all relaxation frequencies. In the coarse sampling, however, at one grid
position we only have anelastic function only at one relaxation frequency. Still it is possible to
account for all the anelastic functions and coefficients: the anelastic functions and coefficients
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Fig. 7.3. Coarse spatial distribution of grid cells and anelastic functions. The number on a cell face indicates
the relaxation frequency of the anelastic functions localized in the cell. For example, grid cell 1 contains
ξxx1 , ξyy1 , ξzz1 , ξxy1 , ξyz1 , ξzx1 . Reproduced from Kristek and Moczo (2003).

from the neighboring positions are taken with properly weighting coefficients and averaged to-
gether at the grid point where the stress-tensor component is to be evaluated.

Such averaging is with material-independent anelastic functions introduced by Kristek and
Moczo (2003), see section 4.4.7. This is because averaging of the material-independent anelastic
functions does not introduce additional false averaging of the material properties. Note that this
would be the case with the material-dependent anelastic functions introduced by Day and Minster
(1984), Emmerich and Korn (1987), Carcione et al. (1988a,b) and Robertsson et al. (1994).

Kristek and Moczo (2003) also suggested an alternative coarse spatial distribution of the
anelastic functions which only requires n = 4 relaxation frequencies, keeping the same mem-
ory requirements as in Day (1998), and Day and Bradley (2001). The distribution is shown
in Fig. 7.3. Kristek and Moczo (2003) numerically demonstrated accuracy of their FD scheme
with the material-independent anelastic functions and new coarse distribution of the anelastic
functions.

7.3 Partly-staggered-grid Schemes

The partly-staggered grid, see Fig. 6.1, is something in-between the conventional and staggered
grids. Its first-sight advantage compared to the staggered grid relates to incorporation anisotropy
- all stress-tensor components are located at the same grid position. Thus no interpolation of
particle velocities or strains is necessary. This was the reason why Magnier et al. (1994) used the
partly-staggered grid to incorporate anisotropy. However, the partly-staggered grid was applied
in seismology sooner. Andrews (1973) applied it in modeling the fault rupture propagation using
his traction-at-split-node (TSN) method. Independently, Day (1977, 1982) also used this type
of grid for his implementation of the TSN method (discrete fault method, DFM, in terminology
of Day). Zhang (1997) used the partly-staggered grid in his 2D velocity-stress FD modeling.
However, the developed schemes have not attracted much attention in seismic wave propagation
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modeling.
Recently, the use of the partly-staggered grid was promoted by Saenger et al. (2000); see

also Saenger and Bohlen (2004), Kruger et al. (2005), Saenger et al. (2005), Bohlen and Saenger
(2006). They called the grid rotated staggered grid since they obtained the spatial FD operator by
the rotation of the standard staggered-grid operator. The term ‘rotated staggered grid’ is some-
what unfortunate: assuming one spatial grid position for the stress tensor and another position
for the displacement vector, it is easy to find a variety of FD schemes, in general several for a de-
sired order of approximation. Only in one particular case can the spatial FD operator be obtained
by the rotation of the standard staggered-grid operator. However, it is very easy to obtain the
same scheme without explicit consideration of the rotation. In fact, the particular scheme used
by Saenger et al. (2000) is a simple consequence of requirement of the same truncation error with
respect to all coordinate axes.

As far as we know, the application of the partly-staggered grid to account for the material
heterogeneity still has not been sufficiently analyzed. The schemes based on the partly-staggered
grid also have specific numerical problems as, for example, presence of the hour-glass modes.
While the schemes can be viewed as robust tool for complex anisotropic media, so far we cannot
say that they are in general, say, better, than the staggered-grid schemes.

7.4 Optimally-accurate Schemes

7.4.1 Brief Historic Introduction

In the “staggered-grid schemes era” in seismology, Geller and Takeuchi (1995, 1998) and Takeu-
chi and Geller (2000) made a fundamental contribution to the theory of the FD schemes and
developed their optimally accurate FD schemes in application to the Galerkin-type weak form
of Strang and Fix (1973) and Geller and Ohminato (1994). In their schemes displacement is the
sole dependent variable, as opposed to the staggered-grid schemes. The clever idea of Geller
and Takeuchi (1995) was to minimize the error of the numerical solution first of all at eigenfre-
quencies (or resonant frequencies), that is at frequencies at which oscillatory motion of a linear
mechanical system or finite volume of elastic continuum is naturally most amplified. Geller and
Takeuchi (1995) used first-order Born theory and a normal mode expansion to obtain formal es-
timates of the relative error of the numerical solution and a general criterion for what they named
optimally accurate operators. The criterion requires that the inner product of an eigenfunction
and the net error of the discretized equation of motion should be approximately equal to zero
when the operand is the eigenfunction and the frequency is equal to the corresponding eigenfre-
quency. The criterion can be used to derive optimally accurate operators without knowing the
actual values of the eigenfrequencies and eigenfunctions. Geller and Takeuchi (1995) showed
that in the case of a heterogeneous medium the criterion is the logical extension of the criterion
to minimize grid dispersion of phase velocity for a homogeneous medium. Geller and Takeuchi
(1998) used the criterion to develop optimally accurate 2nd-order FDTD scheme for the elastic
1D case. Takeuchi and Geller (2000) then developed optimally accurate FDTD operators for
the 2D and 3D cases. Mizutani (2002) developed a scheme capable to account for an arbitrary
position of the material discontinuity in the grid.

The optimization yields implicit schemes. Geller and Takeuchi (1998) applied the predictor-
corrector algorithm in order to avoid solving large systems of algebraic equations. Thus the
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actual computational schemes are explicit.
Whereas optimally accurate FDTD schemes require at least twice the CPU time per grid point

and time step compared to 2nd-order staggered-grid FD schemes, they yield accuracy improve-
ments on the order of 10 (for 1-D), 50 (for 2-D), or 100 (for 3-D). From this point of view they
are cost-effective.

The optimally accurate schemes have not yet been widely used in practical FD modeling.
The likely reasons are a) the theory might appear relatively complicated compared to that of the
standard staggered-grid schemes, b) the fact that quantification and minimization of computa-
tional error have not heretofore been widely viewed as high priorities, c) inertia with respect to
traditional approaches and the lack of user-friendly codes for optimally accurate schemes.

One (or the only one?) exception is study by Kristek and Moczo (2006) who numeri-
cally compared 2nd-order conventional scheme, 4th-order staggered-grid scheme and 2nd-order
optimally-accurate scheme. The comparison was restricted to 1D problem. Despite the simplic-
ity of the problem and absence of phenomena arising in 2D or 3D problems, the results clearly
indicated serious level of inaccuracy of the staggered-grid schemes compared to the optimally-
accurate schemes.

We think that wider application of the optimally-accurate FD schemes in the future is very
likely.

7.4.2 General Criterion for Optimally-accurate FD Operators

Here we very closely follow the exposition by Moczo et al. (2007) that is based on the work by
Geller and his colleagues. Assume the equation of motion in the form(

ω2 T −H
)
~c = −~g , (7.57)

where ω is the angular frequency, T mass matrix, H stiffness matrix, ~c vector of expansion
coefficients for the trial functions, ~g force vector,

Trs =
∫
V

[
φ

(r)
i

]∗
ρ φ

(s)
i dV , Hrs =

∫
V

[
φ

(r)
i,j
]∗
cijkl φ

(s)
k,l dV ,

gr =
∫
V

[
φ

(r)
i

]∗
fi dV ,

(7.58)

φ
(r)
i is the ith component of the rth trial function, and ∗ means complex conjugate quantity.

The displacement is given by

ui =
∑
r

cr φ
(r)
i . (7.59)

If an infinite trial function expansion were used, eq. (7.57) would yield exact solutions. The trial
function expansion in practical computations will be finite. Consequently there will be some
numerical error. The exact equation of motion can be formally written as(

ω2 T e −He
)
~c e = −~g . (7.60)

Assume the following relations between the numerical and exact quantities:

T = T e + δT , H = He + δH , ~c = ~c e + ~δc , (7.61)
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Here δT , δH and ~δc are errors of the numerical operators and solution, respectively.
Consider normal modes. They satisfy equation(

ω2
p T

e −He
)
~cp = 0 , (7.62)

where ωp is an eigenfrequency of the p-th mode and ~cp is the eigenvector. Assume orthonor-
malization in the form

~c ∗p H
e ~cq = ω2

p ~c
∗
p T

e ~cq = ω2
p δpq . (7.63)

Substituting eqs. (7.61) into the l.h.s. of eq. (7.57), replacing the r.h.s. of eq. (7.57) by the l.h.s.
of eq. (7.60), and neglecting terms with products of errors (the first-order Born approximation)
leads to(

ω2 T e −He
)
~δc = −

(
ω2 δT − δH

)
~c e. (7.64)

Equation (7.64) enables to determine the error of the numerical solution, ~δc, if the exact solution
and errors of the operators, i.e., ~c e, δT and δH are known.

The solution of eq. (7.60) can be represented in terms of an eigenfunction expansion

~c e =
∑
p

d ep ~cp . (7.65)

Substituting eq. (7.65) into eq. (7.60), and using eq. (7.63) leads to

d ep = ~c ∗p ~g /
(
ω2 − ω2

p

)
. (7.66)

The expansion coefficient dep will be large, when ω is close to ωp . Otherwise, it will be negli-
gible.

The solution of eq. (7.64) can also be represented in terms of an eigenfunction expansion

~δc =
∑
p

δdp ~cp . (7.67)

Substituting expansions (7.65) and (7.67) into eq. (7.64), and using eqs. (7.63) leads to

δdp = −
∑
q

(ω2 ~c ∗p δT ~cq − ~c ∗p δH ~cq) d eq
(ω2 − ω2

p )
. (7.68)

The expansion coefficient δdp will be large only when ω is close to ωp . In such a case
obviously only d ep will be large. Therefore, in the vicinity of ω = ωp , the q 6= p terms in eq.
(7.68) can be neglected, i.e., the relative error of the numerical solution in the vicinity of ωp will
approximately be

δdp
d ep

= −
ω2 ~c ∗p δT ~cp − ~c ∗p δH ~cp

ω2 − ω2
p

. (7.69)
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It follows from eq. (7.69) that the relative error will in general greatly increase with ω → ωp .
However, if the numerator of eq. (7.69) is also proportional to ω − ωp , the relative error will
remain approximately constant as ω → ωp . Such proportionality can be achieved if and only if

ω2
p ~c
∗
p δT ~cp − ~c ∗p δH ~cp =̇ 0 (7.70)

for each mode. If eq. (7.70) is approximately satisfied, then eq. (7.69) can be simplified:∣∣∣∣δdpd ep
∣∣∣∣ ≈ ~c ∗p δT ~cp . (7.71)

This means that the relative error for a given grid can be reliably estimated in advance of calcu-
lation.

Geller and Takeuchi (1995) defined optimally accurate operators, say T ′ and H ′ , as opera-
tors that satisfy eq. (7.70):

~c ∗p
(
ω2
p δT

′ − δH ′
)
~cp =̇ 0 . (7.72)

Substituting first two of eqs. (7.61) for operators T ′ and H ′ into eq. (7.72) and using eq. (7.62)
leads to equivalent equation

~c ∗p (ω2
p T
′ −H ′ ) ~cp =̇ 0 . (7.73)

Equation (7.72) will be satisfied if the leading term of the truncation error of the discretized equa-
tion is zero when the operand is an eigenfunction and the frequency is equal to the corresponding
eigenfrequency, in other words if

(ω2
p δT

′ − δH ′ ) ~cp =̇ 0 . (7.74)

On the other hand, however, it is not necessary for eq. (7.74) to be satisfied in order for eq.
(7.72) to be satisfied, because even if the quantity on the l.h.s. of eq. (7.74) is non-zero, its inner
product with ~cp can still be approximately zero.

Consider equation

exact LHS (ω, u) = ~f (7.75)

and such its discretization which gives

discretized LHS (ω, u) = exact LHS (ω, u)+
h2

a
[ exact LHS (ω, u)]′′+ . . . , (7.76)

where the primes denote spatial differentiation. The normal modes satisfy equation

exact LHS (ωp, up) = 0, (7.77)

which implies

[ exact LHS (ωp, up) ]′′ = 0 . (7.78)
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Considering normal modes in eq. (7.76), and substituting eqs. (7.77) and (7.78) into eq. (7.76)
leads to

discretized LHS (ωp, up) =̇ 0 . (7.79)

Equation (7.79) corresponds to condition (7.73). The leading term of the truncation error of each
FD approximation used to discretize the l.h.s. of eq. (7.75) has the same coefficient, h2/a , and
the displacement 2 times more differentiated than in the approximated term. Thus, we have an
indication for constructing optimally accurate discretization.

7.4.3 Optimally-accurate Scheme for the 1D Equation of Motion

Consider for simplicity 1D equation of motion without a body-force term,

E = ρ ü − C u,zz = 0 . (7.80)

The conventional 2nd-order (both in time and space) approximation to the equation is

FDE = ρ
1

∆2t
[ u(t+ ∆t, z)− 2u(t, z) + u(t−∆t, z) ]

− C
1
h2

[ u(t, z + h)− 2u(t, z) + u(t, z − h) ] =̇ 0 . (7.81)

The truncation error of the approximation is

TrunError {FDE} = TaylorExpansion {FDE} − E

=
1
12

∆2t ∂(2,0)
{
ρu(2,0)

}
+

1
12

h2 ∂(0,2)
{
−Cu(0,2)

}
(7.82)

+ O
(
∆4t

)
+ O

(
h4
)
,

where

∂(m,n) =
∂m+n

∂tm ∂zn
, u(m,n) =

∂m+n

∂tm ∂zn
u . (7.83)

The structure of the leading term of the truncation error suggests that it might be possible to find
such an approximation, say, OAFDE, for which the leading term of the truncation error would
be identically equal to zero in the case of the normal modes:

TrunError {OAFDE} = TaylorExpansion {OAFDE} − E

=
1
12

∆2t ∂(2,0)
{
ρu(2,0) − Cu(0,2)

}
+

1
12

h2 ∂(0,2)
{
ρu(2,0) − Cu(0,2)

}
(7.84)

+ O
(
∆4t

)
+ O

(
h4
)
.

Expressions in braces are the l.h.s. of the equation of motion for the normal modes in the ho-
mogeneous medium. The desired structure of the truncation error can be achieved only if grid
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positions shifted in both time and space from the centered position are involved. As the simplest
possible approach, relative to the standard centered approximation, is to try to approximate e.g.
time derivative as some weighted average of the centered time derivatives at three spatial posi-
tions, zI − h , zI and zI + h . Similarly, the spatial derivative should be the same weighted
average of centered spatial derivatives at three time levels, tm − ∆t , tm and tm + ∆t . This
means that the desired operator should involve the following displacement values:

umI (p, q) = u [ tm + (2− p)∆t, zI + (q − 2)h ] ; p , q ∈ {1, 2, 3} , (7.85)

or, in the matrix form,

umI =

 u(tm + ∆t , zI − h) u(tm + ∆t , zI) u(tm + ∆t , zI + h)
u(tm , zI − h) u(tm , zI) u(tm , zI + h)
u(tm −∆t , zI − h) u(tm −∆t , zI) u(tm −∆t , zI + h)

 . (7.86)

For brevity we will use grid indices. Then eq. (7.86) can be written as

umI =

 u
m+1
I−1 um+1

I um+1
I+1

umI−1 umI umI+1

um−1
I−1 um−1

I um−1
I+1

 . (7.87)

Define time and spatial FD operators Am
I and Km

I which can be written in the matrix form as

Am
I =

ρ

∆2t

 a
m+1
I−1 am+1

I am+1
I+1

amI−1 amI amI+1

am−1
I−1 am−1

I am−1
I+1

 (7.88)

and

Km
I =

C

h2

 k
m+1
I−1 km+1

I km+1
I+1

kmI−1 kmI kmI+1

km−1
I−1 km−1

I km−1
I+1

 . (7.89)

Then the FD approximation to the equation of motion at time level m and spatial position I can
be written in the form

OAFDE = [AmI (p, q)−Km
I (p, q) ] umI (p, q) =̇ 0 ; p, q ∈ {1, 2, 3} , (7.90)

where p is the time summation index and q the spatial summation index. The summation
convention is assumed in eq. (7.90), that is, no matrix multiplication is applied. Equation (7.90)
means that we have to determine 18 unknown elements of operators Am

I and Km
I in order to

find the desired FD approximation to the equation of motion.
It can be shown that the structure of the Taylor expansion of OAFDE is such that only

9 coefficients are independent. This is due to the fact that we use 9 space-time positions in
approximation (7.90). Because we have freedom in choosing for which 9 coefficients we impose
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conditions, in our problem we naturally take independent coefficients at u(j, l); j ∈ {0, 1, 2} , l ∈
{0, 1, 2}. In

TaylorExpansion{OAFDE} − E (7.91)

additional terms appear in coefficients at u(2, 0) and u(0, 2) due to inclusion of E. Because,
however, they are known, being proportional to density ρ and modulus C , the structure of
independence of the expansion coefficients does not change.

The desired structure of the truncation error, see eq. (7.84), implies conditions also for coef-
ficients at u(4, 0) , u(2, 2) and u(0, 4) . Given the explained structure of coefficients we, however,
do not need to impose conditions for coefficients at u(4, 0) and u(0, 4) . Thus we have the 18 fol-
lowing conditions, that is, equations for determination of the 18 unknown elements of operators
Am
I and Km

I :

coefTE u(j, l) = 0 ; j ∈ {0, 1, 2} , l ∈ {0, 1, 2} , (j, l) 6= (2, 2) ,

coefTE u(2, 2) =
h2

12
ρ − ∆2t

12
C , (7.92)

∆2t

ρ
Am
I =

[
h2

C
Km
I

]T
.

Here we used abbreviation TE for the Taylor expansion. The last condition means that matrix
on the l.h.s. is the transpose matrix to matrix at the r.h.s., see eqs. (7.88) and (7.89). The latter
is due to our assumption that the time derivative in approximation (7.90) is averaged over time
derivatives at three spatial positions in the same way as is the spatial derivative averaged over
spatial derivatives at three time levels.

Solving system of algebraic equations (7.92) we obtain

Am
I =

ρ

12 ∆2t

 1 10 1
−2 −20 −2

1 10 1

 (7.93)

and

Km
I =

C

12h2

 1 −2 1
10 −20 10
1 −2 1

 . (7.94)

It is easy to check that approximation (7.90) with operators Am
I and Km

I defined by eqs. (7.93)
and (7.94) has the desired truncation error defined by eq. (7.84). As a consequence, approxima-
tion (7.90) becomes in fact 4th-order accurate in the case of normal modes. The approximation
satisfies Geller and Takeuchi’s criterion for the optimally-accurate operators. In this sense we
can call approximation (7.90) with operators (7.93) and (7.94) the optimally-accurate FD ap-
proximation.

If we replace true displacement values u(p, q) , eq. (7.87), by the corresponding discrete
displacement values U(p, q) in eq. (7.90) we obtain the optimally-accurate FD scheme. Then
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the optimally-accurate scheme can be written in a, say, full form,

ρ

12 ∆2t

[
Um+1
I−1 − 2UmI−1 + Um−1

I−1

+ 10
(
Um+1
I − 2UmI + Um−1

I

)
+ Um+1

I+1 − 2UmI+1 + Um−1
I+1

]
− C

12 h2

[
Um+1
I−1 − 2Um+1

I + Um+1
I+1

+ 10
(
UmI−1 − 2UmI + UmI+1

)
+ Um−1

I−1 − 2Um−1
I + Um−1

I+1

]
= 0 .

(7.95)

For a comparison, operators of the conventional FD scheme written in the form of eq. (7.90) are

convAm
I =

ρ

∆2t

 0 1 0
0 −2 0
0 1 0

 (7.96)

and

convKm
I =

C

h2

 0 0 0
1 −2 1
0 0 0

 . (7.97)

The comparison of the optimally-accurate scheme (7.95) with the conventional scheme is
clear – only displacement values in parentheses (in the 2nd and 5th rows) of the optimally-
accurate scheme appear in the conventional scheme.

It is worth to note one interesting aspect of the relation between the conventional and opti-
mally accurate operator. Consider, e.g., displacement u(t, z) . Formally we can approximate its
value with the 2nd-order accuracy:

u(t, z) =
1
12

[ u(t, z + h) + 10 u(t, z) + u(t, z − h) ]

+
h2

12
u(0,2)(t, z) + O(h4) . (7.98)

The r.h.s. of the first row of eq. (7.98) can be called the identity-operator approximation. Then
the first row in the optimally-accurate operator Am

I , eq. (7.93), can be viewed as the identity-
operator approximation to a single displacement value u(t+ ∆t, z) in the conventional scheme,
see eq. (7.96). Similarly, the 2nd and 3rd rows in the optimally-accurate operator Am

I corre-
spond to the identity-operator approximations to displacement values u(t, z) and u(t−∆t, z) ,
respectively.

It is obvious that the optimally-accurate scheme is implicit. Geller and Takeuchi (1998)
used a predictor-corrector scheme based on the first-order Born approximation in order to avoid
solving a large system of linear equations at each time step.
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7.4.4 Predictor-corrector Algorithm for Solving Optimally-accurate Scheme for the 1D
Equation of Motion

Consider equation

(convAm
I − convKm

I ) · convUm
I = 0 , (7.99)

where dot means inner product, convAm
I and convKm

I are defined by eqs. (7.88) and (7.89),
and convUm

I has the same structure as umI defined by eq. (7.87).
System of equations, see eq. (7.90), we want to solve is

(Am
I −Km

I ) ·Um
I = 0 . (7.100)

Define

δAm
I = Am

I − convAm
I ,

δKm
I = Km

I − convKm
I ,

δUm
I = Um

I − convUm
I .

(7.101)

Substituting eqs. (7.101) into eq. (7.100) and using the first-order Born approximation we obtain

(convAm
I − convKm

I ) · δUm
I = − (δAm

I − δK
m
I ) · convUm

I . (7.102)

Then the predictor-corrector algorithm for solving optimally-accurate scheme (7.100) for time
level m+ 1 is as follows:

1. Find solution convUm+1
I from the conventional scheme (7.99), that is, find displacement

at time level m+ 1 at spatial position I . Apply at all spatial positions.

At each spatial position:

2. Evaluate the r.h.s. of eq. (7.102).

3. Because at two previous time steps corrected displacement values were calculated, the
elements of δUm

I corresponding to time levels m− 1 and m are assumed equal to zero.
Then it is easy to obtain δUm+1

I , that is the element of matrix δUm
I corresponding to time

level m+ 1 and spatial position I .

4. Um+1
I = convUm+1

I + δUm+1
I

5. The value of Um+1
I is assigned to convUm+1

I : Um+1
I → convUm+1

I

6. m+ 1 → m, m → m− 1, continue with step 1.
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7.4.5 Optimally-accurate Scheme - the 3D Problem

For simplicity we consider here the 3D homogeneous isotropic medium. From eq. (5.4) for the
heterogeneous isotropic medium we specify the following equation of motion for the homoge-
neous medium:

ρ üi − (λ+ µ) uk,ki − µ ui,kk − fi = 0 , i, k ∈ {x, y, z} . (7.103)

Normal modes are solutions of the equation without the body-force term,

ρ üi − (λ+ µ) uk,ki − µ ui,kk = 0 , i, k ∈ {x, y, z} . (7.104)

Define

Ex =[
ρ∂2
t − (λ+ 2µ)∂2

x − µ∂2
y − µ∂2

z

]
ux − (λ+ µ)∂y∂x uy − (λ+ µ)∂z∂x uz , (7.105)

Ey =
−(λ+ µ)∂y∂x ux +

[
ρ∂2
t − µ∂2

x − (λ+ 2µ)∂2
y − µ∂2

z

]
uy − (λ+ µ)∂z∂y uz , (7.106)

Ez =
−(λ+ µ)∂z∂x ux − (λ+ µ)∂y∂z uy +

[
ρ∂2
t − µ∂2

x − µ∂2
y − (λ+ 2µ)∂2

z

]
uz . (7.107)

Then the vectorial eq. (7.104) can be written in the form of three equations:

Ei = 0 , i ∈ {x, y, z} . (7.108)

As in the case of the 1D problem we want to define a desired structure of the truncation error.
While the desired structure in the 1D case was relatively easy to see and understand, the 3D
problem is more complicated. Therefore it can be useful to look closely at the structure of
Ei , i ∈ {x, y, z}. It is easy to see that Ex, Ey and Ez have a common structure:

Ex = X2 ux + Xxy uy + Xxz uz , (7.109)

Ey = Yyx ux + Y2 uy + Yyz uz , (7.110)

Ez = Zzx ux + Zzy uy + Z2 uz , (7.111)

where subscript ’2’ stands for a linear combination of the non-mixed second derivatives and the
other subscripts directly indicate spatial mixed derivatives. The common structure means that we
can first find optimally accurate approximation to, e.g., Ex, and approximations to Ey and Ez
will be then derived analogously.

Therefore, focus now at Ex . Each of its operators X2 , Xxy and Xxz acts only on one
component of the displacement vector. Consequently, each of the operators will be FD approxi-
mated separately. In the 1D problem we approximated 2nd non-mixed derivatives. Here we have
to find approximation also to the 2nd mixed derivatives.

A FD approximation to Ex can written in the form

FDEx = FDX2 ux + FDXxy uy + FDXxz uz . (7.112)
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As in the 1D case, the truncation error is then

TrunError{FDEx} = TaylorExpansion{FDEx} − Ex (7.113)

and also

TrunError{FDEx} = TaylorExpansion{FDX2 ux} − X2 ux +
+ TaylorExpansion{FDXxy uy} − Xxy uy +
+ TaylorExpansion{FDXxz uz} − Xxz uz = (7.114)
= TrunError{FDX2 ux} +
+ TrunError{FDXxy uy} +
+ TrunError{FDXxz uz} .

In analogy with the 1D problem we can assume

TrunError{FDX2ux} = 1
12

[
∆2t ∂2

t + h2
(
∂2
x + ∂2

y + ∂2
z

) ]
X2ux +

+ O(∆pt · hq) ; p+ q ≥ 4 . (7.115)

If we now assume

TrunError{FDXxy uy} = 1
12

[
∆2t ∂2

t + h2
(
∂2
x + ∂2

y + ∂2
z

) ]
Xxy uy +

+ O(∆pt · hq) ; p+ q ≥ 4 (7.116)

and

TrunError{FDXxz uz} = 1
12

[
∆2t ∂2

t + h2
(
∂2
x + ∂2

y + ∂2
z

) ]
Xxz uz +

+ O(∆pt · hq) ; p+ q ≥ 4 , (7.117)

then the total truncation error will be

TrunError{FDEx} = 1
12

[
∆2t ∂2

t + h2
(
∂2
x + ∂2

y + ∂2
z

) ]
Ex +

+ O(∆pt · hq) ; p+ q ≥ 4 , (7.118)

which, in fact, is what we could intuitively assume from the very beginning: vanishing of the
lowest terms in the truncation error in the case of normal modes. This is the condition we applied
for the 1D optimally-accurate operator.

We will now find an approximation to X2 ux, that is FDX2 ux. A natural choice for the
space-time positions is analogous to the choice in the 1D problem. In such a case, the desired
operator should involve the following displacement values:

[ux]mI,J,K(p, q, r, s) =

ux [ tm + (p− 2)∆t, xI + (q − 2)h, yJ + (r − 2)h, zK + (s− 2)h ) ] ;

p, q, r, s ∈ {1, 2, 3} .
(7.119)

Symmetry of the space-time positions with respect to approximation position (tm, xI , yJ , zK)
enables to achieve the desired order of approximation using minimum number of the space-time
positions. Then the FD approximation can be written in the form (compare with eq. 7.90)

FDX2 ux = GmI,J,K(p, q, r, s) [ux]mI,J,K(p, q, r, s) . (7.120)
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Fig. 7.4. Structure of the nonzero coefficients in Gm
I,J,K .

�

�

�

Fig. 7.5. Structure of the nonzero coefficients in Hm
I,J,K .

The approximation means that we have to determine 81 unknown coefficients of operator Gm
I,J,K .

The coefficients can be determined from a system of equations obtained by imposing conditions
on coefficients in

TaylorExpansion {FDX2 ux} − X2 ux (7.121)

according to the desired structure of the truncation error, eq. (7.115), compare with the 1D
problem. As a result, only 7+19+7 = 33 of the total number of 81 coefficients are found nonzero.
The nonzero coefficients are illustrated in Fig. 7.4.

For finding approximation to Xxy uy , that is FDXxy uy , it is not enough to use space-time
positions defined by eq. (7.119), if the desired truncation error, eq. (7.116), is to be achieved.
We have to use additional space-time positions. The 4+16+4 = 24 nonzero coefficients in a
corresponding discrete operator, say, Hm

I,J,K , are illustrated in Fig. 7.5.

Approximation to Xxz uz , that is FDXxz uz , can be found analogously to the previous
case.

The complete optimally-accurate FD scheme for the considered 3D problem can be written
in the concise form:
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ρ

12∆t2
(6 L•◦◦◦ + L•−◦◦ + L•+◦◦ + L•◦−◦ + L•◦+◦ + L•◦◦− + L•◦◦+) U

−λ + 2µ
12∆x2

(6 L◦•◦◦ + L−•◦◦ + L+
•◦◦ + L◦•−◦ + L◦•+◦ + L◦•◦− + L◦•◦+ ) U

− µ

12∆y2
(6 L◦◦•◦ + L−◦•◦ + L+

◦•◦ + L◦−•◦ + L◦+•◦ + L◦◦•− + L◦◦•+ ) U (7.122)

− µ

12∆z2
(6 L◦◦◦• + L−◦◦• + L+

◦◦• + L◦−◦• + L◦+◦• + L◦◦−• + L◦◦+• ) U

− λ + µ

96∆x∆y
(10 L◦••◦ − L̄◦••◦ + 2 L◦••− + 2 L◦••+ − 2 L−••◦ − 2 L+

••◦ ) V

− λ + µ

96∆x∆z
(10 L◦•◦• − L̄◦•◦• + 2 L◦•−• + 2 L◦•+• − 2 L−•◦• − 2 L+

•◦• ) W = F x,mJ,K,L ,

− λ + µ

96∆x∆y
(10 L◦••◦ − L̄◦••◦ + 2 L◦••− + 2 L◦••+ − 2 L−••◦ − 2 L+

••◦ ) U

+
ρ

12∆t2
(6 L•◦◦◦ + L•−◦◦ + L•+◦◦ + L•◦−◦ + L•◦+◦ + L•◦◦− + L•◦◦+) V

− µ

12∆x2
(6 L◦•◦◦ + L−•◦◦ + L+

•◦◦ + L◦•−◦ + L◦•+◦ + L◦•◦− + L◦•◦+ ) V (7.123)

−λ + 2µ
12∆y2

(6 L◦◦•◦ + L−◦•◦ + L+
◦•◦ + L◦−•◦ + L◦+•◦ + L◦◦•− + L◦◦•+ ) V

− µ

12∆z2
(6 L◦◦◦• + L−◦◦• + L+

◦◦• + L◦−◦• + L◦+◦• + L◦◦−• + L◦◦+• ) V

− λ + µ

96∆x∆z
(10 L◦•◦• − L̄◦•◦• + 2 L◦•−• + 2 L◦•+• − 2 L−•◦• − 2 L+

•◦• ) W = F y,mJ,K,L ,

− λ + µ

96∆x∆y
(10 L◦••◦ − L̄◦••◦ + 2 L◦••− + 2 L◦••+ − 2 L−••◦ − 2 L+

••◦ ) U

− λ + µ

96∆x∆z
(10 L◦•◦• − L̄◦•◦• + 2 L◦•−• + 2 L◦•+• − 2 L−•◦• − 2 L+

•◦• ) V

+
ρ

12∆t2
(6 L•◦◦◦ + L•−◦◦ + L•+◦◦ + L•◦−◦ + L•◦+◦ + L•◦◦− + L•◦◦+) W

− µ

12∆x2
(6 L◦•◦◦ + L−•◦◦ + L+

•◦◦ + L◦•−◦ + L◦•+◦ + L◦•◦− + L◦•◦+ ) W (7.124)

− µ

12∆y2
(6 L◦◦•◦ + L−◦•◦ + L+

◦•◦ + L◦−•◦ + L◦+•◦ + L◦◦•− + L◦◦•+ ) W

−λ + 2µ
12∆z2

(6 L◦◦◦• + L−◦◦• + L+
◦◦• + L◦−◦• + L◦+◦• + L◦◦−• + L◦◦+• ) W = F z,mJ,K,L ,

where
◦ = 0, + = +1, − = −1.

Suboperators in eqs. (7.122) – (7.124) are defined by relations (7.125) – (7.127). The full
circle indicates type of derivative. The full circle at the left / central / right position in the lower
index means second x - derivative / y - derivative / z - derivative, respectively. The full circle in
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Fig. 7.6. Visualisation of the non-mixed optimally-accurate second derivative operators.

the upper index means second time derivative. Two full circles in the lower index mean second
mixed spatial derivatives.

Lp•rsU = Um+p
I−1,J+r,K+s − 2Um+p

I,J+r,K+s + Um+p
I+1,J+r,K+s ,

Lpq•sU = Um+p
I+q,J−1,K+s − 2Um+p

I+q,J,K+s + Um+p
I+q,J+1,K+s , (7.125)

Lpqr•U = Um+p
I+q,J+r,K−1 − 2Um+p

I+q,J+r,K + Um+p
I+q,J+r,K+1 ,

L•qrsU = Um−1
I+q,J+r,K+s − 2UmI+q,J+r,K+s + Um+1

I+q,J+r,K+s ,
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Fig. 7.7. Visualisation of the mixed optimally-accurate second derivative operators.

Lp••sU = −Um+p
I−1,J−1,K+s + Um+p

I−1,J+1,K+s + Um+p
I+1,J−1,K+s − U

m+p
I+1,J+1,K+s ,

Lp•r•U = −Um+p
I−1,J+r,K−1 + Um+p

I−1,J+r,K+1 + Um+p
I+1,J+r,K−1 − U

m+p
I+1,J+r,K+1 ,(7.126)

Lpq••U = −Um+p
I+q,J−1,K−1 + Um+p

I+q,J+1,K−1 + Um+p
I+q,J−1,K+1 − U

m+p
I+q,J+1,K+1 ,

L̄p••sU = −Um+p
I−2,J−2,K+s + Um+p

I−2,J+2,K+s + Um+p
I+2,J−2,K+s − U

m+p
I+2,J+2,K+s ,

L̄p•r•U = −Um+p
I−2,J+r,K−2 + Um+p

I−2,J+r,K+2 + Um+p
I+2,J+r,K−2 − U

m+p
I+2,J+r,K+2 ,(7.127)

L̄pq••U = −Um+p
I+q,J−2,K−2 + Um+p

I+q,J+2,K−2 + Um+p
I+q,J−2,K+2 − U

m+p
I+q,J+2,K+2 .
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Scheme (7.122) – (7.127) is illustrated in Figs. 7.6 and 7.7. Examination of the stability condition
of the scheme yields

∆t ≤ h√
α2 + β2

, (7.128)

where α and β are the P and S wave velocities, respectively. Condition (7.122) is the same as
condition (7.26) for the conventional scheme. This is an important finding: the enlarged stencil
does not affect the stability range.

Obviously, the scheme is implicit. As in the 1D problem, the predictor-corrector algorithm
can be applied in order to avoid simultaneous solution of a large system of algebraic equations.

Note that the scheme we obtained is different from the scheme presented by Takeuchi and
Geller (2000) who applied a different procedure to find a scheme.

8 The FD Targets for the Welded Material Interface and Free Surface

In this chapter we will apply three types of the strong formulations derived in chapter 2 - the
strong formulation (SF), integral strong formulation (ISF) and discontinuous strong formulation
(DSF) - to the welded material interface in order to obtain objects suitable for the FD approxi-
mation, that is, FD targets for the welded interface. We use term FD targets according to Robert
J. Geller, who used this term in our personal communication in 2006.

We will then apply, say, the vacuum formalism to the FD targets for the welded interface in
order to obtain FD targets for the free surface. We will restrict our analysis to the 1D case. This
means that we will treat the planar interface and planar free surface.

Note that we will not apply here the weak formulation (WF). The weak formulation yields a
suitable target in the finite-element method, see section 6.3.

8.1 The FD Targets for the Welded Material Interface

In the following we will refer to the formulations given in Tab. 2.1.

8.1.1 The FD Targets Obtained from the Strong Formulation

Define

E∓ = ρ∓ü∓ − σ,∓z − f∓ (8.1)

to make expressions and equations concise. The strong formulation (SF) is then given by the
system of equations

E− = 0 ; 0 ≤ z ≤ a , E+ = 0 ; a ≤ z ≤ b ,
u−(a) = u+(a) , (8.2)
σ−(a) = σ+(a) .
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Clearly the formulation itself directly leads to the homogeneous approach in constructing FD
schemes: we find schemes that approximate equations of motion in the two media and other
schemes that approximate the boundary conditions. As mentioned previously, the homogeneous
approach is tractable in the 1D problem given the geometrical simplicity of the boundary con-
ditions. It is, however, much more difficult to apply it in the 2D and 3D problems in general
because each particular geometry of a material interface requires specific discretization. It is
much more convenient to apply heterogeneous approach in which presence of the material inter-
face is accounted for only by values of density and (visco)elastic moduli.

Considering strong-form equations of motion evaluated at z = a ,

E−(a) = 0 , (8.3)
E+(a) = 0 , (8.4)

and combining them together with the displacement-continuity boundary condition in (8.2) we
obtain

ρPA(a) ü(a) =
1
2
[
σ,−z (a) + σ,+z (a)

]
+ fPA(a) , (8.5)

with effective density and body force given by

ρPA(a) =
1
2
[
ρ−(a) + ρ+(a)

]
, (8.6)

fPA(a) =
1
2
[
f−(a) + f+(a)

]
. (8.7)

Equations (8.5) - (8.7) together with the traction-continuity boundary condition in (8.2) make
the first heterogeneous strong formulation for the material interface. Equations (8.5) - (8.7)
correspond to those obtained by Moczo et al. (2002).

Instead of localizing the equations at the interface, we can alternatively integrate them over
some small spatial range, for example, over the spatial spacing centered at the interface:

E−(z) = 0 , in
〈
a− h

2
, a

〉
, (8.8)

E+(z) = 0 , in
〈
a , a+

h

2

〉
, (8.9)

Assuming ü(a) and σ,∓z (a) as the integral mean values, keeping integrals of density and body
force, and combining the integrated equations we obtain

ρIA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IA(a), (8.10)

with effective density and body force given now as integral arithmetic averages over the consid-
ered spatial interval,

ρIA(a) =
1
h

[ ∫ a

a−h
2

ρ−(z) dz +
∫ a+ h

2

a

ρ+(z) dz

]
, (8.11)

f IA(a) =
1
h

[ ∫ a

a−h
2

f−(z) dz +
∫ a+ h

2

a

f+(z) dz

]
. (8.12)
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Equations (8.10) - (8.12) together with the traction-continuity boundary condition in (8.2) make
the second heterogeneous strong formulation for the material interface.

Note that evaluation of the effective values of density and body force does not pose a prob-
lem because we always know the spatial distribution of density and body forces in the forward
modeling.

We can realize that the only difference between eqs. (8.5) and (8.10) is in the definition of
the effective density and body force. Obviously this can be related to the heterogeneity of the
media in the halfspaces close to the interface.

8.1.2 The FD Targets Obtained from the Integral Strong Formulation

In the application of the integral strong form we have to choose the weight function. Our first
choice is

w(z) = δ(z − a) . (8.13)

This yields

1
2
[
E−(a) + E+(a)

]
=
[
σ+(a)− σ−(a)

]
δ(0) . (8.14)

If we approximate δ(0) by 1
h and consider eq. (8.1) we obtain

ρPA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ fPA(a) +

1
h

[
σ+(a)− σ−(a)

]
, (8.15)

with effective density ρPA(a) and body force fPA(a) defined as local averages by eqs. (8.6)
and (8.7), respectively.

If we choose the weight function in the form

w(z) = 1 ; z ∈
〈
a− h

2
, a+

h

2

〉
,

= 0 elsewhere, (8.16)

we obtain∫ a

a−h
2

E−(z) dz +
∫ a+ h

2

a

E+(z) dz = σ+(a) − σ−(a) . (8.17)

Assuming again ü(a) and σ,∓z (a) as the integral mean values, and keeping integrals of density
and body force we obtain

ρIA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IA(a) +

1
h

[
σ+(a)− σ−(a)

]
(8.18)

with, as expected, effective density ρIA(a) and body force f IA(a) defined as integral arithmetic
averages by eqs. (8.11) and (8.12), respectively.
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Similar to the situation with the application of the strong formulation, the only difference
between eqs. (8.15) and (8.18) is in the definition of the effective density and body force.

We can view the two first choices of the weight functions as certain extreme options - one
function is localized at one point, the other is uniform over a finite interval. It can be there-
fore interesting to consider a function that would represent something in-between the two first
choices. Consider, for example, the weight function that would be some finite approximation to
δ-function, say δh(z−a) , symmetric and nonzero in interval

〈
a− h

2 , a+ h
2

〉
, zero elsewhere,

and satisfying the same condition as the two first weight functions,∫ ∞
−∞

δh(z − a) dz = 1. (8.19)

This choice would give∫ a

a−h
2

E−(z)δh(z−a)dz +
∫ a+ h

2

a

E+(z)δh(z−a)dz =
W

h

[
σ+(a)− σ−(a)

]
. (8.20)

Value of W depends on a particular approximating function. For example, in the case of a
triangle function W = 2. Assuming ü(a) and σ,∓z (a) as the integral mean values, and keeping
integrals of density and body force we obtain

ρIδhA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IδhA(a) +

W

h

[
σ+(a)− σ−(a)

]
(8.21)

with effective density ρIδhA(a) and body force f IδhA(a) defined by

ρIδhA(a) =
∫ a

a−h
2

ρ−(z) δh(z − a) dz +
∫ a+ h

2

a

ρ+(z) δh(z − a) dz , (8.22)

f IδhA(a) =
∫ a

a−h
2

f−(z) δh(z − a) dz +
∫ a+ h

2

a

f+(z) δh(z − a) dz . (8.23)

It is obvious that also the average values of density and body force, assigned to position z = a,
depend on the choice of the approximating function as the weight function.

8.1.3 The FD Targets Obtained from the Discontinuous Strong Formulation

Evaluation of the DSF equation directly at the interface, that is at z = a , gives

1
2
[
E−(a) + E+(a)

]
=
[
σ+(a)− σ−(a)

]
δ(0) . (8.24)

This is the same as the equation obtained from the ISF equation for the weight function w(z) =
δ(z − a) , see eq. (8.14). Consequently we can obtain

ρPA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ fPA(a) +

1
h

[
σ+(a)− σ−(a)

]
, (8.25)
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with effective density ρPA(a) and body force fPA(a) defined by eqs. (8.6) and (8.7), respec-
tively.

Integration of the DSF equation in interval
〈
a− h

2 , a+ h
2

〉
gives∫ a

a−h
2

E−(z) dz +
∫ a+ h

2

a

E+(z) dz = σ+(a)− σ−(a) . (8.26)

This is the same equation as the equation obtained from the ISF equation for the 2nd choice of
the weight function (equal to 1 in the integration interval and zero elsewhere), see eq. (8.17).
Consequently, we can obtain

ρIA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IA(a) +

1
h

[
σ+(a)− σ−(a)

]
(8.27)

with effective density ρIA(a) and body force f IA(a) defined by eqs. (8.11) and (8.12), respec-
tively.

To make the obtained results more convenient for considerations and comparison, we will
summarize the all obtained FD targets for the welded material interface in a concise presentation.
For convenience, we summarize results of applications of the alternative formulations to the
welded material interface.

FD targets obtained from the strong formulation:

SF-WI-a

E− = 0 ; 0 ≤ z ≤ a , E+ = 0 ; a ≤ z ≤ b ,
u−(a) = u+(a) , (8.28)
σ−(a) = σ+(a) .

SF-WI-b

Evaluation at z = a and combination of equations,

ρPA(a) ü(a) =
1
2
[
σ,−z (a) + σ,+z (a)

]
+ fPA(a) ,

σ−(a) = σ+(a) . (8.29)

SF-WI-c

Integration of E−(z) = 0 in
〈
a− h

2 , a
〉

and E+(z) = 0 in
〈
a , a+ h

2

〉
, assumption of ü(a)

and σ,∓z (a) as mean values, combination of the integrated equations,

ρIA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IA(a) ,

σ−(a) = σ+(a) . (8.30)

FD targets obtained from the integral strong formulation:
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ISF-WI-a

w(z) = δ(z − a), approximation of δ(0) by 1
h in

〈
a− h

2 , a+ h
2

〉
,

ρPA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ fPA(a) +

1
h

[
σ+(a)− σ−(a)

]
. (8.31)

ISF-WI-b

w(z) = δh(z − a), symmetric and nonzero in interval
〈
a− h

2 , a+ h
2

〉
, zero elsewhere,

satisfying condition
∫∞
−∞ δh(z−a)dz = 1; assumption of ü(a) and σ,∓z (a) as mean values,

ρIδhA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IδhA(a) +

W

h

[
σ+(a)− σ−(a)

]
. (8.32)

ISF-WI-c

w(z) = 1 in
〈
a− h

2 , a+ h
2

〉
, w(z) = 0 elsewhere; assumption of ü(a) and σ,∓z (a) as

mean values,

ρIA(a) ü(a) =̇
1
2
[
σ,−z (a) + σ,+z (a)

]
+ f IA(a) +

1
h

[
σ+(a)− σ−(a)

]
. (8.33)

FD targets obtained from the discontinuous strong formulation:

DSF-WI-a

Evaluation at z = a and approximation of δ(0) by 1
h in

〈
a− h

2 , a+ h
2

〉
leads to case ISF-a.

DSF-WI-b

Integration in
〈
a− h

2 , a+ h
2

〉
leads to case ISF-c.

8.1.4 Heterogeneous Formulation

1D Problem. The application of the strong formulation to the welded interface led to three
FD targets. The first one, SF-WI-a, eqs. (8.2) or (8.28), simply was made of two equations of
motion and equations for the displacement- and traction-continuity conditions. This formulation,
as already noted, directly leads to the homogeneous approach in constructing FD schemes.

The two other obtained FD targets, SF-WI-B, eqs. (8.5) – (8.7) or (8.29), and SF-WI-c,
eqs. (8.10) – (8.12) or (8.30), were originally obtained by Moczo et al. (2002) who called them
the heterogeneous formulations of the equation of motion. The reason for this term is the fact that
eqs. (8.5) and (8.10) have the same form as the strong-form equation of motion but they are valid
also for a point directly at the interface. The heterogeneous formulation thus provides basis for a
heterogeneous FD scheme: depending on how we approximate the average of stress derivatives,
we can have the same FD scheme for the grid points away from the material interface and for the
grid point directly at the material interface; presence of the material interface is accounted for
only by values of the effective material grid parameters.



The FD Targets for the Welded Material Interface and Free Surface 307

In the displacement-stress, eqs. (5.1), displacement-velocity-stress, eqs. (5.2), and velocity-
stress, eqs. (5.3), formulations stress tensor is an additional dependent variable. A FD scheme
for calculating stress from a FD approximation to the stress-strain relation or its time derivative
is therefore necessary. It was relatively easy to find, for example, velocity-stress FD scheme for
a smooth continuum, eqs. (7.28) – (7.36). It is, however, not so obvious how to obtain a FD
scheme for the stress-tensor component directly at the material interface, if the scheme is to be
consistent with the traction-continuity boundary condition at the interface.

Here we follow Moczo et al. (2002) and consider equation

ϕ±(z) = c±(z) g±(z) (8.34)

where ϕ±(z) , c±(z) and g±(z) are real functions of a real argument z . Functions ϕ±

satisfy boundary (continuity) condition

ϕ−(0) = ϕ+(0) (8.35)

whereas functions c±(z) and g±(z) may have discontinuities of the first order at , say, interface
z = 0 . If we define

ḡ(0) = 1
2

[
g−(0) + g+(0)

]
. (8.36)

then it follows from eqs. (8.34) and boundary condition that

ϕ− (0) = ϕ+(0) = c̄(0) ḡ(0) , (8.37)

where

c̄ (0) =
2[

1
c−(0)

+
1

c+(0)

] . (8.38)

Equation (8.37) has the same form as eq. (8.34) and, at the same time, it is valid at z = 0 . In
other words, we found a heterogeneous formulation valid at both z 6= 0 (away from the interface)
and z = 0 (directly at the interface) with ḡ(0) given by the arithmetic average of g+(0) and
g−(0) , eq. (8.36), and c̄ given as the harmonic average of c+(0) and c− (0) , eq. (8.38).

Consider now functions c±(z) in the form

c±(z) =
1

r±(z)
. (8.39)

Then we obtain

ϕ−(0) = ϕ+(0) =
1

r̄ (0)
ḡ (0) , (8.40)

where

r̄ (0) = 1
2

[
r−(0) + r+ (0)

]
. (8.41)
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Recall now equation of motion (without the body-force term, for brevity) and Hooke’s law for
the 1D problem:

ρ± ü± = σ,z , (8.42)

σ± = C± u,z . (8.43)

Consider further displacement- and traction-continuity boundary conditions at z = 0 ,

u−(0) = u+(0) (8.44)

and

σ−(0) = σ+(0) . (8.45)

Clearly we can apply eqs. (8.34) to (8.41) to the equation of motion, Hooke’s law, and the
boundary conditions. We easily obtain for the interface

ρ̄(0) ü(0) = σ,z (0) (8.46)

and

σ(0) = C(0) u,z(0) , (8.47)

where density at the interface is equal to the arithmetic average of the densities in the two halfs-
paces, and elastic modulus at the interface is equal to the harmonic average of the moduli in the
two halfspaces:

ρ̄(0) = 1
2

[
ρ−(0) + ρ+(0)

]
, C(0) =

2[
1

C−(0)
+

1
C+(0)

] . (8.48)

The average spatial derivatives of the displacement and stress are

u,z (0) = 1
2 [ u−,z(0) + u+,z(0) ] ,

σ,z(0) = 1
2 [ σ−,z(0) + σ+,z(0) ] .

(8.49)

It is obvious that eqs. (8.46) and (8.47) for a point at the interface have the same form as the
equation of motion and Hooke’s law, eqs. (8.42) and (8.43) at a point away from the interface.

In the displacement formulation, the heterogeneous equation of motion takes the form

ρ̄(0) ü(0) = (Cu,z ),z
∣∣∣
z=0

. (8.50)

The term on the r.h.s. of the equation means average

(Cu,z ),z
∣∣∣
z=0

= 1
2

[
(Cu,z )−,z

∣∣
z=0

+ (Cu,z )+,z
∣∣
z=0

]
. (8.51)
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Recall here the mathematical trick of Tikhonov and Samarski (e.g., Mitchell, 1969, p. 23), see
section 7.1, who obtained the harmonic averaging of the coefficients (here elastic moduli C± ) in
an effort to avoid spatial derivatives of the coefficients in the 2nd-order displacement formulation.
Now we see that the harmonic average in the heterogeneous formulation (8.47) is due to the
traction-continuity condition at the welded material interface.

Moczo et al. (2002) also showed simple physical model of the contact of two elastic media.
Consider two Hooke’s elements (elastic springs), eq. (4.1),

σ− = M
−
ε− , σ+ = M

+
ε+ (8.52)

If they are connected in series, then, see Tab. 4.1, the stresses acting on the springs are equal,

σ = σ− = σ+ , (8.53)

and strains are additive,

ε = ε− + ε+ . (8.54)

We can think about finding an averaged Hooke’s element,

σ = M ε̄ , (8.55)

such that two averaged elements connected in series make a system equivalent to the two ele-
ments defined by eqs. (8.52) connected in parallel. Because the resultant strain ε in the system
of two averaged elements connected in series is

ε = 2 ε̄ , (8.56)

we easily obtain

2 ε̄ =
σ

M−
+

σ

M+ (8.57)

and

σ = M ε̄ ; ε̄ = 1
2

(
ε− + ε+

)
, M =

2[
1

M−
+

1
M+

] . (8.58)

This means that the elastic modulus of the averaged Hooke’s element is the harmonic average of
the elastic moduli of the two, ‘−’ and ‘+’, elements connected in series.

Similarly we could consider a system of two connected particles with masses m− and m+ .
If the particles move together (which may correspond to the displacement continuity), the equiv-
alent system can be made of two identical particles with mass equal to the arithmetic average of
masses m− and m+ .
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3D Problem. Consider surface S with normal vector ~n defining the geometry of the material
interface at which elastic moduli κ and µ have a discontinuity of the first order. The welded-
interface boundary conditions are continuity of displacement ~u (~η) and traction ~T (~η, ~n) across
the surface:

~u− (~η) = ~u+ (~η) , ~T− (~η, ~n) = ~T+ (~η, ~n) . (8.59)

In a much simpler configuration we can consider first the planar surface S parallel to the xy-coor-
dinate plane with a normal vector ~n = (0, 0, 1) . The boundary conditions (8.59) then imply

σ−zx = σ+
zx , σ

−
zy = σ+

zy , σ
−
zz = σ+

zz ,

ε−xx = ε+
xx , ε−yy = ε+

yy , ε−xy = ε+
xy .

(8.60)

At the same time, components σxx, σyy, σxy , εzx, εzy and εzz may be discontinuous across the
interface.

As in the 1D problem we will find Hooke’s law for a point at the material interface in the
form of Hooke’s law in a smooth medium.

Hooke’s law in a smooth isotropic medium, eq. (4.10), can be written in the matrix form. If
we define stress and strain vectors as

~σ = [σxx, σyy, σzz, σxy, σyz, σzx]T , ~ε = [εxx, εyy, εzz, εxy, εyz, εzx]T , (8.61)

Hooke’s law for an isotropic medium can be written as

~σ = E ~ε (8.62)

where matrix E,

E =



κ+ 4
3µ κ− 2

3µ κ− 2
3µ 0 0 0

κ− 2
3µ κ+ 4

3µ κ− 2
3µ 0 0 0

κ− 2
3µ κ− 2

3µ κ+ 4
3µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


, (8.63)

is the so-called elasticity matrix. We will now try to obtain Hooke’s law for a point at the interface
in the form of eq. (8.62).

Define averaged stress and strain vectors at the interface:

~σA = 1
2

(
~σ− + ~σ+

)
, ~ε A = 1

2

(
~ε− + ~ε+

)
. (8.64)

Accounting for the boundary conditions (8.60) in definitions (8.64) we obtain

~σA =
[
σAxx, σ

A
yy, σzz, σ

A
xy, σyz, σzx

]T
,

~ε A =
[
εxx, εyy, ε

A
zz, εxy, ε

A
yz, ε

A
zx

]T
.

(8.65)
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Omitting a little bit longer derivation (see Moczo et al., 2002, for details) we can obtain Hooke’s
law for a point at the interface in the form

~σA = Ẽ ~ε A , (8.66)

where the averaged elasticity matrix is defined by

Ẽ =



Λ + 2µA Λ Ψ 0 0 0
Λ Λ + 2µA Ψ 0 0 0
Ψ Ψ

[
κ+ 4

3µ
]H 0 0 0

0 0 0 2µA 0 0
0 0 0 0 2µH 0
0 0 0 0 0 2µH

 (8.67)

with effective elastic moduli defined by

Λ =

([
κ− 2

3µ

κ+
4
3µ

]A)2

·
[
κ+ 4

3µ
]H + 2

[(
κ− 2

3µ
)
µ

κ+
4
3µ

]A
,

Ψ =
[
κ− 2

3µ

κ+
4
3µ

]A
·
[
κ+ 4

3µ
]H

.

(8.68)

Superscripts A and H denote arithmetic and harmonic averages, respectively.
Hooke’s law (8.66) for a point at the material interface can be viewed as Hooke’s law for a

point in a smooth medium. Averaged or effective elasticity matrix Ẽ assures consistency with
the traction-continuity condition at the interface.

An important difference between matrices E and Ẽ , or, in other words, difference between
any of the two original smooth media and the averaged medium is that matrix Ẽ has 5 indepen-
dent nonzero elements and the averaged medium is transversely isotropic. Matrix E for any of
the two isotropic media in contact has only 2 independent nonzero elements. This means that the
exact heterogeneous formulation for a planar welded material interface parallel with a coordinate
plane increases the number of elastic coefficients necessary to describe the medium.

Consider now a more complicated configuration. Let the planar material interface be in a
general position in the Cartesian coordinate system. The normal vector to the interface, ~n =
(nx, ny, nz), has then all components non-zero. Find a Cartesian coordinate system x′y′z′ in
which ~n is parallel to the z′-axis. Then we can find matrix Ẽ′ with 5 independent non-zero
elements. If we then transform matrix Ẽ′ into matrix Ẽ in the original coordinate system xyz ,
we obtain a symmetric elasticity matrix Ẽ which obviously may have all elements non-zero
though only 5 of them are independent.

All nonzero elements of the averaged elasticity matrix mean nothing less than the following
complication: all strain-tensor components are necessary to calculate each stress-tensor compo-
nent at a point of the interface, and 21 non-zero elastic coefficients are necessary at the point.
Recalling the configuration of the staggered grid we clearly realize that we do not have all strain-
tensor components defined at each grid position of the stress-tensor components. From this point
of view, the staggered grid is not really well suited for incorporation of the traction-continuity
condition at the material interface.
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If the geometry of the interface is defined by a non-planar smooth surface S , the surface
may be locally approximated by a planar surface tangential to surface S at a given point.

We see that incorporation of the traction-continuity condition at the material interface in the
3D problem is much more complicated compared to the 1D problem.

Note that the above analysis is equivalent to the application of the Schoenberg and Muir
(1989) calculus applied to the special case of one interface between two homogeneous isotropic
media. See also Muir et al. (1992).

The above analysis and, at the same time, a pragmatical desire to keep the structure, number
of operations and memory requirements of the standard 4th-order staggered-grid scheme led
Moczo et al. (2002) to an approximate approach. They evaluated an effective grid elastic modulus
(κ or µ) at each grid position of the stress-tensor components as a volume integral harmonic
average of the modulus within a volume of the grid cell centered at the grid position. They
evaluated an effective density at each position of the displacement or particle-velocity component
as a volume integral arithmetic average of the density within a volume of the grid cell centered
at the grid position. Such intuitive approach was motivated by the exact averaging in the 1D
problem and by the presence of such averaging in the elasticity matrix in the 3D problem.

The averaging applies to both smoothly and discontinuously heterogeneous media. The av-
erages are evaluated by numerical integration.

The corresponding 4th-order velocity-stress staggered-grid scheme is given in section 7.2,
eqs. (7.28) – (7.39). Moczo et al. (2002) performed detailed numerical test that confirmed
that the scheme is more accurate than previously published staggered-grid schemes. We refer
here especially to Fig. 6 of their article. The figure illustrates that the scheme is capable to
sense (surprisingly accurately) a position of the material interface anywhere in-between the two
grid points. In other words, the length of the grid spacing cannot be considered as an ‘atom of
resolution’ within which the FD scheme cannot see differences, for example, in the position of
the interface.

For a review of incorporation of the material interface in the FD schemes see Moczo et
al. (2007). Here we explicitly mention an interesting approach to incorporate curved material
interface by Zhang and Symes (1998).

Interface Between Two Viscoelastic Media. So far we do not know a heterogeneous formu-
lation if the stress-strain relation has the form (4.161). In such situation we have to apply an
approximate approach. Here we follow the approach suggested by Kristek and Moczo (2003),
see also Moczo et al. (2004b, 2007), which has been shown sufficiently accurate using numerical
tests against the discrete wavenumber method (Bouchon, 1981; Coutant, 1989).

Consider a contact of two viscoelastic media with the GMB-EK rheology. Each of the
two media is described by a real density, elastic (unrelaxed) moduli κU and µU , and complex
frequency-dependent moduli κ (ω) and µ (ω) . We want to determine density, elastic moduli
κ̄U and µ̄U , and anelastic coefficients Y κ̄l and Y µ̄l ; l = 1, . . . , n , for an averaged medium
that would represent the contact of two media.

We do not see any reason for other than integral volume arithmetic averaging of density using
eq. (7.39).

Average viscoelastic moduli κ̄ (ω) and µ̄ (ω) can be determined by numerical integration of
the viscoelastic moduli in the frequency domain as integral volume harmonic averages. From the
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averaged viscoelastic moduli, quality factors corresponding to these moduli can be determined
at frequencies ω̃k ; k = 1, ..., 2n− 1 , using

QM̄ (ω̃k) =
Re M̄ (ω̃k)
Im M̄ (ω̃k)

; k = 1, 2, . . . , 2n− 1 , (8.69)

where M̄ stands for κ̄ or µ̄ . Having values QM̄ (ω̃k) , k = 1, 2, . . . , 2n− 1 , and assum-
ing the GMB-EK rheology of the averaged medium, we can apply the least-square method to
equations

Q−1
M̄

(ω̃k) =
n∑
l=1

ωl ω̃k + ω2
l Q
−1
M̄

(ω̃k)
ω2
l + ω̃2

k

Y M̄l ; k = 1, . . . , 2n− 1 ,

M̄ ∈ {κ̄, µ̄} ,
(8.70)

compare with eqs. (4.154) and (4.162), to determine anelastic coefficients Y M̄l ; l = 1, . . . , n ,
for the averaged medium.

What remains to determine are the average unrelaxed (elastic) moduli κ̄U and µ̄U . It follows
from eq. (4.39) that

M̄U = lim
ω→∞

M̄ (ω) . (8.71)

Consequently, the harmonic averaging of the viscoelastic modulus gives in the limit the harmonic
averaging of the unrelaxed modulus. This means that the unrelaxed (elastic) moduli M̄U for the
averaged viscoelastic medium can be obtained in the same way as in the perfectly elastic medium,
for example, using formulas (7.37) and (7.38).

If we do not know directly viscoelastic moduli κ (ω) and µ (ω) for each of the two media
in contact but, instead, we know measured or estimated Qα (ω) for the P- and Qβ (ω) for the
S-waves, we have to proceed as follows.

We will assume the GMB rheology of each medium as well as of the averaged medium.
For each of the two media we will first determine Y κl and Y µl following eqs. (4.162) – (4.165).
Then, assuming known unrelaxed (elastic) moduli for each medium, we can determine viscoelas-
tic moduli κ (ω) and µ (ω) using eq. (4.152) for each modulus. Then we can proceed with the
numerical averaging of the moduli in the frequency domain, determination of the corresponding
quality factors, and determination of the anelastic coefficients as it was described before.

8.2 The FD Targets for the Free Surface

In the numerical modeling of the seismic wave propagation and earthquake motion in the Earth
it is sufficient, in most applications, to replace air by vacuum and the real air/water or air/solid
interface, that is, the Earth’s surface, by the vacuum/water or vacuum/solid interface, that is, the
traction-free surface. The traction-free surface is briefly called the free surface. The free surface
was already considered in definition of the canonical model with the material interface but was
not explicitly treated.

Consider surface S with normal vector ~n. Let ~T (~u, ~n) be the traction vector at surface
S corresponding to the displacement vector ~u and normal vector ~n. Then the traction-free
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condition at surface S is

~T (~u, ~n) = 0 (8.72)

or, equivalently,

σji nj = 0 . (8.73)

If surface S is planar and perpendicular to the z-axis, the normal vector is ~n = (0, 0,−1) and
the traction-free condition implies

σzi = 0 ; i ∈ {x, y, z} . (8.74)

In the simplest case, 1D problem, the traction-free condition simply means

σ = 0 . (8.75)

Because we consider here the free surface as the vacuum/solid interface, we can consider, for
example, the ‘−’ medium as vacuum in the above FD targets for the welded interface in order to
formally obtain FD targets for the free surface. We can call such approach the vacuum formalism.
Note that such consideration has been previously applied by many FD modelers directly to the
FD schemes for the interior grid points. Obviously, application of the vacuum formalism to the
FD targets is not in general equivalent to the application of the vacuum formalism to the interior
FD scheme.

The corresponding FD targets for the free surface are summarized here:

FD targets obtained from the strong formulation:

SF-FS-a

E+ = 0 ; a ≤ z ≤ b ,
σ+(a) = 0 . (8.76)

SF-FS-b

ρ+(a) ü(a) = σ,+z (a) + f+(a) ,
σ+(a) = 0 . (8.77)

SF-FS-c

ρIAFS(a) ü(a) =̇ σ,+z (a) + f IAFS(a) ,

ρIAFS(a) =
2
h

∫ a+ h
2

a

ρ+(z) dz , f IAFS(a) =
2
h

∫ a+ h
2

a

f+(z) dz , (8.78)

σ+(a) = 0 .

FD targets obtained from the integral strong formulation:
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ISF-FS-a

ρ+(a) ü(a) =̇ σ,+z (a) + f+(a) +
2
h
σ+(a) . (8.79)

ISF-FS-b

ρIδhAFS(a) ü(a) =̇ σ,+z (a) + f IδhAFS(a) +
2W
h

σ+(a) ,

ρIδhAFS(a) = 2
∫ a+ h

2

a

ρ+(z) δh(z − a) dz , (8.80)

f IδhAFS(a) = 2
∫ a+ h

2

a

f+(z) δh(z − a) dz .

ISF-FS-c

ρIAFS(a) ü(a) =̇ σ,+z (a) + f IAFS(a) +
2
h
σ+(a) . (8.81)

FD targets obtained from the strong formulation:

DSF-FS-a
The same as case ISF-FS-a .

DSF-FS-a
The same as case ISF-FS-c .

In principle, we recognize two basic types of the FD targets for the welded interface and free
surface. In the first one, obtained from SF, we have separate equation of motion and additional
equation(s) for the boundary condition(s). In the other type, obtained from ISF and DSF, a
boundary term with traction(s) appears directly in the ‘modified’ equation of motion. This is
an interesting finding and unification of the three elaborated alternative formulations for our
canonical problem with the welded material interface, SF, ISF and DSF.

9 Finite-difference Schemes for the Free Surface

Here we restrict to the planar free surface either in the 3D or 1D problem. For a recent review
of approaches in modeling non-planar free surface, that is so-called free-surface topography, see
Moczo et al. (2007).

Two principal approaches to simulate the free surface are quite obvious. In the first approach
a FD scheme for the interior grid point is formally applied at the grid point at the free surface (or,
depending on the scheme and order of approximation, at the grid points near the free surface) and
the field (dependent) variables and material parameters above the free surface are somehow de-
fined to simulate vacuum above the surface or directly zero traction at the surface. This approach
leads to the so-called vacuum formalism, medium taper or imaging method. The vacuum formal-
ism applies zero moduli above the free surface. The approach may yield good level of accuracy
in the conventional-grid displacement schemes; see, for example, Zahradnı́k and Priolo (1995)
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in 2D, Moczo et al. (1999) in 3D. Graves (1996) and other authors did not find the approach sat-
isfactory in the staggered-grid modeling. Frankel and Leith (1992) applied density taper in their
conventional-grid displacement FD scheme. Levander (1988) introduced the stress imaging in
his 2D P-SV 4th-order staggered-grid velocity-stress FD scheme. The stress-imaging technique
applies explicit boundary conditions to the stress-tensor component(s) located at the grid plane
coinciding with the free surface, and uses imaged values of the stress-tensor components above
the free surface assuming their antisymmetry about the free surface.

In the second approach such FD scheme is applied at grid points at or near the free surface
which does not require any values above the free surface. Such scheme in the 1D problem can
be called one-sided scheme. An adjusted scheme may be appropriate term for a scheme in the
3D problem because the scheme combines one-sided approximations in the direction perpen-
dicular to the free surface with, for example, centered approximations in the coordinate direc-
tions parallel to the free surface. Kristek et al. (2002) and Moczo et al. (2004a) presented the
4th-order adjusted staggered-grid scheme and demonstrated its better accuracy compared to the
stress imaging.

9.1 Conventional Scheme for the 3D Problem - Application of the Vacuum Formalism

The conventional displacement FD scheme (7.18) - (7.24) can be also applied to the grid points
located directly at the planar free surface. If the grid point (I, J, K) is located at the free
surface, operators Lxx, Lyy , Lxy and Lyx defined by eqs. (7.21) and (7.23) can be directly
applied. The other operators, Lxz , Lyz , Lzx, Lzy , and Lzz can be obtained by application
of the vacuum formalism (λ = 0 and µ = 0 above the free surface) to the second type of
approximation of the mixed spatial derivatives suggested by Zahradnı́k (1995). They are

Lzz(a, φ) =
1
h2

azI,J,K
(
φmI,J,K+1 − φmI,J,K

)
, (9.1)

Lzη(a, φ) =
1

4h2

[
aη+ ( φm2+ + φm3+ − φm2 − φm3 )

− aη− ( φm1+ + φm2+ − φm1 − φm2 )
]
,

(9.2)

and

Lηz(a, φ) =
1

4h2

[
az+ ( φm3 + φm3+ − φm2 − φm2+ )

− az− ( φm2 + φm2+ − φm1 − φm1+ )
]
,

(9.3)

where subscripts 1, 2, 3, 1+, 2+, 3+ stand for indices as follows:

η = x η = y η = x η = y

1 I − 1, J, K I, J − 1, K 1+ I − 1, J, K + 1 I, J − 1, K + 1
2 I , J, K I, J , K 2+ I , J, K + 1 I, J , K + 1
3 I + 1, J, K I, J + 1, K 3+ I + 1, J, K + 1 I, J + 1, K + 1

(9.4)
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Effective parameters are:

if η = x then aη+ = axI,J,K+1/2 , aη− = axI−1,J,K+1/2 ,

az+ = azI+1/2,J,K , az− = azI+1/2,J,K ,

if η = y then aη+ = ayI,J,K+1/2 , aη− = ayI,J−1,K+1/2 ,

az+ = azI,J+1/2,K , az− = azI,J−1/2,K .

(9.5)

and

axI,J,K+1/2 =

[
1
h

∫ xI+1,J,K+1/2

xI,J,K+1/2

1
a

dx

]−1

, (9.6)

ayI,J,K+1/2 =

[
1
h

∫ yI,J+1,K+1/2

yI,J,K+1/2

1
a

dy

]−1

, (9.7)

azI,J,K =

[
1
h

∫ zI,J,K+1

zI,J,K

1
a

dz

]−1

. (9.8)

Only half-values of density ρ has to be considered in scheme (7.18) - (7.24) when applied to the
grid points on the free surface. Only half-values of parameters ax and ay ( a being either λ or
µ ) have to be considered in operators Lxx , Lyy , Lxy and Lyx when applied to the grid points
on the free surface.

Moczo et al. (1999) numerically demonstrated very good level of accuracy of the scheme for
media with P/S wave velocity ratio smaller than 2.

9.2 Staggered-grid Schemes for the 3D Problem

9.2.1 Stress Imaging

In the stress imaging explicit boundary conditions are applied to the stress-tensor component(s)
located at the grid plane coinciding with the free surface. Moreover, antisymmetry of the stress-
tensor components with respect to the free surface is assumed. Considering the free surface
located at z = 0, the antisymmetry condition can be written as

σzi (−z) = −σzi (z) ; i ∈ {x, y, z} . (9.9)

The antisymmetry ensures the traction-free boundary condition (8.72). Robertsson (1996) sum-
marized three possibilities for treating the displacement or particle velocity values at grid posi-
tions above the free surface required by the 4th-order staggered-grid FD scheme. 1. The values
are calculated using the 2nd-order approximations to the boundary condition and imaged stress-
tensor components. Examples of the approach are schemes by Levander (1988), Graves (1996),
and Kristek et al. (2002). 2. The values are mirrored as symmetric values with respect to the free
surface. Examples are schemes by Crase (1990) and Rodrigues and Mora (1993). The problem
with this approach is (Robertsson, 1996) that the symmetric values in fact violate the boundary
conditions. 3. Robertsson (1996) assumed zero values.
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In the staggered grid we have two natural locations for the free surface. In one, the horizontal
displacement or particle-velocity components, and stress-tensor components Txx , Tyy , Tzz
and Txy are located at the free surface. In the other the vertical displacement or particle-velocity
component and Tzx and Tzy are at the free surface. Rodrigues (1993) developed a 3D 8th-order
staggered-grid displacement-stress scheme and used the stress-imaging technique for the first
location. He found it is necessary to use more than twice the number of grid points compared to
inside the medium in order to avoid a significant numerical dispersion. Therefore, he combined
the stress-imaging technique with a vertically refined grid near the free surface and achieved
good accuracy. Such approach reduces the number of grid spacing per minimum wavelength but
needs three times smaller time step (the factor of 3 is due to the most natural refinement of the
staggered-grid).

Kristek et al. (2002) numerically tested the stress imaging for both locations of the free sur-
face against the discrete-wavenumber method. They demonstrated that in the 3D case the stress-
imaging technique in the 4th-order FD modeling requires at least twice as many grid points per
wavelength compared to what is sufficient inside the medium if the Rayleigh waves are to be
propagated without significant grid dispersion even in the case of the simple homogeneous half-
space. They also tested the 4th-order version of the Rodrigues (1993) approach and found it
sufficiently accurate. As already mentioned, the drawback of the approach is the three times
smaller time step.

9.2.2 Adjusted FD Approximation

It is obvious that either at least twice denser spatial sampling or three times smaller time step
considerably degrade the efficiency of the 4th-order staggered-grid modeling inside the medium.
Kristek et al. (2002) and Moczo et al. (2004a) therefore developed the adjusted FD approximation
(AFDA) technique.

In their approach zero values of σzz are prescribed at the free surface in the H formula-
tion or zero values of σzx and σzy in the W formulation. One-sided FD approximations are
used to calculate the z -derivatives at the grid points at the free surface and depths h/2 and h .
The approximations use only values in the medium, that is, no values are assumed above the
free surface. Kristek et al. (2002) showed that while H-AFDA gives slightly better phases, W-
AFDA gives better amplitudes. They concluded with the recommendation to use W-AFDA for
the earthquake ground motion modeling. The calculation of the stress-tensor and displacement
components in W-AFDA can be summarized as follows (if the velocity-stress formulation is con-
sidered, displacement components are simply replaced by the particle-velocity components):

Application of the boundary condition:

Tzx(0) = 0 , Tzy(0) = 0 . (9.10)

Consider the following one-sided approximations to the first derivative with respect to the z
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coordinate:

φ′(z0) = 1
h [ − 352

105φ(z0) + 35
8 φ(z0 + 1

2h)− 35
24φ(z0 + 3

2h)
+ 21

40φ(z0 + 5
2h)− 5

56φ(z0 + 7
2h)] +O(h4) , (9.11)

φ′(z0) = 1
h [ − 11

12φ(z0 − 1
2h) + 17

24φ(z0 + 1
2h) + 3

8 φ(z0 + 3
2h)

− 5
24φ(z0 + 5

2h) + 1
24φ(z0 + 7

2h)] +O(h4) , (9.12)

φ′(z0) = 1
h [ − 1

22h φ
′(z0 − h)− 577

528φ(z0 − 1
2h) + 201

176φ(z0 + 1
2h)

− 9
176φ(z0 + 3

2h) + 1
528φ(z0 + 5

2h)] +O(h4) , (9.13)

φ′(z0) = 1
h [ 16

105φ(z0 − h)− 31
24φ(z0 − 1

2h) + 29
24 φ(z0 + 1

2h)
− 3

40φ(z0 + 3
2h) + 1

168φ(z0 + 5
2h)] +O(h4) . (9.14)

Then the stress-tensor components can be calculated using FD schemes defined as follows:

Txx(h/2) is obtained from the 4th-order FD approximation to Hooke’s law for σxx ; derivative
uz,z is approximated by formula (9.12) .

Tyy(h/2) and Tzz(h/2) – similar to Txx(h/2) .

Tzx(h) is obtained from the 4th-order FD approximation to Hooke’s law for σzx; derivative
ux,z is approximated by formula (9.13) in which ux,z (0) is replaced by uz,x due to
condition σzx(0) = 0 .

Tzy(h) is obtained from the 4th-order FD approximation to Hooke’s law for σzy; derivative
uy,z is approximated by formula (9.13) in which uy,z (0) is replaced by uz,y due to
condition σzy(0) = 0 .

Similarly, approximations (9.11) - (9.14) can be used to calculate the displacement-vector com-
ponents. The corresponding FD schemes are defined as follows:

W (0) is obtained from the 4th-order FD approximation to the equation of motion for uz ; deriva-
tive σzz,z is approximated by formula (9.11) in which condition σzz(0) = 0 is used.

U(h/2) is obtained from the 4th-order FD approximation to the equation of motion for ux ;
derivative σzx,z is approximated by formula (9.12).

V (h/2) is obtained from the 4th-order FD approximation to the equation of motion for uy ;
derivative σzy,z is approximated by formula (9.12).

W (h) is obtained from the 4th-order FD approximation to the equation of motion for uz ; deriva-
tive σzz,z is approximated by formula (9.14) in which condition σzz(0) = 0 is used.

Displacement (or particle-velocity) component W , and stress-tensor components σzx and
σyz are located at the free surface. The corresponding grid material parameters are evaluated
as integral averages in the half grid-cell volumes, that is, the upper half of the volume located
above the free surface is not taken into account. For example, density and unrelaxed moduli are
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evaluated as

ρAW = ρAI+1/2, J+1/2, 0 =
2
h3

∫ xI+1

xI

∫ yJ+1

yJ

∫ z1/2

z0

ρ dx dy dz , (9.15)

µHzx = µHI , J+1/2, 0 =

[
2
h3

∫ xI+1/2

xI−1/2

∫ yJ+1

yJ

∫ z1/2

z0

1
µ

dx dy dz

]−1

, (9.16)

µHyz = µHI+1/2, J , 0 =

[
2
h3

∫ xI+1

xI

∫ yJ+1/2

yJ−1/2

∫ z1/2

z0

1
µ

dx dy dz

]−1

. (9.17)

Kristek et al. (2002) performed numerical comparisons of the W-AFDA technique against the
discrete-wavenumber method (Bouchon, 1981; Coutant, 1989). The numerical comparison sho-
wed that with the W-AFDA technique it is possible to apply the same spatial sampling as inside
the medium. Moczo et al. (2004a) tested the accuracy of the W-AFDA technique against the
finite-element method for models with near-surface material interfaces. The numerical compar-
ison showed very good level of accuracy of the W-AFDA technique and its capability of the FD
scheme to sense the true position of the material interfaces in the spatial grid.

9.3 Conventional Scheme for the 1D Problem - One-sided Approximation

In this section we will return to the FD targets for the free surface and find corresponding 2nd-
order (in time and space) conventional-grid displacement FD schemes. Consider for simplicity
a homogeneous halfspace. It is clear from the summary of the targets, section 8.2, that we can
consider two principal types of targets, FDTarget1,

ρ ü − C u,zz = 0 , C u,z = 0 at z = a, (9.18)

and FDTarget2,

ρ ü − C u,zz −
2W
h

C u,z = 0 at z = a. (9.19)

We took the target with an undetermined weight coefficient W in the boundary term because this
coefficient depends on a particular approximation.

Consider first FDTarget1. Because it is reasonable to use a centered FD approximation to the
time derivative, we can focus on finding a one-sided FD approximation to term C u,zz . Assume
the following approximation:

−C u,zz (z) =̇ c1 u(t, z) + c2 u(t, z + h) + c3 u(t, z + 2h) , (9.20)

Apply Taylor expansion (TE) to the r.h.s. ot the equation and require that coefficients of the
Taylor expansion at u , u,z and u,zz be equal to 0 , 0 and −C , respectively, that is,

coefTE u = 0 , coefTE u,z = 0 , coefTE u,zz = −C . (9.21)

Solving the obtained system of equations for unknown coefficients c1 , c2 and c3 , we get

− C u,zz (t, z) = − 1
h2

C [ u(t, z) − 2 u(t, z + h) + u(t, z + 2h) ] +

+ C u,zzz (z) h + O(h2) . (9.22)
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Clearly, the use of only three points (z, z + h and z + 2h) and the above conditions yield only
the 1st-order approximation. In order to increase the order of approximation we could consider
an additional point, for example, (z + 3h). It is, however, much better to keep the number of
points as low as possible. We can have an additional condition by considering the zero traction
at the free surface, that is, C u,z = 0 . We can include the boundary condition by allowing u,z
to appear in the Taylor expansion of the r.h.s. of eq. (9.20). Accordingly, we modify conditions
for coefficients of the Taylor expansion:

coefTE u = 0 , coefTE u,z = d ,

coefTE u,zz = −C , coefTE u,zzz = 0 , (9.23)

where d is unknown. We obtain

− C u,zz (z) = − 1
h2

C

[
−7

2
u(t, z) + 4 u(t, z + h) − 1

2
u(t, z + 2h)

]
+

+
3
h
C u,z (z) + O(h2) . (9.24)

Because C u,z = 0 at the free surface, the first line of the r.h.s. of eq. (9.24) can be taken
as the one-sided 2nd-order approximation to C u,zz (z) at the free surface. Consequently, the
one-sided 2nd-order (in time and space) approximation to the whole FDTarget1, eq. (9.18), can
be

1
∆2t

ρ(a) [ u(t+ ∆t, a) − 2 u(t, a) + u(t−∆t, a) ] −

− 1
h2

C(a)
[
−7

2
u(t, a) + 4 u(t, a+ h) − 1

2
u(t, a+ 2h)

]
=

= ρ(a) ü(t, a) − C(a) u,zz (t, a) + (9.25)

+
1
6
C u(0,4) h2 +

1
12
ρ u(4,0) ∆2t + O(h3) + O(∆4t) ,

where u(4,0) = ∂4u/∂t4 and u(0,4) = ∂4u/∂z4 .
Looking at eq. (9.24) we can realize that if the FD operator on the l.h.s. of eq. (9.25) is

applied to a modified target,

ρ ü − C u,zz −
3
h
C u,z = 0 at z = a, (9.26)

the truncation error will be the same - the one in the last line in eq. (9.25). In other words,
the presence of term − 3

h C u,z yields a formal 2nd-order approximation without an additional
explicit application of the zero-traction boundary condition. This naturally leads us to proceed
with approximating FDTarget2, eq. (9.19).

Assuming again the use of the centered FD approximation to the time derivative, try approx-
imation, compare with eq. (9.20),

−C u,zz (z) − 2W
h

C u,z =̇ c1 u(t, z) + c2 u(t, z + h) + c3 u(t, z + 2h) . (9.27)



322 FD and FE Modeling in Seismology

Application of the Taylor expansion to the r.h.s. of the equation and requirement of

coefTE u = 0 , coefTE u,z = −2W
h

C ,

coefTE u,zz = −C , coefTE u,zzz = 0 (9.28)

yields

− C u,zz (z) − 3
h
C u,z (z) =

− 1
h2

C

[
−7

2
u(t, z) + 4 u(t, z + h) − 1

2
u(t, z + 2h)

]
(9.29)

+ O(h2) .

Equation (9.29) is equivalent to eq. (9.24). The approximation to the whole FDTarget2 is

1
∆2t

ρ(a) [ u(t+ ∆t, a) − 2 u(t, a) + u(t−∆t, a) ] −

− 1
h2

C(a)
[
−7

2
u(t, a) + 4 u(t, a+ h) − 1

2
u(t, a+ 2h)

]
=

= ρ(a) ü(t, a) − C(a) u,zz (t, a) − 3
h
C(a) u,z (a) + (9.30)

+
1
6
C u(0,4) h2 +

1
12
ρ u(4,0) ∆2t + O(h3) + O(∆4t) .

The first finding is that the 3-point one-sided 2nd-order approximations to FDTarget1 and
FDTarget2 yield the same FD scheme. The second finding is that the approximating of FDTarget2
is straightforward and more elegant: the 2nd-order operator is obtained ‘automatically’, that is,
without an explicit application of the zero-traction boundary condition to the truncation error.
This obviously is due to the explicit presence of the boundary term in the ISF-equation of motion.
While the difference between the two procedures may seem negligible we have to realize that
the approximations were, in fact, trivial. The advantage of manipulating the FD targets with
boundary term(s) will become more obvious in more complicated cases.

9.4 Optimally-accurate Scheme for the 1D Problem

Based on the findings in 9.3 here we directly address FD target with the boundary term(s). Our
goal is to find an optimally accurate FD approximation. Assume the approximation in the form

OAFDE = [AmI (p, q)−Km
I (p, q) ] umI (p, q) =̇ 0 ; p, q ∈ {1, 2, 3} , (9.31)

where p is the time summation index and q the spatial summation index. The summation conven-
tion is assumed in eq. (9.31), that is, no matrix multiplication is applied. Displacement values
involved are

umI (p, q) = u [ tm + (2− p)∆t, zI + (q − 1)h ] ; p , q ∈ {1, 2, 3} , (9.32)
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or, in the matrix form,

umI =

 u(tm + ∆t , zI) u(tm + ∆t , zI + h) u(tm + ∆t , zI + 2h)

u(tm , zI) u(tm , zI + h) u(tm , zI + 2h)

u(tm −∆t , zI) u(tm −∆t , zI + h) u(tm −∆t , zI + 2h)

 . (9.33)

For brevity we will use grid indices. Then eq. (9.33) can be written as

umI =

 u
m+1
I um+1

I+1 um+1
I+2

umI umI+1 umI+2

um−1
I um−1

I+1 um−1
I+2

 . (9.34)

Operators Am
I and Km

I are

Am
I =

ρ

∆2t

 a
m+1
I am+1

I+1 am+1
I+2

amI amI+1 amI+2

am−1
I am−1

I+1 am−1
I+2

 (9.35)

and

Km
I =

C

h2

 k
m+1
I km+1

I+1 km+1
I+2

kmI kmI+1 kmI+2

km−1
I km−1

I+1 km−1
I+2

 . (9.36)

Equation (9.31) means that we have to determine 18 unknown elements of operators Am
I and

Km
I .

We try to approximate the second spatial derivative using three spatial positions over three
time levels. Similarly, we want to approximate the time derivative using three time levels over
three spatial positions. We saw before that the boundary term in FDTarget2 depended also on
a particular FD approximation. Therefore, in this case, we should allow for presence of time
derivatives of traction in the target - in addition to the original boundary term with traction itself,
see eq. (9.19). Thus, seeking for an optimally accurate approximation we modify FDTarget2:

EBT = ρ ü − C u,zz

+ C
(
b1u

(0,1) + b2u
(1,1) + b3u

(2,1) + b4u
(3,1) + b5u

(4,1)
)

= 0 , (9.37)

where u(k,l) = ∂k∂lu/∂tk∂zl . In an optimally accurate approximations we require that the lead-
ing term of the truncation error vanishes if the operator is applied to normal modes (which satisfy
equation of motion without a body-force term), see Geller and Takeuchi (1995) and Moczo et al.
(2007). Let

E = ρ ü − C u,zz . (9.38)

In the case of the centered approximation, using u(t, z − h), u(t, z) and u(t, z + h), to the
derivative at z, the optimally accurate operator requires presence of E(2,0) and E(0,2) in the
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truncation error. If we use u(t, z) , u(t, z + h) and u(t, z + 2h) for the derivative at z , we
should allow for presence of other derivatives of E too. Considering truncation error,

TrunError = TaylorExpansion {OAFDE} − EBT , (9.39)

we require

TrunError = e1E
(2,0) + e2E

(0,2) + e3E
(1,1) + e4E

(0,3) +
+ e5E

(1,2) + e6E
(2,1) + e7E

(3,0) + (9.40)
+ O

(
∆kt · hl

)
; k + l ≥ 4 .

Note that E(1,0) and E(0,1) cannot be present if the 2nd-order accuracy in time and space is
required. Condition k + l ≥ 4 for O

(
∆kt · hl

)
means that we want the 4th-order accuracy in

time and space in the case of normal modes.
Because it is technically easier to work with one matrix, we rewrite eq. (9.31) in the form

OAFDE = GmI (p, q) umI (p, q) =̇ 0 ; p, q ∈ {1, 2, 3} . (9.41)

We find thatG[3, 3] is a free parameter - any value ofG[3, 3] will give the desired structure of the
truncation error. Having freedom to choose, we require−C∆2t·h−2h3(ρ−12∆2t·G[3, 3]) = 0,
which eliminates the lowest-order error term that can be eliminated if operand is not a normal
mode. Eventually, in this case it is possible to separate matrix Gm

I into matrices Am
I and Km

I .
We obtain

Am
I =

ρ

24∆2t

 38 −16 2
−76 32 −4

38 −16 2

 (9.42)

and

Km
I =

C

24h2

 7 −8 1
70 −80 10
7 −8 1

 . (9.43)

Considering the above approximations also as a preparation for the welded material interface we
will continue with looking for approximations for the welded interface.

10 Finite-difference Schemes for the Welded Material Interface

10.1 Conventional Approximation for the Welded Interface

Our main goal is to find a 2nd-order optimally accurate FD approximation for the grid point at
the interface, not necessarily approximation, that would lead to a heterogeneous FD scheme (that
is, the same FD scheme for all interior grid points). For obvious reason, see section 7.4.4, we
will first find a conventional FD scheme. Consider for simplicity a welded interface between
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two homogeneous media and omit a body-force term. Our target with the boundary term is, see
eq. (8.32),

1
2

(ρ− + ρ+) ü − 1
2
(
C−u,−zz + C+u,+zz

)
− W

h

(
C+u,+z − C−u,−z

)
= 0 at z = a. (10.1)

Again we will use the centered approximation for the time derivative. If we do not want to neglect
the averaging of derivatives of tractions, we have to find 2nd-order one-sided approximations to

− 1
2
C−u,−zz +

W

h
C−u,−z (10.2)

and

− 1
2
C+u,+zz −

W

h
C+u,+z . (10.3)

The approximations are, compare with eqs. (9.26) - (9.29),

− 1
2
C−u,−zz (z) +

3
2h

C−u,−z (z) =

= − 1
2h2

C−
[
−7

2
u(t, z) + 4 u(t, z − h) − 1

2
u(t, z − 2h)

]
(10.4)

+ O(h2)

and

− 1
2
C+u,+zz (z) − 3

2h
C+u,+z (z) =

= − 1
2h2

C+

[
−7

2
u(t, z) + 4 u(t, z + h) − 1

2
u(t, z + 2h)

]
(10.5)

+ O(h2) .

Application of the centered approximation o the 2nd time derivative, substitution of the l.h.s. of
eqs. (10.4) and (10.5), and consideration of the displacement continuity in target (10.1) yields

1
∆2t

1
2

(ρ− + ρ+) [ u(t+ ∆t, a) − 2 u(t, a) + u(t−∆t, a) ] −

− 1
2h2

{
−7

2
[
C−(a) + C+(a)

]
u(t, a) +

+ C−(a)
[
4 u(t, a− h) − 1

2
u(t, a− 2h)

]
+

+ C+(a)
[
4 u(t, a+ h) − 1

2
u(t, a+ 2h)

]}
=
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=
1
2

(ρ− + ρ+) ü(t, a) − 1
2
[
C−u,−zz (t, a) + C+u,+zz (t, a)

]
− W

h

[
C+u,+z (t, a) − C−u,−z (t, a)

]
(10.6)

+ O(h2) + O(∆2t) .

10.2 Optimally-accurate Approximation for the Welded Interface

Consider FD target with boundary terms,

EBT =
1
2
(
ρ− ü− − C− u,−zz

)
+

1
2
(
ρ+ ü+ − C+ u,+zz

)
+ (10.7)

+ C−
(
b−1 u

−(0,1) + b−2 u
−(1,1) + b−3 u

−(2,1) + b−4 u
−(3,1) + b−5 u

−(4,1)
)

+

+ C+
(
b+1 u

+(0,1) + b+2 u
+(1,1) + b+3 u

+(2,1) + b+4 u
+(3,1) + b+5 u

+(4,1)
)

= 0 ,

which corresponds to the target considered for the free surface, eq. (9.37). Denote

E− = ρ− ü− − C− u,−zz , (10.8)

E+ = ρ+ ü+ − C+ u,+zz . (10.9)

Assume an optimally accurate approximation in the form

OAEFD = GmI (p, q) umI (p, q) =̇ 0 ; p ∈ {1, 2, 3} , q ∈ {−1, 0, 1, 2, 3} (10.10)

with

umI (p, q) = [ tm + (2− p)∆t, zI + (q − 1)h ] . (10.11)

We want the 2nd-order optimally accurate approximations from both sides of the interface.
Therefore we consider truncation error

TrunError = TaylorExpansion {OAFDE} − EBT =
= TrunError− + TrunError+ (10.12)

and require, compare with eqs. (9.39) and (9.40),

TrunError− = e−1 E
−(2,0) + e−2 E

−(0,2) + e−3 E
−(1,1) + e−4 E

−(0,3) +

+ e−5 E
−(1,2) + e−6 E

−(2,1) + e−7 E
−(3,0) + (10.13)

+ O
(

∆kt · hl
)

; k + l ≥ 4

and

TrunError+ = e+
1 E

+(2,0) + e+
2 E

+(0,2) + e+
3 E

+(1,1) + e+
4 E

+(0,3) +

+ e+
5 E

+(1,2) + e+
6 E

+(2,1) + e+
7 E

+(3,0) + (10.14)
+ O

(
∆kt · hl

)
; k + l ≥ 4 .
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Requiring antisymmetry of coefficients in the boundary terms,

b−i = −b+i ; i ∈ {1, 2, ..., 5} , (10.15)

and displacement continuity at the interface, we can solve for elements of matrix Gm
I in eq. (10.10).

We obtain

Gm
I =

ρ−

15∆2t

−1 −1 17 0 0
2 −2 −34 0 0
−1 −1 17 0 0

 +
ρ+

15∆2t

 0 0 17 −1 −1
0 0 −34 2 2
0 0 17 −1 −1

 +

+
C−

24h2

 1 −8 7 0 0
10 −80 70 0 0
1 −8 7 0 0

 +
C+

24h2

 0 0 7 −8 1
0 0 70 −80 10
0 0 7 −8 1

 +

+
C−ρ+

10∆2tC+

 1 −4 3 0 0
−2 8 −6 0 0

1 −4 3 0 0

 +
C+ρ−

10∆2tC−

 0 0 3 −4 1
0 0 −6 8 −2
0 0 3 −4 1

 .

(10.16)

Because eqs. (10.10) and (10.16) define an implicit scheme, we would like to avoid solving large
system of algebraic equations by applying the predictor-corrector algorithm, see section 7.4.4.
However, we were unable to find and apply the predictor-corrector algorithm in this case. We
see a likely reason in a fact that the structure of matrix Gm

I is not consistent with the Born
approximation which was used to obtain the predictor-corrector scheme.

Therefore we have to find some other optimally accurate approximation to our target (10.7).
Assume an optimally accurate approximation in the form

OAEFD = GmI (p, q)umI (p, q) =̇ 0 ; p ∈ {1, 2, 3} , q ∈ {−2,−1, 0, 1, 2, 3, 4} (10.17)

with

umI (p, q) = [ tm + (2− p)∆t, zI + (q − 1)h ] . (10.18)

Compared to approximation (10.10) we involve two more spatial grid positions and make the spa-
tial stencil longer. Because we found an optimally accurate approximation even for 5 grid points,
the use of two more points yields a problem with an infinite number of solutions. This implies
that we have more freedom to choose conditions on the solution. We tried several conditions and
eventually we decided for

b−1 = −b+1 =
10
3h

, b−i = b+i = 0 ; i ∈ {2, ..., 5} . (10.19)

With this particular choice the resulting scheme is relative simple and enables application of the
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predictor-corrector algorithm. The obtained matrix Gm
I is

Gm
I =

ρ−

12∆2t

 1 −4 5 10 0 0 0
−2 8 −10 −20 0 0 0

1 −4 5 10 0 0 0

 +

+
ρ+

12∆2t

 0 0 0 10 5 −4 1
0 0 0 −20 −10 8 −2
0 0 0 10 5 −4 1

 +

+
C−

12h2

 1 −4 5 −2 0 0 0
−10/3 20 −70 160/3 0 0 0

1 −4 5 −2 0 0 0

 + (10.20)

+
C+

12h2

 0 0 0 −2 5 −4 1
0 0 0 160/3 −70 20 −10/3
0 0 0 −2 5 −4 1

 .

10.3 Heterogeneous Schemes: DSstag4, Dconv2, Doptm2

In the previous sections we derived conventional and optimally accurate approximations for the
welded material interface in the 1D problem. The obtained approximations are 2nd-order accu-
rate in time and space. They can be combined with 2nd-order accurate schemes for interior grid
points away from the interface. In such a case, one scheme is applied at the grid point at the
interface, other scheme is applied at grid points away from the interface. We will consider such
approach in the next section. Here we briefly present heterogeneous schemes – one scheme is
applied to all interior grid points no matter what are their positions with respect to the material
interface.

Kristek and Moczo (2006) presented three heterogeneous schemes for the 1D heterogeneous
formulations (8.46) to (8.50) – DSstag4, Dconv2 and Doptm2.

DSstag4. The displacement-stress (DS), staggered-grid (stag) scheme that is 2nd-order accu-
rate in time and 4th-order accurate in space in the homogeneous medium can be written in the
form

TmI+1/2 = CHI+1/2

1
h

[
a
(
UmI+2 − UmI−1

)
+ b

(
UmI+1 − UmI

) ]
,

Um+1
I = 2UmI − Um−1

I

+
1
ρAI

∆2t

h

[
a
(
TmI+3/2 − T

m
I−3/2

)
+ b

(
TmI+1/2 − T

m
I−1/2

) ]
,

(10.21)

where TmI+1/2 and UmI are discrete approximations to stress and displacement, respectively,
and a = −1/24 , b = 9/8 . The effective density and elastic modulus are defined by

ρAI =
1
h

∫ z I+1/2

z I−1/2

ρ (z) dz (10.22)
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and

CHI+1/2 =
[

1
h

∫ z I+1

z I

1
C (z)

dz

]−1

. (10.23)

The scheme degenerates to the 1st-order accuracy at the grid point located directly at the material
interface. It can be easily shown that this is due to the averaging of the 1st-order one-sided
approximations to the stress derivatives.

Scheme (10.21) is be applied at all interior grid points. In principle, the interface is not
necessarily located at the grid point – it can be anywhere in between two grid points. Still the
scheme can sense the position of the interface if the effective material parameters are evaluated
using eqs. (10.22) and (10.23).

Dconv2 and Doptm2. Dconv2 means displacement 2nd-order scheme based on conventional
approximation. Doptm2 means displacement 2nd-order scheme based on the optimally accurate
approximation. Both schemes are constructed on the conventional grid.

In a simple approach we approximate single term (C u,z ) ,z using the 2nd-order central
difference,

(C d,z ) ,z |I =̇
1
h

(
C u,z |I+1/2 − C u,z |I−1/2

)
, (10.24)

instead of 2nd-order approximations to the ‘−‘ and ‘+’ terms in eq. (8.51). Then, we approxi-
mate C u,z in the same way as we approximated stress in the DS formulation.

As we showed in section 7.4.3, we can use the same form of presentation for both the con-
ventional and optimally accurate schemes,

[ AmI (p, q) − Km
I (p, q) ] U (M, i) = 0 ; p, q ∈ {1, 2, 3} , (10.25)

where m is the time level, at which the equation of motion is approximated, I index of the grid
spatial position at which the equation of motion is approximated, p time summation index, q
spatial summation index. Discrete displacement values involved can be written in the matrix
form as

Um
I =

 Um+1
I−1 Um+1

I Um+1
I+1

UmI−1 UmI UmI+1

Um−1
I−1 Um−1

I Um−1
I+1

 . (10.26)

Operators Am
I and Km

I are

Am
I =

 am+1
I−1 ρI−1 am+1

I ρI am+1
I+1 ρI+1

amI−1 ρI−1 amI ρI amI+1 ρI+1

am−1
I−1 ρI−1 am−1

I ρI am−1
I+1 ρI+1

 (10.27)

and

Km
I =

 km+1
I−1 CI−1 km+1

I CI km+1
I+1 CI+1

kmI−1 CI−1 kmI CI kmI+1 CI+1

km−1
I−1 CI−1 km−1

I CI km−1
I+1 CI+1

 . (10.28)
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For the conventional scheme Dconv2, the operators are specified as

Am
I =

ρAI
∆2t

 0 1 0
0 −2 0
0 1 0

 (10.29)

and

Km
I =

1
h2

 0 0 0

1 −2 1

0 0 0



CHI−1/2 0 0

0 1
2

(
CHI−1/2 + CHI+1/2

)
0

0 0 CHI+1/2

 . (10.30)

For the scheme based on the optimally-accurate approximation, Doptm2, the matrices are speci-
fied as

Am
I =

ρAI
12 ∆2t

 1 10 1
−2 −20 −2

1 10 1

 (10.31)

and

Km
I =

1
12 h2

 1 −2 1

10 −20 10

1 −2 1



CHI−1/2 0 0

0 1
2

(
CHI−1/2 + CHI+1/2

)
0

0 0 CHI+1/2

 . (10.32)

The effective density and elastic modulus are defined by eqs. (10.22) and (10.23), that is, in the
same way as in the staggered-grid scheme DSstag4.

Note that in the 1D case, Dconv2 is equivalent to DSstag2, which is the 2nd-order displace-
ment-stress staggered-grid FD scheme.

As scheme DSstag4, also scheme Dconv2 and Doptm2 degenerate to the 1st-order accuracy
at the grid point located directly at the material interface.

Kristek and Moczo (2006) performed detailed numerical comparisons of the three schemes
using homogeneous space, two halfspaces in contact, and an interior layer with a strong velocity
gradient. The model of the unbounded homogeneous space enabled to compare pure effect of the
grid dispersion. The simulations for the model with a material interface we designed so that it was
possible to separate error due to the interface. The third model enabled to compare capability
of the schemes to account for a dramatic change of the velocity inside the layer between two
identical halfspaces.

All simulations obtained with the FD schemes were compared against analytical matrix so-
lutions. The level of accuracy of the FD solutions was quantified and characterized using the
envelope and phase misfits with respect to the analytical solutions. Here we summarize the con-
clusions of the numerical investigations closely following Kristek and Moczo (2006):

Error of the FD schemes due to the grid dispersion in a homogeneous medium:
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1. The error of Dconv2 (or, equivalently, DSstag2) considerably increases with distance due
to the grid dispersion (except for the stability ratio p = 1 for which the scheme is
accurate); the error can be reduced by drastic increase of the number of grid spacings per
wavelength ( N ) and using the maximum possible stability ratio.

2. The error of DSstag4 grows considerably with distance for small N and large p ; for a
chosen N the error can be reduced by using sufficiently small p for which the sum of the
envelope and phase misfits, EM(N, p) + PM(N, p) , takes the minimum value.

3. The error of Doptm2 is negligible compared to those of Dconv2 and DSstag4.

4. Despite the formal 4th-order accuracy of DSstag4, for p = 0.95 the errors of both
DSstag4 and Dconv2 as functions of N have the same convergence rate, -2, whereas that
of Doptm2 is -4.

5. While adjustment of the stability ratio p value in DSstag4 is possible in the homogeneous
medium (at a price of a small fraction of the maximum possible time step), it is not possible
in general in the heterogeneous medium.

Error at the interface:

1. The error is primarily controlled by the boundary condition and its numerical approxima-
tion.

2. The error weakly grows with the velocity contrast.

3. The 4th-order of DSstag4 does not improve the accuracy compared to the 2nd-order sche-
mes.

4. The arithmetic averaging of elastic moduli yields significantly lower accuracy compared
to the harmonic averaging.

Error away from the interface:

1. For a given N the error of DSstag4 can be reduced by using an adjusted small value of the
stability ratio p (and consequently small fraction of the maximum possible time step) only
in the case of sufficiently small velocity contrast; in the case of moderate or large velocity
contrast the error can be reduced only using sufficiently small spatial grid spacing.

2. Despite the formal 4th-order accuracy of DSstag4, the spatial sampling criterion cannot be
weaker than that of the formally 2nd-order accurate Doptm2.

Error inside the strong velocity gradient layer:

1. The errors of Dconv2 and Doptm2 are comparable, the error of DSstag4 is larger mainly
for small N (i.e., larger grid spacings) likely due to the relative large spatial extent of the
operator (large stencil).

The main conclusion of Kristek and Moczo (2006) was that Doptm2, that is the scheme applying
Geller and Takeuchi’s (1998) 2nd-order optimally accurate operators to the strong heterogeneous
formulation of 1D equation of motion of Moczo et al. (2002), is significantly more accurate than
the schemes based on the application of the conventional 2nd-order and staggered-grid 4th-order
operators.
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10.4 Schemes Dconv2i2 and Doptm2i2

Because the order of approximation of schemes Dconv2, Doptm2 and DSstag4 falls from the 2nd

order in the homogeneous medium down to the 1st order at the grid point at the interface, we
should investigate whether the 2nd order at the interface could improve level of accuracy.

We do not have heterogeneous scheme which would be 2nd order at the grid points away from
the interface and also at the grid point at the interface. Therefore, for the numerical investigation,
we can combine schemes we derived.

Dconv2i2. At grid point I at the material interface we will use scheme based on the approxi-
mation (10.6),

Um+1
I = 2UmI − Um−1

I

+
2

(ρ− + ρ+)
∆2t

4h2

{
7
[
C+(UmI+1 − UmI )− C−(UmI − UmI−1)

]
(10.33)

−
[
C+(UmI+2 − UmI+1)− C−(UmI−1 − UmI−2)

] }
.

At the other grid points we will use scheme Dconv2, eqs. (10.25), (10.26), (10.29), (10.30), with

ρAI =
1
2
(
ρ− + ρ+

)
(10.34)

and

CHI−1/2 = C− , CHI+1/2 = C+ . (10.35)

Doptm2i2. At grid point I at the material interface we will use scheme defined by eqs. (10.17),
(10.18) and (10.20). At other grid points we will use scheme Doptm2, eqs. (10.25), (10.26),
(10.31), (10.32), with ρAI , CHI−1/2 and CHI+1/2 defined by eqs. (10.34) and (10.35), respec-
tively.

10.5 Effect of the Order of Approximation at the Interface

Having heterogeneous schemes Dconv2 and Doptm2 (only 1st-order accurate at the interface) as
well as combined schemes Dconv2i2 and Doptm2i2 (2nd-order accurate also at the interface), we
can numerically compare Dconv2 with Dconv2i2 and Doptm2 with Doptm2i2. A reasonable way
of numerical comparison is to evaluate envelope and phase misfits between each FD solution and
corresponding analytical (exact) solution. We will use the envelope and misfit criteria developed
by Kristekova et al. (2006).

Consider contact of two homogeneous halfspaces with c+ being velocity in the halfspace,
where the plane wave is radiated, and c− velocity in the other halfspace. We considered
c+ = 3464 m/s and c− ∈ {2310.0, 837.3, 346.4} m/s in the simulations. The correspond-
ing velocity contrasts are c+/c− ∈ {1.5, 4.1, 10.0}. Densities were ρ+ = 2700 kg/m3 and
ρ− = 2500kg/m3. The interface is located at a grid point with spatial index I .
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A wave is radiated in the halfspace with c+ toward the interface at the distance of 4 grid
spacings from the interface. The Alterman and Karal (1968) decomposition is used to prescribe
a source-time function corresponding to a displacement. The source-time function is Gabor
signal, i.e., a harmonic carrier with a Gaussian envelope,

s(t) = exp
{
− [ωp(t− ts)/γs]2

}
cos [ωp(t− ts) + θ] . (10.36)

Here, ωp = 2πfp , t ∈< 0, 2ts >, fp = 0.5 Hz is predominant frequency, γs = 11 controls
the width of the signal, θ = π/2 is a phase shift, and ts = 0.45γs/fp . The signal has relatively
narrow spectrum with a dominant frequency. The amplitude spectrum falls from its maximum at
the frequency fp = 0.5 Hz by three orders of magnitude down to a value at fmax = 0.74 Hz.
Given the maximum frequency, we can define the minimum wavelength in the ‘−’ halfspace by

λmin =
c−

fmax
. (10.37)

The number of grid spacings per λmin is

N =
λmin
h

. (10.38)

The stability condition for Dconv2 and Doptm2 in the homogeneous medium is

∆t ≤ h

c+
(10.39)

and stability ratio, that is, a fraction of the maximum possible time step, is

p =
c+

h
∆t . (10.40)

Schemes Dconv2 and Dconv2i2 are compared in Figure 10.1 where the envelope and phase
misfits between the FD solutions and analytical solutions are shown as functions of N ∈ {10, 11,
..., 30} and p ∈ {0.1, 0.15, ..., 0.95}. The solutions are compared directly at the point at the
interface. It is clear that the error in general is not large - it is less than 0.5% in all cases. At
the same time, the application of the 2nd-order scheme also at the interface clearly improves the
level of accuracy at the interface. The improvement is more pronounced in terms of the envelope
misfit. The error weakly decreases with the increasing velocity contrast. A likely explanation is
a better spatial sampling in the halfspace with larger velocity.

A similar comparison of schemes Doptm2 and Doptm2i2 is shown in Figure 10.2. Misfits
for Doptm2i2 are displayed only for values of the stability ratio up to 0.8. The reason is that the
results were unstable for larger values. This indicates that, likely due to relatively larger com-
plexity of Doptm2i2, the stability condition for the scheme is slightly more restrictive compared
to the three other schemes. As we expected, the overall level of error is even smaller than in the
case of the conventional schemes. Similarly to the conventional schemes, the application of the
2nd-order scheme also for the grid point at the interface clearly reduces the error.
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Fig. 10.1. Error at the interface: envelope and phase misfits of the FD schemes Dconv2 and Dconv2i2 as
functions of N ∈ {10, 11, ..., 30} and p ∈ {0.1, 0.15, ..., 0.95} at the interface for two values of the
velocity contrast. The misfits are evaluated relative to the exact (analytical) solution.
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Fig. 10.2. Error at the interface: envelope and phase misfits of the FD schemes Doptm2 and Doptm2i2
as functions of N ∈ {10, 11, ..., 30} and p ∈ {0.1, 0.15, ..., 0.95} at the interface for two values of the
velocity contrast. The misfits are evaluated relative to the exact (analytical) solution.
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11 Simulation of the Dynamic Rupture Propagation

11.1 Staggered-grid FD Implementation of the TSN Method

The TSN (Traction-at-Split-Nodes) method for simulation of rupture propagation on the earth-
quake fault was explained in section 3.4. As mentioned there, the method has been developed
independently by Andrews (1973, 1999) and Day (1977, 1982). Andrews implemented his TSN
formulation in the finite-difference scheme in which spatial differentiation is equivalent to the
2nd-order finite-element method. Day implemented his slightly different formulation of the TSN
method in the 2nd-order partly-staggered finite-difference scheme. Both Andrews and Day ap-
plied then the TSN method to investigate dynamics of the earthquake rupture propagation.

Recently Day et al. (2005) compared the TSN method with the boundary integral method
and found very good level of agreement. Dalguer and Day (2006) compared the TSN method
with the thick-fault method of Madariaga et al. (1998) and the stress-glut method presented by
Andrews (1999). Using extensive numerical tests they demonstrated superior accuracy of the
TSN method compared to the thick-fault and stress-glut methods.

Because the 4th-order velocity-stress staggered-grid FD scheme is at present accepted as
the most efficient FD scheme for simulation of the seismic wave propagation and earthquake
motion, Dalguer and Day (2007) implemented the TSN method in the scheme. The fault plane
is represented by the grid plane of the split nodes for the normal stress-tensor components, the
corresponding shear stress-tensor component (σxy), two fault-parallel components of the particle
velocity ( vx and vy ). Dalguer and Day applied the 4th-order centered approximation to spatial
derivatives at grid points at distances 3/2 of the grid spacing (3h/2) and more from the fault
plane. At grid points at distances h and h/2 from the fault plane they applied the 2nd-order
centered approximation. Finally, at grid points at the fault plane, Dalguer and Day applied the
1st-order one-sided approximation for spatial derivatives in the direction perpendicular to the
fault plane and the 2nd-order centered approximation for derivatives in the directions parallel to
the fault plane.

Dalguer and Day performed numerical tests of their implementation (they termed it SGSN
– Staggered-Grid Split Node) against the partly-staggered implementation of the TSN method
(Day, 1977, 1982) and boundary integral method, and found it satisfactorily accurate, with the
convergence rates similar to those of the two latter methods.

Kristek et al. (2006) presented three different implementations of the TSN method in the
velocity-stress staggered-grid scheme. In the first one they applied the 4th-order approximation
to spatial derivatives away from the fault plane, and the 2nd-order approximations at grid posi-
tions close to and at the fault plane. In the second implementation they applied the 4th-order ap-
proximation to spatial derivatives away from the fault, 2nd-order approximations at grid positions
close to the fault, and 4th-order approximations at the fault plane. In the third implementation
they applied the 4th-order approximations to the spatial derivatives everywhere.

Here we will describe the first implementation. The geometrical configuration of the hor-
izontal fault plane and spatial staggered grid is shown in Fig. 11.1. Because the fault plane
is represented as a contact of the ‘−’ and ‘+’ fault surfaces, the corresponding horizontal grid
plane with spatial index KF + 1

2 is split into two grid planes. Assuming a shear faulting, we
have to distinguish the ‘−’ and ‘+’ values of the horizontal components of the particle veloc-
ity, v±, x and v±, y , two normal stress-tensor components, σ±, xx and σ±, y y , and one shear
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Fig. 11.1. Configuration of the fault plane in the staggered grid. The fault is represented by a horizontal
grid plane of split nodes. Indication of the ‘−’ and ‘+’ sides of the fault.

stress-tensor component, σ±, xy , which become discontinuous when slip on the fault occurs.
Note that we use here the upper indices to indicate the ‘−’ and ‘+’ values and components. This
is because we will use lower indices to indicate grid positions. For conciseness, in the following
we will partly or fully omit grid indices if the omission cannot cause misunderstanding. Basi-
cally, we will show or comment only those parts of the algorithm that are modified or different
compared to the 4th-order velocity-stress scheme for interior grid points for medium without the
faulting surface. The notation is relatively close to that of Dalguer and Day (2007).
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Grid points at distances of 3h/2 from the fault plane Spatial derivatives at K = KF +
1
2 ±

3
2 in the z-direction (fault-normal) are approximated using the standard 4th-order formula

in which the ‘−’ or ‘+’ values at the fault are taken:

∂z φ =̇ h−1D(4)
z φ = h−1

[
9
8 (φK+1/2 − φK−1/2)− 1

24 ( φ−K+3/2 − φ
+
K−3/2)

]
. (11.1)

Here, φ ∈ { vx, vy, σzz } and +/− applies in correspondence to +/− in the grid index K ,
that is,

if K = KF + 1
2 −

3
2 , the rightmost term is ( φ−

KF +1/2
− φKF +1/2−6/2) ,

if K = KF + 1
2 + 3

2 , the rightmost term is ( φKF +1/2+6/2 − φ
+
KF +1/2

) .

Equation (11.1) also defines spatial operator D(4)
z . Later we will also use symbol D(2)

z for the
2nd-order centered approximation.

Grid points at distances of h from the fault plane All spatial derivatives at grid points at
K = KF + 1

2 ± 1 are approximated by the 2nd-order centered FD formula.

Grid points at distances of h/2 from the fault plane All spatial derivatives at grid points at
K = KF + 1

2 ±
1
2 are approximated by the 2nd-order centered FD formula. For derivatives in

the z−direction appropriate values are taken:

∂z φ =̇ h−1D(2)
z φ = h−1 ( φ−K+1/2 − φ+

K−1/2 ) (11.2)

with +/− applied in correspondence to +/− in the grid index K .

Split nodes on the fault plane The grid index in the z−direction for the split nodes is K =
KF + 1

2 . The centered 2nd-order approximation is used for spatial derivatives of the +/−
functions in the x− and y−directions. Adjusted 2nd-order approximation is used for the spatial
derivative of the shear stress-tensor components σzx and σzy in the z−direction:

(∂z σzγ)± =̇ h−1
[
∓ 8

3 ( T γ − T 0,γ ) ± 3σz γK±1/2 ∓
1
3σ

zγ
K±3/2

]
; γ ∈ {x, y} . (11.3)

Here, T γ and T 0, γ , γ ∈ {x, y}, are the components of the constraint traction on the fault. Then
approximations to the equations of motion for v±, x and v±, y are

ρ± 1
∆t

[
v±, γ,m+1/2 − v±, γ,m−1/2

]
= h−1

[
D

(2)
x σ±, xγ,m + D

(2)
y σ±, y γ,m

]
+

+ (∂zσz γ)± ; γ ∈ {x, y} ,
(11.4)

where (∂z σz γ)± is defined by eq. (11.3) and m+ 1/2 is the time index for t+ ∆t/2 .
Slip rate at time level m+ 1/2 is

Dvγ = v+, γ − v−, γ ; γ ∈ {x, y} . (11.5)
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Then slip is obtained from

Duγ,m+1 = Duγ,m + ∆t ·Dvγ,m+1/2 ; γ ∈ {x, y} . (11.6)

A value of the constraint traction ~T c on the fault obtained under condition of D~vm+1/2 = 0
defines the trial traction. Let, for simplicity of notation here, ~T c t denote the shear component
of the trial traction. The boundary conditions on the fault are enforced by

T c ,γ = T c t, γ , γ ∈ {x, y} ; |~T c t| ≤ S

=
~T c t

|~T c t|
S ; |~T c t| > S .

(11.7)

In evaluation of the trial traction at grid positions of the particle-velocity components the missing
components of the trial traction are obtained by interpolation:

| ~T c t
I, J+1/2 |

2 =
[
T c t, xI, J+1/2

]2
+
[

1
4

(
T c t, yI+1/2, J + T c t, yI−1/2, J + T c t, yI+1/2, J+1 + T c t, yI−1/2, J+1

) ]2 (11.8)

and

| ~T c t
I+1/2, J |

2 =
[

1
4

(
T c t, xI, J+1/2 + T c t, xI+1, J+1/2 + T c t, xI, J−1/2 + T c t, xI+1, J−1/2

) ]2
+
[
T c t, yI+1/2, J

]2
.

(11.9)

Missing components of the slip rate in evaluation of the slip-path length are interpolated analo-
gously.

Finally, the approximations for the stress-tensor components are

σ̇±, xy =̇ µh−1
(
D(2)
y v±,x +D(2)

x v±, y
)
, (11.10)

σ̇±,γ γ =̇ λ±h−1
[
D

(2)
x v±,x +D

(2)
y v±, y + (∂zvz)

±
]

+ 2 µ±h−1D
(2)
γ v±, γ ; γ ∈ {x, y}

(11.11)

and

σ̇±, zz =̇ λ±h−1
[
D(2)
x v±, x +D(2)

y v±, y + (∂zvz)
±
]

+ 2µ± (∂zvz)
±
, (11.12)

where the adjusted 2nd-order approximation is used for the z−derivative:

(∂zvz)
± =̇ h−1

[
∓ 8

3v
z ± 3 vzK±1/2 ∓ 1

3v
z
K±3/2

]
. (11.13)

Values of the continuous z−component of the particle velocity on the fault,

v z = vzI+1/2, J+1/2, KF +1/2 , (11.14)
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are determined from the 2nd-order approximation to the boundary condition(
σ̇+, zz = σ̇−, zz

)
KF +1/2

. (11.15)

The algorithms of the second and third implementations are relatively more complicated and we
will not detail them here.

We did not introduce any artificial damping in the FD schemes. Dalguer and Day (2007)
introduced viscous damping into the equations of motion in order to suppress short-wavelength
oscillations arising from the numerical dispersion characteristic for low-order FD approxima-
tions.

11.2 The FEM Implementation of the TSN Method

The FEM formulations with the global stiffness matrix and restoring force, explained in sec-
tion 6.3, are explicit. This is one of the necessary conditions for the implementation of the TSN
method in the FE method. The second condition is that a displacement at a node at a time level be
determined by the loading force acting only at that node. For the FE scheme this means that the
mass matrix must be diagonal. If the global mass matrix is non-diagonal it must be approximated
by a lumped mass matrix.

The computational domain except the fault plane is covered by the ’normal’ nodes. Nodes
at the fault plane are split. A split node has two partial nodes, p.n.+ and p.n.−. The + node
belongs only to halfspace H+ , the − node to H− . As mentioned in section 3.4, the partial
nodes (at one grid position) differ in the ’halfspace’ properties/quantities (for example, mass,
displacement, particle-velocity, forces, material parameters). At the same time, they share the
’fault’ properties/quantities (for example, slip, slip-rate, friction, coefficients of friction). This
implies extra conditions on the assembling procedure.

In the assembling procedure we must correctly assemble the local quantities (local mass
matrix, local stiffness matrix, local restoring force vector) into the global ones. In particular, we
must ensure that the restoring force acting at partial node p.n.+ be only due to the deformation
in halfspace H+ . In other words, if we considered no interaction between the partial nodes, no
signal from halfspace H+ would be transfered into halfspace H− , and vice versa.

The first step of the frictional procedure is computation of the trial traction, ~T c t(m) , eq. (3.25).
Forces ~F +(m) and ~F −(m) introduced in section 3.4 exactly correspond to the restoring forces
acting at the partial nodes.

In the case of the formulation with the global stiffness matrix the restoring force in the elastic
medium is obtained from eq. (6.38). In the viscoelastic medium, the anelastic force reA has to
be added.

The normal and shear components of the trial traction ~T c t (m) can be obtained using

~T c tn (m) =
[
~T c t (m) · ~n

]
~n ,

~T c tsh (m) = ~T c t (m) − ~T c tn (m) .
(11.16)

The slip path length l , defined by eq. (3.10), can be approximated by

l (m) = l (m− 1) + dt
∣∣D~v ( m− 1

2

)∣∣ . (11.17)
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If, for example, the slip-weakening friction law is applied, the current value of the slip path length
l (m) can be used to compute the fault strength S (m) .

The enforcement of the boundary conditions on the fault, as explained in section 3.4, yields

D~v
(
m+ 1

2

)
= dt B

[
~T c tsh (m) − ~T csh(m)

]
. (11.18)

The updated slip-rate value is used to obtain the displacements at the partial nodes. The velocity
of centroid of two partial nodes is

~vcent
(
m+ 1

2

)
= ~vcent

(
m− 1

2

)
+ ∆t

~F + (m) + ~F − (m)
M+ +M−

. (11.19)

The slip-rate, that is, the differential velocity between two partial nodes, is distributed between
the partial nodes according to their masses:

~v∓
(
m+ 1

2

)
= ~vcent

(
m+ 1

2

)
∓ ∆t

M±D~v
(
m+ 1

2

)
M+ +M−

. (11.20)

Then the displacements at the partial nodes are

~u∓ (m+ 1) = ~u∓ (m) + ∆t~v∓
(
m+ 1

2

)
. (11.21)

Recall that a quadrature scheme is used to compute the local restoring force vector, eq. (6.41),
or integrals Hij , eq. (6.32), for the local stiffness matrix. Different quadrature scheme can be
used in the FE method. A quadrature scheme should be sufficiently accurate and, especially in
the case of the restoring force formulation, also computationally efficient. As it is well known,
the Gauss quadrature is the most exact quadrature for a chosen number of integration points,
if it is applied to the polynomial functions. For a chosen precision it is also the most efficient
quadrature because it uses the least possible number of integration points. Therefore, the Gauss
quadrature is widely used in the FE method.

We can estimate the required order of the quadrature scheme from eq. (6.41). Consider
a master element for which the local coordinates and global coordinates are equivalent. The
required order of quadrature is then determined by the that combination of derivatives of the
shape functions which requires the highest order. An application of the quadrature of order
larger or equal to the required one the exact value of the considered integral can be found (exact
here means that the error would be only due the discrete representation of numbers in computer).

In the case of deformed hexahedron, the larger the deformation, the larger the integration
error.

However, there are problems that cannot be solved using sufficiently accurate quadrature
scheme, see, for example, Belytschko et al. (2000). In some cases elements with the ’exact’
quadrature behave more stiffer that they should and they lock. Therefore, the solution may be
one order of magnitude smaller than the exact solution. In such cases the application of a lower-
order quadrature scheme, also known as the reduced integration, may result in better behavior of
the element. Consequently, the reduced integrations may be used to obtain a correct approximate
solution. Sometimes, however, such a solution may be polluted by oscillations - hour glass
modes (also known as the zero-energy modes or spurious zero-energy modes). If the solution is
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not affected by the oscillations, it can be considered a reasonable solution (e.g., Zienkiewicz and
Taylor, 1989; Ottosen and Petersson, 1992).

Our numerical tests showed that the 8-point (2 points in one direction) Gauss quadrature for
the HEX8 element does not produce correct solution in the TSN implementation. The reduced
1-point Gauss quadrature yields oscillations. The 8-point Lobatto quadrature (of the same order
as the 1-point Gauss quadrature but the integration points are located at nodes) applied to the
HEX8 elements yields solution close to the reference solution.

11.3 Numerical Test and Comparison

We have four implementations of the TSN method for simulation of the rupture propagation:
three implementations in the staggered-grid (SG) velocity-stress FD scheme and one implemen-
tation in the FE method.

In all three SG FD implementations 4th-order centered approximations are used for spatial
derivatives at grid points at distances equal or larger than 3h/2 from the fault plane. The three
implementations differ from one another by approximations used for spatial derivatives at grid
points close to the fault plane and grid points directly on the fault plane. These differences are
indicated by the acronyms we will use for the implementations:

SG FD 2nd-order:
2nd-order at grid points close to the fault plane and grid points on the fault plane,

SG FD mixed 2nd – 4th-order :
2nd-order at grid points close to the fault plane and 4th-order at grid points on the fault plane,

SG FD 4th-order:
4th-order at all grid points. The FE implementation is the 2nd-order accurate. We will denote

it by FE 2nd-order.
We performed a series of numerical simulations of spontaneous rupture propagation on a

planar fault in a homogeneous unbounded elastic medium. In order to have a reference solution
we followed Dalguer and Day (2007) who used Version 3 of the Southern California Earthquake
Center (SCEC) benchmark problem (Harris et al., 2004). The geometrical configuration of the
benchmark problem is shown in Fig. 11.2. Material and dynamic stress parameters are given in
Tab. 11.1.

The initial shear traction is oriented in the x-direction. Considering the origin of the coordi-
nate system in the center of the fault area and the nucleation zone, the x-axis and y-axis are axes
of symmetry or antisymmetry for the slip and traction components. The coordinate xz-plane
undergoes pure in-plane motion whereas the coordinate yz-plane undergoes pure anti-plane mo-
tion.

The rupture is simultaneously initiated within the nucleation zone due to the initial shear
traction slightly larger than the static yielding traction. The spontaneous rupture propagation
outside the nucleation zone is then controlled by the linear slip-weakening friction law (3.11).

Table 11.2 provides an overview of the all performed numerical simulations for the defined
problem. Simulations differed in values of the used spatial grid spacing h and time steps ∆t .
We wanted to see an effect of the spatial sampling on the level of accuracy of the simulations.
We took the DFM0.05 solution by Day et al. (2005) as the reference solution. DFM means Day’s
implementation of the TSN method in the partly-staggered grid, 0.05 means 50 m large grid



Simulation of the Dynamic Rupture Propagation 343

Fig. 11.2. The geometrical configuration of the planar-fault model corresponding to Version 3 of the SCEC
benchmark problem (Harris et al., 2004). The fault plane, in correspondence to the theory in section 11.1,
is a horizontal plane perpendicular to the z-axis. The shadowed square indicates the nucleation zone.

Tab. 11.1. Material and dynamic stress parameters for the planar-fault model configuration shown in
Fig. 11.2.
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spacing. The rupture propagation is illustrated in Fig. 11.3. Figure 11.3 shows a sequence of
snapshots from the simulation by the FE 2nd-order implementation of the TSN method. The area
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Tab. 11.2. Values of the spatial grid spacings h and time steps ∆t used in the simulations by the four
implementations of the TSN method. RMS of the rupture-propagation time misfits evaluated over the
whole ruptured area (shown in Fig. 11.2). Maximum values of the rupture-propagation time misfits over
the ruptured area.
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of the fault plane within which the rupture propagation is allowed (the area of the split nodes) is
indicated by the bounding rectangle in each snapshot. The interaction of the rupture front with
boundaries of the split-node-area produces healing (indicated by white color near the top and
bottom boundaries at times of 4.08 s and later). Individual solutions are graphically compared
in Figs. 11.4 – 11.9. For each our numerical simulation we evaluated the root-mean-square
(RMS) misfit between the rupture-propagation times in our solution and the rupture-propagation
times in the DFM0.05 solution over the whole ruptured area. The RMS value as well as the
maximum misfit value is shown for each our solution in Tab. 11.2. The comparison of all four
implementations is graphically summarized in Fig. 11.10. Figure 11.10 shows the RMS mis-
fits in the rupture-propagation times relative to the reference solution DFM0.05 of Day et al.
(2005). Because the width of the cohesive zone varies as the rupture propagates, the cohesive
zone resolution is defined as the median value of the number of the grid spacings per width of
the cohesive zone measured in the x-direction. The comparison of the RMS misfits for the four
implementations of the TSN method shown in Fig. 11.10 leads us to conclusion that the FE
2nd-order implementation of the TSN method has the highest rate of convergence while the rate
of convergence of the SG FD 4th-order implementation is the lowest. Let us note that Fig. 11.10
does not really compare the relative accuracy of the individual implementations. This is because
we cannot take the reference solution DFM0.05 as the most accurate solution. Figure 11.10 thus
only compares the convergence rates for the particular choice of the reference solution. At the
same time it is likely that DFM0.05 is a reasonably accurate solution.
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Fig. 11.3. Sequence of the rupture propagation snapshots. Simulation by the FE 2nd-order method.
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Fig. 11.4. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 50 m.
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Fig. 11.5. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 75 m.
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Fig. 11.6. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 100 m.
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Fig. 11.7. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 150 m.



350 FD and FE Modeling in Seismology

������ ������

�
��
�
�
�

�
��
�
�
�

�
�
��
��
�
�
�	



�
��
��

�

��
��
�
�

�
�
�	



�
��
��
�
�

�
�
�	



�
��
��
�
�

�
�
��

�

��
��
�
�

	
�
�
��

Fig. 11.8. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 250 m.
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Fig. 11.9. Contour plots of the rupture front for the four numerical simulations. The grid spacing is 300 m.
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Fig. 11.10. Differences in the rupture-propagation times relative to the reference solution DFM0.05 of Day
et al. (2005). The RMS misfit is evaluated over the whole ruptured area. The cohesive zone resolution is
defined as the median value of the number of the grid spacings per width of the cohesive zone measured in
the x-direction.

12 Simulation of the Kinematic Sources

12.1 Simulation in the Conventional FD Schemes

We want to simulate a point dislocation source in the finite-difference scheme. This means a
simulation of a system of the force-couples (p, q ) with a strength Mpq acting at a grid point. A
body-force term in the equation of motion provides such a possibility. Frankel (1993) proposed
such an approach and used it in the displacement formulation on a conventional grid. Graves
(1996) adapted the approach in the velocity-stress formulation on a staggered grid.

Consider, e.g., an (y, x) couple acting at the grid point (Is, Js,Ks) ; see Fig. 12.1.
The body-force term in the equation of motion corresponding to this couple, that is, fy can be
approximated as

fy =̇
1
h3

1
2h

Myx(t) ( δIIR
δJJR

δKKR
− δIIL

δJJL
δKKL

) , (12.1)

where 2h is the arm length and 1/h3 normalizes the force to the unit volume.
In general, assuming the body-force couples acting at the grid point (I, J,K) in the conven-
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Fig. 12.1. Illustration of simulation of the (y, x) couple acting at the grid point (Is, Js,Ks) in the
conventional grid.

tional grid, we obtain for the discrete approximations to the body forces

F xI+1, J , K = −F xI−1, J , K =
1

2h4
Mxx(t) ,

F yI+1, J , K = −F yI−1, J , K =
1

2h4
Myx(t) ,

F zI+1, J , K = −F zI−1, J , K =
1

2h4
Mzx(t) ,

F xI , J+1, K = −F xI , J−1, K =
1

2h4
Mxy(t) ,

F yI , J+1, K = −F yI , J−1, K =
1

2h4
Myy(t) ,

F zI , J+1, K = −F zI , J−1, K =
1

2h4
Mzy(t) ,

F xI , J , K+1 = −F xI , J , K−1 =
1

2h4
Mxz(t) ,

F yI , J , K+1 = −F yI , J , K−1 =
1

2h4
Myz(t) ,

F zI , J , K+1 = −F zI , J , K−1 =
1

2h4
Mzz(t) .

(12.2)

In the case of a tangential slip the moment tensor Mpq(t) is given by relation (3.53) or (3.50).

12.2 Simulation in the Staggered FD Schemes

Simulation of the kinematic source in the staggered grid is slightly more complicated. This is
because the displacement (or particle-velocity) components are located at different positions in
the grid.

Let us illustrate this in the xz plane in the P-SV case. Assume the body-force couples acting
at the grid point (I + 1/2, K + 1/2), where the normal stress-tensor components T xx and
T zz are located. Consider the x-component of the body-force term. Since this term is present
in the equation for the x-component of the displacement, we can apply it only at the grid posi-
tions, where the discrete approximations to the x-component of the displacement, UI,K+1/2, are
located.
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Fig. 12.2. Illustration of simulation of the (x, x) couple acting at the grid point (I + 1/2, K + 1/2) in
the staggered grid in the 2D P-SV problem.�
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Fig. 12.3. Illustration of simulation of the ( x, z ) couple acting at the grid point (I + 1/2, K + 1/2) in
the staggered grid in the 2D P-SV problem.

The force couples having forces in the x-direction contribute to the fx term. Consider first
the (x, x) couple. This can be simulated at the (I,K + 1/2) and (I + 1,K + 1/2) grid
points, see Fig. 12.2:

F xI+1, K+1/2 = −F xI, K+1/2 =
1
h3

1
h
Mxx(t) =

1
h4

Mxx(t) (12.3)

Consider now the (x, z) couple. We cannot simulate it at the (I + 1/2, K + 1) and (I +
1/2, K) grid points, (that is, analogously to the conventional grid) since discrete displacements
U are not located at these grid points. We can consider, however, one couple along the grid line
(I + 1) and one couple along the grid line (I), that is,

F xI+1, K+3/2 = −F xI+1, K−1/2 =
1
2

1
h3

1
2h

Mxz(t) =
1

4h4
Mxz(t) (12.4)

and

F xI, K+3/2 = −F xI, K−1/2 =
1
2

1
h3

1
2h

Mxz(t) =
1

4h4
Mxz(t) , (12.5)

(see Fig. 12.3), and take the average of the two couples (the reason for
1
2

in eqs. (12.4) and
(12.5) ).

Return now to the 3D problem. Assume the body-force couples acting at the grid point
(I + 1/2, J + 1/2, K + 1/2) . Then we obtain for the staggered grid with the stress-tensor
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components T xx, T yy and T zz located at the grid point (I + 1/2, J + 1/2, K + 1/2) the
following grid body forces:

F xI+1 , J+1/2, K+1/2 = −F xI , J+1/2, K+1/2 =
1
h4

Mxx(t) ,

F xI+1 , J+3/2, K+1/2 = −F xI+1 , J−1/2, K+1/2 =
1

4h4
Mxy(t) ,

F xI , J+3/2, K+1/2 = −F xI , J−1/2, K+1/2 =
1

4h4
Mxy(t) ,

F xI+1 , J+1/2, K+3/2 = −F xI+1 , J+1/2, K−1/2 =
1

4h4
Mxz(t) ,

F xI , J+1/2, K+3/2 = −F xI , J+1/2, K−1/2 =
1

4h4
Mxz(t) ,

(12.6)

F yI+1/2, J+1 , K+1/2 = −F yI+1/2, J , K+1/2 =
1
h4

Myy(t) ,

F yI+3/2, J+1 , K+1/2 = −F yI−1/2, J+1 , K+1/2 =
1

4h4
Myx(t) ,

F yI+3/2, J , K+1/2 = −F yI−1/2, J , K+1/2 =
1

4h4
Myx(t) ,

F yI+1/2, J+1 , K+3/2 = −F yI+1/2, J+1 , K−1/2 =
1

4h4
Myz(t) ,

F yI+1/2, J , K+3/2 = −F yI+1/2, J , K−1/2 =
1

4h4
Myz(t) ,

(12.7)

F zI+1/2, J+1/2, K+1 = −F zI+1/2, J+1/2, K =
1
h4

Mzz(t) ,

F zI+3/2, J+1/2, K+1 = −F zI−1/2, J+1/2, K+1 =
1

4h4
Mzx(t) ,

F zI+3/2, J+1/2, K = −F zI−1/2, J+1/2, K =
1

4h4
Mzx(t) ,

F zI+1/2, J+3/2, K+1 = −F zI+1/2, J−1/2, K+1 =
1

4h4
Mzy(t) ,

F zI+1/2, J+3/2, K = −F zI+1/2, J−1/2, K =
1

4h4
Mzy(t) .

(12.8)

In a computer code it is reasonable to consider integer values of the grid indices. Equations (12.6)
– (12.8) can be rewritten replacing actual-position indices by indices corresponding to the finite-
difference cells. The rule for the re-indexing is simple: 1. an index having an integer value does
not change, 2. 1/2 has to be subtracted from an index which does not have an integer value. (The
same reindexing can be applied to all the staggered-grid schemes we showed before.) Equations



356 FD and FE Modeling in Seismology

(12.6) - (12.8) become

F xI+1, J , K = −F xI , J , K =
1
h4

Mxx(t) ,

F xI+1, J+1, K = −F xI+1, J−1, K =
1

4h4
Mxy(t) ,

F xI , J+1, K = −F xI , J−1, K =
1

4h4
Mxy(t) ,

F xI+1, J , K+1 = −F xI+1, J , K−1 =
1

4h4
Mxz(t) ,

F xI , J , K+1 = −F xI , J , K−1 =
1

4h4
Mxz(t) ,

(12.9)

F yI , J+1, K = −F yI , J , K =
1
h4

Myy(t) ,

F yI+1, J+1, K = −F yI−1, J+1, K =
1

4h4
Myx(t) ,

F yI+1, J , K = −F yI−1, J , K =
1

4h4
Myx(t) ,

F yI , J+1, K+1 = −F yI , J+1, K−1 =
1

4h4
Myz(t) ,

F yI , J , K+1 = −F yI , J , K−1 =
1

4h4
Myz(t) ,

(12.10)

F zI , J , K+1 = −F zI , J , K =
1
h4

Mzz(t) ,

F zI+1, J , K+1 = −F zI−1, J , K+1 =
1

4h4
Mzx(t) ,

F zI+1, J , K = −F zI−1, J , K =
1

4h4
Mzx(t) ,

F zI , J+1, K+1 = −F zI , J−1, K+1 =
1

4h4
Mzy(t) ,

F zI , J+1, K = −F zI , J−1, K =
1

4h4
Mzy(t) .

(12.11)

Equations (12.9) - (12.11) with the finite-difference cell indices are ready for programming.

If we want/need to simulate source acting at the grid point (I, J,K) in the staggered grid
with the stress-tensor components T xx, T yy and T zz located at the grid point (I, J,K) , we
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obtain

F xI+1/2, J , K = −F xI−1/2, J , K =
1
h4

Mxx(t) ,

F xI+1/2, J+1 , K = −F xI+1/2, J−1 , K =
1

4h4
Mxy(t) ,

F xI−1/2, J+1 , K = −F xI−1/2, J−1 , K−1/2 =
1

4h4
Mxy(t) ,

F xI+1/2, J , K+1 = −F xI+1/2, J , K−1 =
1

4h4
Mxz(t) ,

F xI−1/2, J , K+1 = −F xI−1/2, J , K−1 =
1

4h4
Mxz(t) ,

(12.12)

F yI , J+1/2, K = −F yI , J−1/2, K =
1
h4

Myy(t) ,

F yI+1 , J+1/2, K = −F yI−1 , J+1/2, K =
1

4h4
Myx(t) ,

F yI+1 , J−1/2, K = −F yI−1 , J−1/2, K =
1

4h4
Myx(t) ,

F yI , J+1/2, K+1 = −F yI , J+1/2, K−1 =
1

4h4
Myz(t) ,

F yI , J−1/2, K+1 = −F yI , J−1/2, K−1 =
1

4h4
Myz(t) ,

(12.13)

F zI , J , K+1/2 = −F zI , J , K−1/2 =
1
h4

Mzz(t) ,

F zI+1 , J , K+1/2 = −F zI−1 , J , K+1/2 =
1

4h4
Mzx(t) ,

F zI+1 , J , K−1/2 = −F zI−1 , J , K−1/2 =
1

4h4
Mzx(t) ,

F zI , J+1 , K+1/2 = −F zI , J−1 , K+1/2 =
1

4h4
Mzy(t) ,

F zI , J+1 , K−1/2 = −F zI , J−1 , K−1/2 =
1

4h4
Mzy(t) .

(12.14)

For the alternative approaches to the implementation of the source see, for example, Yomogida
and Etgen (1993), Coutant et al. (1995), and Olsen et al. (1995).

12.3 Simulation in the FE Method

Consider a source located at node S0 in the conventional grid, see Fig. 12.4. Let h be the grid
spacing, that is the distance between two neighboring nodes. The source can be simulated using
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Fig. 12.4. Nodes of the finite-element grid (mesh) used for simulation of the point kinematic source at node
S0.

the following nodal forces - discrete approximations to the body forces:

Fx
(
S 1
x , t
)

= −Fx
(
S 2
x , t
)

=
1

2h
Mxx (t) ,

Fy
(
S 1
x , t
)

= −Fy
(
S 2
x , t
)

=
1

2h
Mxy (t) ,

Fz
(
S 1
x , t
)

= −Fz
(
S 2
x , t
)

=
1

2h
Mxz (t) ,

(12.15)

Fx
(
S 1
y , t
)

= −Fx
(
S 2
y , t
)

=
1

2h
Mxy (t) ,

Fy
(
S 1
y , t
)

= −Fy
(
S 2
y , t
)

=
1

2h
Myy (t) ,

Fz
(
S 1
y , t
)

= −Fz
(
S 2
y , t
)

=
1

2h
Myz (t) ,

(12.16)

Fx
(
S 1
z , t
)

= −Fx
(
S 2
z , t
)

=
1

2h
Mxz (t) ,

Fy
(
S 1
z , t
)

= −Fy
(
S 2
z , t
)

=
1

2h
Myz (t) ,

Fz
(
S 1
z , t
)

= −Fz
(
S 2
z , t
)

=
1

2h
Mzz (t) ,

(12.17)

where Fi
(
S kj , t

)
; i, j ∈ {x, y, z} , k ∈ {1, 2} denotes the force acting in the i-direction at

node S kj . Note that the the moment-tensor components are scaled here only by the length of the
force-couple arm - unlike the scaling in the analogous equations for the simulations in the FD
schemes. The reason for the difference is that force here means force acting on a mass of a node.
The forces given in eqs. (12.9) – (12.14) were forces per unit volumes, that is, corresponding to
the body-force terms in the strong-form equation of motion.
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Fig. 12.5. Rectangles a and b, say, excitation rectangles, used for decomposition of the total displacement
into the source and residual (scattered) parts in the conventional grid in the 2nd-order FD schemes.

12.4 Decomposition of the Wavefield

Let ~s be a displacement produced by a source. Then the total displacement ~u can be decom-
posed in the form

~u = ~s + ~uR , (12.18)

where ~uR is the displacement corresponding to the residual (or scattered) wavefield.
Consider now rectangles (or squares) a and b in the conventional rectangular grid (see Fig.

12.5). Let us assume a source located inside rectangle b. Using decomposition (12.18) we can
compute the total wavefield outside rectangle b without introducing a source (body-force term)
in the finite-difference scheme used inside rectangle b or prescribing displacements at the grid
points inside rectangle b. The residual displacement ~uR inside and directly at rectangle b can
be computed by the finite-difference scheme (the 2nd-order scheme is assumed). The residual
displacement ~uR at rectangle a is computed using

~uR (a) = ~u (a) − ~s (a) . (12.19)

The total displacement ~u at rectangle b is computed using

~u (b) = ~s (b) + ~uR (b) . (12.20)

The total displacement ~u outside rectangle b (i.e., at rectangle a and outside rectangle a) is
computed by the finite-difference scheme.

Note that the 4th-order scheme obviously needs more excitation rectangles.
Such an indirect wavefield excitation was proposed by Alterman and Karal (1968). It is

clear that using the source-displacement ~s it is possible to ’inject’, e.g., an analytical solution
corresponding to a desired source into the FD computation. Alterman and Karal (1968) used
the technique to avoid a point-source singularity. The technique was applied by many modelers,
e.g., Vidale et al. (1987) in the 4th-order modeling, Moczo (1989), Fäh (1992), Fäh et al. (1993),
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Fig. 12.6. Excitation lines a and b used for decomposition of the total displacement in simulation of the
plane-wave radiation from the grid line b in the 2D problem.

Zahradnı́k (1995), Robertson et al. (1996), Zahradnı́k and Moczo (1996), Moczo et al. (1997),
Robertson and Chapman (2000), Takeuchi and Geller (2003). For more details see Moczo et al.
(2007).

A special case when only two excitation lines are used for a wavefield excitation (e.g., Moczo,
1989) is illustrated in Fig. 12.6. In this case the residual displacement ~uR at line b and below
line b is computed by the finite-difference scheme. The residual displacement ~uR at line a is
computed using eq. (12.19). The total displacement ~u at line b is computed using eq. (12.20).
The total displacement ~u at line a and above line a is computed by the finite-difference scheme.

Fäh (1992), Fäh et al. (1993), Zahradnı́k (1995), Robertson et al. (1996), Zahradnı́k and
Moczo (1996), Moczo et al. (1997), Robertson and Chapman (2000), Takeuchi and Geller (2003)
applied the indirect wavefield excitation as a part of the two-step hybrid computations. Fig-
ure 12.7 illustrates the hybrid method of Zahradnı́k (1995) and Zahradnı́k and Moczo (1996).

In the 1st step, the wavefield is recorded along lines a and b. This wavefield, ~uK , consists
of the wavefield radiated from the source (incident wavefield) and also of that reflected from the
free surface (this is important). In the 2nd step

- ~uR at rectangle b and inside the region bounded by rectangle b, nonreflecting (NB) bound-
aries and free surface (including) is computed by the finite-difference scheme,

- ~uR at rectangle a is computed using

~uR (a) = ~u (a) − ~uK (a), (12.21)

- ~u at rectangle b is computed using

~u (b) = ~uK (b) + ~uR (b), (12.22)

- ~u at rectangle a, and inside the region bounded by a and the free surface is computed by
the finite-difference scheme.

The use of the discrete-wavenumber method is not necessary - the source radiation and back-
ground wave propagation can be computed by any suitable method.

Moczo et al. (1997) generalized the hybrid approach of Zahradnı́k and Moczo (1996) in
their hybrid DW-FD-FE method for modeling of the 2D P-SV seismic motion in sedimen-
tary/topographic local structures. The principle of the hybrid approach is illustrated in Fig. 12.8.
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HYBRID DW–FD METHOD
(Zahradńık and Moczo, 1996)

PROBLEM CONFIGURATION

FREE SURFACE

LOCAL
SEDIMENTARY
STRUCTURESOURCE

*

TWO–STEP SOLUTION

1st STEP: DW COMPUTATION

FREE SURFACE

b a

SOURCE

*
Wavefield (~uK) recorded along lines a and b

2nd STEP: FD COMPUTATION

FREE SURFACE

b a
~u

~uR

NB NB

NB
inside the two regions:

Total field ~u and residual field ~uR computed

by FD schemes

line a: ~uR = ~u− ~uK

line b: ~u = ~uK + ~uR

DW

FD

– discrete wavenumber

– finite difference

NB – nonreflecting boundary

Fig. 12.7. Scheme of the hybrid discrete-wavenumber finite-difference method of Zahradnı́k (1995) and
Zahradnı́k and Moczo (1996). DW discrete-wavenumber method, FD finite-difference method.
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HYBRID DW–FD–FE METHOD
FOR TOPOGRAPHIC STRUCTURES

(Moczo et al., 1997)

PROBLEM CONFIGURATION

FREE SURFACE

LOCAL
TOPOGRAPHIC
STRUCTURESOURCE

*

TWO–STEP SOLUTION

1st STEP: DW COMPUTATION

FREE SURFACE

b a

SOURCE

*
Wavefield (~uK) recorded along lines a and b

2nd STEP: FDFE COMPUTATION

FREE SURFACE

b a
~u

~uR

NB NB

NB

FDFE

FD

inside the two regions:

Total field ~u computed by FDFE algorithm

Residual field ~uR computed by FD scheme

line a: ~uR = ~u− ~uK

line b: ~u = ~uK + ~uR

DW

FD

FDFE

– discrete wavenumber

– finite difference

– finite difference – finite element

NB – nonreflecting boundary

Fig. 12.8. Scheme of the DW-FD-FE (discrete-wavenumber - finite-difference - finite-element) hybrid
method for computation of the 2D P-SV seismic motion in local surface structures including sedimentary
body and topography of the free surface. Adapted from Moczo et al. (1997).
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13 The FD Modeling of Earthquake Motion in Grenoble Basin, France

13.1 The ESG 2006 Grenoble Basin Benchmark

The Third International Symposium on the Effects of Surface Geology on Seismic Motion,
ESG2006, was organized by Pierre-Yves Bard and his colleagues in the Laboratoire de Géophysi-
que Interne et de Tectonophysique (LGIT), Université Joseph Fourier in Grenoble, France. The
symposium provided an excellent opportunity to focus the traditional blind prediction experiment
on numerical modeling of earthquake motion in the Grenoble basin for local weak and moderate
earthquakes.

The Grenoble basin is a typical deep sedimentary Alpine basin. The city of Grenoble has con-
siderable population, modern industry, and educational and research institutions. The regional
and local earthquake activity imposes non-negligible level of earthquake hazard and risk. The
structure of the sedimentary body was a subject of relatively detailed geophysical and seismo-
logical investigations. As a consequence, it was possible to define a reasonable structural model
as well as possible earthquake sources for the numerical modeling of the earthquake motion.

13.2 Structural Model and Earthquake Sources

The organizers of the benchmark defined a structural model and four earthquake sources. The
structural model is based on the map of the bedrock topography constructed by Vallon (1999).
The bedrock depth has been obtained by inverting gravimetric measurements.

Geometry of the sediment-bedrock interface is shown in Fig. 13.1. Material parameters in the
bedrock are specified in Tab. 13.1. Material parameters in the sediments are defined by relations

α = 1450 + 1.2 d , (13.1)
β = 300 + 19.2

√
d , (13.2)

ρ = 2140 + 0.125 d , (13.3)
Qµ = 50 , (13.4)
Qκ = ∞ , (13.5)
QS = 50 , (13.6)

QP =
3
4
QS

α2

β2
, (13.7)

where α and β are the P- and S-wave velocities in m/s, ρ is density in kg/m3, and d is depth
in m. The density, P- and S-wave velocities as functions of depth are shown in Fig. 13.2.

The weak event W1 is a Mw = 2.9 right-lateral strike-slip earthquake on the Eastern part
of the Belledonne border fault. The weak event W2 is a Mw = 2.8 left-lateral strike-slip earth-
quake on the Southern part of the Belledonne border fault. The strong event S1 is a Mw = 6.0
right-lateral strike-slip earthquake on the Eastern part of the Belledonne border fault. The kine-
matic model of the earthquake assumes a Haskell circular crack (with constant final displace-
ment) propagating within a rectangular fault. The strong event S2 is a Mw = 6.0 left-lateral
strike-slip earthquake on the Southern part of the Belledonne border fault. The kinematics of
the event is the same as that of the S1 event. The source parameters of the four earthquakes are
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Fig. 13.1. Geometry of the sediment-bedrock interface in the standard geotechnical model provided for the
benchmark simulation. Black triangles indicate positions of the receivers. Red stars indicate epicenters of
two weak local earthquakes, W1 and W2, lines indicate finite faulting areas of two strong events, S1 and
S2.
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Tab. 13.1. Density ρ , P-wave velocity α , S-wave velocity β , quality factor for the shear modulus Qµ ,
and quality factor for the bulk modulus Qκ in the 1D model of bedrock.

Depth of the top α β ρ Qµ Qκ
of the layer [m] [m/s] [m/s] [kg/m3]

0 5 600 3 200 2 720 ∞ ∞
3 000 5 920 3 430 2 720 ∞ ∞

27 000 6 600 3 810 2 920 ∞ ∞
35 000 8 000 4 450 3 320 ∞ ∞

Fig. 13.2. Density ρ , P-wave velocity α and S-wave velocity β as functions of depth in the sediments.
The quality factors for the shear and bulk moduli, Qµ and Qκ .
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Tab. 13.2. The fault-orientation parameters, fault dimensions, hypocentral depth, and moment magnitude
for the four considered events.
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specified in Tab. 13.2. The slip as function of time was specified by

stf =
1
2

[
1 + erf

(
scaling

t − t0
tdur

)]
(13.8)

with scaling = 2, tdur = τ/2 , and t0 = 2 τ . For events W1 and W2 τ = 0.03 s, for events
S1 and S2 τ = 1.116 s. These times were chosen to define the slip velocity of (approximately)
1 m/s.

13.3 Arbitrary Discontinuous Staggered Grid and the 4th-order VS SG Scheme

The minimum S-wave velocity in the bedrock is more than three time larger than the maximum
S-wave velocity in sediments. The ratio is even much larger for the sediments near the free
surface. The hypocentral depth in all four events is 3 km. Therefore, it is very clear that the
application of the uniform spatial grid with a constant size of the grid spacing would lead to
a considerable oversampling in a major part of the computational domain. This would lead to
unnecessary large computer memory and time requirements.

The total number of the grid points/cells and/or the computer memory and time requirements
can be reduced using several approaches. Examples are material cell types, core memory op-
timization, combined memory optimization, spatial discontinuous grid, varying size of the grid
spacing, spatially varying time step, discontinuous space-time grids, higher-order approximation
in space and/or time, and parallelization. For a review of these approaches we refer to Moczo et
al. (2007).

Reduction of the total number of grid points using an irregular spatial grid obviously can be
a strong tool in optimizing the numerical simulation. The rectangular grid with a varying size
of the grid spacings was first used by Boore (1970) in the 1D problem. Mikumo and Miyatake
(1987) applied the varying size of the grid spacing in the 3D case in a homogeneous medium.
Moczo (1989) applied the grid with the varying size of the grid spacing to the 2D SH problem
in the laterally heterogeneous medium, Pitarka (1999) presented the 3D velocity-stress scheme
with a varying size of the grid spacing. Jastram and Behle (1992), Jastram and Tessmer (1994),
Falk et al. (1996), Moczo et al. (1996), Kristek et al. (1999), Aoi and Fujiwara (1999), Hayashi
et al. (2001), Moczo et al. (2001), and Wang et al. (2001) introduced spatial discontinuous grids.



The FD Modeling of Earthquake Motion in Grenoble Basin, France 367

A spatial discontinuous grid for modeling of seismic motion in near-surface sedimentary
structures usually consists of two spatial grids - a finer grid covering the sediments (with smaller
S-wave velocity) and a coarser grid covering the stiffer bedrock. In the simplest configuration
a horizontal layer of finer grid cells overlies a horizontal layer of larger grid cells. In order to
make such combined (or discontinuous) spatial grid efficient, the ratio of the size of a spatial
grid spacing in the coarser grid and that in the finer grid should correspond to the ratio of the
shear-wave velocities in the stiffer bedrock and softer sediments. Therefore we developed an
algorithm that enables to adjust a discontinuous spatial grid accordingly except that, due to the
structure of the staggered grid, the ratio of the spatial grid spacings in the coarser and finer grids
has to be an odd number. In other words, depending on the model of medium, we can choose a
1:1 (uniform) grid, or 1:3, 1:5, ... discontinuous grid. The grid is illustrated in Fig. 13.3.

The FD scheme used for the benchmark simulations is the 4th-order velocity-stress stagge-
red-grid scheme described in detail in sections 7.2, 8.1.4 and 9.2.

Fig. 13.3 indicates an overlapping of the finer and coarser grids.If the grid points of the finer
and coarser grids share the same position, they also share the same values of the particle-velocity
and stress-tensor components. At the grid points close to the bottom of the finer grid only the
2nd-order FD scheme is applied. Still there are grid points (shown in yellow in Fig. 13.3) for
which the stencil of the 2nd-order scheme is not complete. At these points the required values
of the particle-velocity or stress-tensor components are obtained by a bicubic interpolation using
values at neighboring grid points at the same horizontal plane.

Note that despite the formal 2nd-order accuracy at the grid points close to the bottom of the
finer grid, the effective accuracy of the 4th-order modeling is not affected for a simple reason:
the overlapping zone of the two grids is located in the stiffer bedrock, that is in the medium with
at least 3 times larger S-wave velocity. Consequently, there is a relative oversampling of the
minimum wavelength.

13.4 Simulations and Results

In the benchmark simulation we used the 1:5 discontinuous spatial grid. The PML (Perfectly
Matching Layers) with a layer thickness of 10 grid spacings in the coarser and 50 grid spacings
in the finer grid were used.

All simulations where performed on the small cluster of Opteron 2.2 GHz machines (6 CPUs,
10 GB RAM in total). The discontinuous grid with finer grid of 1321× 1431× 45 grid cells and
25 m grid spacing, and coarser grid of 265×287×65 grid cells and 125 m grid spacing were used.
The time step in all simulations was 0.0022 s. The maximum frequency is around 2.5 Hz. The
computational time for the 30 s time window (for the weak events W1 and W2) was 33 hours,
for the 80s time window (for the strong events S1 and S2) 88 hours. The peak-ground-velocity
maps and the z-component (here positive in the upward vertical direction) of the particle velocity
at (theoretical) receiver positions R25 - R32 along the 2D profile are displayed in Figs. 13.4 –
13.7. We do not interpret the results here. The comparison of all submitted solutions is a subject
of the complex evaluation of the benchmark simulation experiment by the organizers. More-
over, the structural model defined for the benchmark is, in fact, a little bit modified compared
to the true structure. This is because it is easier to perform simulations for laterally bounded
sedimentary body. Here we only illustrate our simulation by comparing it with the simulation
performed by Emmanuel Chaljub of LGIT, Université Joseph Fourier, Grenoble. Chaljub used
the spectral-element method (SPEM) for his simulation. Figure 13.8 shows the z-component of
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Fig. 13.3. A vertical grid plane in the arbitrary discontinuous spatial grid in the case of the coarser-to-finer
spatial grid spacing ratio equal to 3.

the particle velocity at receiver positions R25 - R32 simulated by our FD scheme and spectral-
element method. Given the structural complexity of the benchmark model and differences in the
two simulation methods, the synthetic velocity seismograms obtained by the two methods can be
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considered surprisingly close.

14 Hybrid FD-FE Modeling of Earthquake Motion

14.1 Introduction to the Hybrid Modeling

In many wavefield-medium problem configurations it is advantageous to combine two or even
more computational methods in order to solve the problem with a reasonable level of accuracy
and computational efficiency. In some cases it is advantageous to solve time dependence of the
displacement using one method and spatial dependence using some other method (e.g., Alexeev
and Mikhailenko, 1980). In some other cases it is reasonable to split the computational domain
into two or more parts and solve each part by the best suited method. Several hybrid methods
were developed in an effort to achieve reasonable computational efficiency in applications to
relatively complex structural models. They include methods by Ohtsuki and Harumi (1983),
Shtivelman (1984, 1985), Van den Berg (1984), Kummer et al. (1987), Stead and Helmberger
(1988), Kawase (1988), Gaffet and Bouchon (1989), Emmerich (1989, 1992), Fäh (1992), Fäh
et al. (1993), Rovelli et al. (1994), Bouchon and Coutant (1994), Robertsson (1996), Zahradnı́k
and Moczo (1996), Moczo et al. (1997), Lecomte (2004), Ma et al. (2004).

14.2 The 4th-order VS SG FD Scheme Combined with the 2nd-order FE Scheme

The FE method more easily incorporates boundary conditions at the free surface and material
interfaces compared to the FD method. This is especially true about non-planar surfaces and
interfaces. From this point of view the FE method is better suited for simulation of the traction-
free condition and rupture propagation. On the other hand, the 4th-order staggered-grid FD
scheme is computationally more efficient if the seismic wave produced, e.g., by the dynamically
rupturing fault, are to be propagated away from the fault. It is therefore very natural to think of
a hybrid combination of the two methods if we want to comprise both the dynamic earthquake
source and the wave propagation in the complex heterogeneous medium. Moczo et al. (1997)
combined the 2nd-order conventional FD scheme with the 2nd-order FE method for the 2D P-
SV modeling of seismic motion in the near-surface sedimentary/topographic structure. Ma et
al. (2004) combined the 4th-order velocity-stress staggered-grid scheme with the 2nd-order FE
method for the 2D P-SV modeling.

Here we combine the 4th-order velocity-stress staggered-grid scheme with the 2nd-order FE
method for the 3D modeling of earthquake motion in the heterogeneous viscoelastic medium
with the free-surface topography and with, optionally, kinematic (point or finite) or dynamic
earthquake source.

The basic theory was explained in sections 3.4, 6.3, 7.2, 8.1.4, 9.2.2, and 11.2. In the follow-
ing sections we will focus on particular aspects of the hybrid FD-FE modeling.

14.2.1 Computational Domain

A part of the computational domain with the free-surface topography or dynamically rupturing
fault can be covered by the finite elements. In principle the whole computational domain can
involve several FE regions. Obviously, the FE region should be as small as possible. The rest
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Fig. 13.8. Comparison of the velocity seismograms obtained using the 4th-order velocity-stress staggered-
grid FD scheme (FD, in black; our simulation) with the velocity seismograms obtained using the spectral-
element method (SPEM, in red; author Emmanuel Chaljub, LGIT, Université Joseph Fourier, Grenoble) for
the S1 Grenoble benchmark simulation experiment.
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FE region

FD  Dirichlet  zoneAveraging zoneFE Dirichlet
boundary Transition zone

hFD

FD region
staggered grid

U
WzxT

,     ,xx       yy        zzT    T    T U
W

hFE

updated using 
the FEM

Fig. 14.1. The FD-FE transition zone in the FD-FE hybrid modeling. For simplicity, only the vertical grid
plane with the x- and z-components of the particle velocity, U̇ and Ẇ , is shown (compare with Fig. 6.1).
hFD is the spatial grid spacing in the FD grid, hFE is the spatial grid spacing in the uniform part of the FE
grid near the transition zone (the rest of the FE grid can be non-uniform). Note that no special symbol is
used to indicate positions of the displacement in the FE grid. Each grid point in the FE region, that is, each
intersection of the grid lines in the FE region, is a position of the all components of the displacement vector.

of the computational domain is covered by the FD grid. The interiors of the FE and FD regions
are updated independently by the FE and FD schemes, respectively. The FE and FD regions
communicate at each time level at the contacts of the regions, that is, in the FD-FE transitions
zones.

14.2.2 The FD-FE Transition Zone

The FD and FE schemes communicate with each other at each time level only in the transi-
tion zone. The transition zone is the region where the FD and FE grids overlap. A vertical
cross-section of the transition zone is shown in Fig. 14.1. The transition zone consists of the
FE Dirichlet boundary, averaging zone, and FD Dirichlet zone. The FE Dirichlet boundary is,
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in general, a staircase grid surface that has to go through the grid points of the FD staggered
grid. The algorithm of the FD-FE communication in fact does not require the weighting zone.
However, our numerical tests clearly show that it is significantly better if the averaging zone is
defined. Even one FD grid spacing thick averaging zone makes a significant difference in the
numerical behavior of the transition zone. The local thickness and (staircase) shape of the FD
Dirichlet zone is determined by requirement that the particle-velocity and stress-tensor compo-
nents located directly at the grid interface between the averaging zone and FD Dirichlet zone be
calculated using the 4th-order VS SG interior-point formula. The FE region near the transition
zone has to be uniform because the staggered grid is uniform.

As shown in Fig. 14.1, the size of the grid spacing in the FE grid is twice smaller compared
to that in the FD grid. Intuitively, this is a reasonable choice given the 2nd- and 4th-order approx-
imations in the FE and FD schemes, respectively. Kristek and Moczo (2006) indicated by their
numerical investigations for the 1D problem that the 4th-order staggered-grid scheme requires
denser spatial sampling than that usually considered in the 4th-order staggered-grid modeling
(that is, approximately twice coarser compared to the 2nd-order conventional schemes). At the
same time, the numerical modeling of the rupture propagation and free-surface topography re-
quires denser spatial sampling compared to that usually considered for the wave propagation.

The algorithm of the FD-FE hybrid method can be summarized in the following steps:

• Displacements UFE(m + 1) are updated at the grid points of the interior FE region (the
FE grid points except the FE Dirichlet boundary).

• Particle velocities U̇FD(m + 1
2 ) are updated at the grid points of the interior FD region

(that is, including the dashed line between the averaging zone and FD Dirichlet zone in
Fig. 14.1).

• Particle velocities within the FD Dirichlet zone (that is at the grid points indicated by the
double squares and circles in Fig. 14.1; ) are updated using the FE displacement values at
the same grid points:

U̇FD(m+ 1
2 ) =

UFE(m+ 1)− UFE(m)
dt

. (14.1)

• Averaging of the FD particle velocities in the averaging zone (including the dashed line
between the averaging zone and FD Dirichlet zone in Fig. 14.1):

U̇wFD(m+ 1
2 ) = w

UFE(m+ 1)− UFE(m)
dt

+ (1− w) U̇FD(m+ 1
2 ) , (14.2)

where w = 1 at the dashed line between the averaging zone and FD Dirichlet zone, and
w = 0 at the FE Dirichlet boundary. The weighting coefficient linearly changes between
the two values over the averaging zone.

• Averaging of the FE displacements in the averaging zone (including the dashed line be-
tween the averaging zone and FD Dirichlet zone in Fig. 14.1):

U̇wFE(m+ 1
2 ) = w U̇FE(m+ 1

2 ) + (1− w) U̇FD(m+ 1
2 ) , (14.3)

UwFE(m+ 1) = UFE(m) + dt U̇wFE(m+ 1
2 ) . (14.4)
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Fig. 14.2. All possible grid positions of the FE displacements at which a missing component of the FD
particle velocity has to be interpolated. The boldface letter a refers to the interior grid points, b to the
near-surface, and c to the surface grid points.

Because at one grid point in the averaging zone either one or no component of the FD
particle velocity is available, it is necessary to calculate the missing components of the
FD particle velocity using interpolation from the neighboring grid points. Figure 14.2
shows all possible positions at which a missing component of the particle velocity has to
be interpolated. All interpolations are the 4th-order accurate.

• The original FD particle velocities and FE displacements in the averaging zone (that is
those updated by the FD and FE schemes) are replaced by the averaged values.

• Update of the FE displacements at FE Dirichlet boundary at time level m + 1 from the



378 FD and FE Modeling in Seismology

FD particle velocities at time level m+ 1/2 :

UFE(m+ 1) = UFE(m) + dt U̇FD(m+ 1
2 ) . (14.5)

Because at one grid point at the Dirichlet boundary either one or no component of the FD
particle velocity is available, it is necessary to calculate the missing components of the FD
particle velocity using interpolation from the neighboring grid points - as in the averaging
of the FE displacements.

14.3 Hybrid Modeling of Earthquake Motion in Grenoble Basin

The local earthquake activity near Grenoble is related to several faults; see, e.g., Cotton et al.
(1998). With reference to investigations of the historical earthquake activity and tectonic situa-
tion by Gamond (1994) and Thouvenot (1996), Cotton et al. (1998) considered two hypothetical
earthquakes near Grenoble and performed numerical simulations of the earthquake motion in
Grenoble basin. One earthquake was considered as a thrust event beneath Grenoble, the other
earthquake was assumed as a strike-slip faulting in the Belledonne Massif. In both cases Cotton
et al. (1998) modeled the earthquake sources as kinematic point sources. They used the 4th-order
velocity-stress staggered-grid FD scheme.

Here we apply our hybrid FD-FE method for the modeling of the two hypothetical earth-
quakes. Because it is relatively easy in our method to model dynamically rupturing fault, we
consider in both cases a finite size of the ruptured area and spontaneous rupture propagation.
Michel Bouchon and Pierre-Yves Bard (both LGIT, Université Joseph Fourier, Grenoble), sug-
gested the following hypothetical dynamic model: initial traction in the horizontal in-plane di-
rection 10 MPa, initial traction in the horizontal anti-plane direction 0 MPa, initial normal trac-
tion -17 MPa, static and dynamic coefficients of friction 0.7 and 0.235, respectively, linear slip-
weakening friction law. The same dynamic model is assumed for both the thrust and strike-slip
earthquakes. The ruptured area was restricted to approximately 4 km× 2 km by a continuous in-
crease of the values of the static and dynamic coefficients of friction. This restriction was chosen
to produce slip equivalent to Mw = 5.3 earthquake. The hypocenter was located at the center
of the ruptured area. The initialization zone was a circle with the 500 m diameter. The in-plane
shear initial traction inside the initialization zone was 2.5 % larger than the static traction.

The geometrical configuration of the Grenoble basin and thrust fault is shown in Fig. 14.3.
The rupturing area of the fault is located inside the FE box. As it is clear from the figure, the FE
box is relatively small portion of the whole computational domain. The major part of the domain
is covered by the FD grid. This hybrid or combined coverage of the computational domain makes
the simulation considerably computationally more efficient compared to the simulation with the
FE grid covering the whole domain.

Material parameters of the structural model are specified in Fig. 14.4. The computational
parameters were chosen such that the simulation should be sufficiently accurate up to (approxi-
mately) 7.6 Hz in the bedrock and 0.7 Hz in the sediments near the free surface.

Results of the numerical simulation for the thrust event are illustrated in Figs. 14.5 - 14.7.
The figures show sequence of the wavefield snapshots of the simulated earthquake motion at the
free surface. Each snapshot shows the spatial distribution of the absolute value of the (total)
horizontal component of the particle velocity at the free surface at a chosen time. The sequence
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Fig. 14.3. Geometrical configuration of the Grenoble sedimentary basin and dynamically rupturing thrust
(horizontal) fault: interface between sediments and bedrock with indication of the sediment thickness, the
FE region (red box) covering the ruptured fault area (yellow area inside the red box), projections of the FE
region and ruptured fault area onto the flat free surface. The fault is at depth of 5 km.

of snapshots clearly indicates seismic waves radiated from the rupturing fault and the corre-
sponding seismic motion outside the basin as well as the penetration of the seismic waves into
the sedimentary body at earlier times of the simulation. Due to relatively large impedance con-
trast between the sediments and bedrock, the seismic energy is trapped in the sediments at later
times. Due to the complex development of the wavefield inside the geometrically complicated
sedimentary body (generation of local surface waves in the sediments, constructive/destructive
interference of the body and surface waves, multiple reflections of the waves between the free
surface and the sediment-bedrock interface, diffraction), clear dominance of the motion inside
the basin compared to that outside the basin, and its complex space-time variation, is observed
in the snapshots.

Figure 14.8 shows the geometrical configuration of the Grenoble basin and strike-slip fault
considered in the simulation of the second hypothetical earthquake. The mechanical parameters
of the structural model are the same as in the previous case. Results of the numerical simulation
for the strike-slip event are illustrated in Figs. 14.9 - 14.11. Similarly to the first simulation,
the figures show sequence of the wavefield snapshots of the simulated earthquake motion at
the free surface. Though, qualitatively, we can say almost the same brief characteristics of the
development as in the case of the first earthquake, it is very clear from the sequence of snapshots
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Fig. 14.4. Material parameters in the computational model of the Grenoble basin.

that the space-time variation of the earthquake motion in the basin considerably differs from that
in the first earthquake. Obviously, this is a consequence of different geometrical configuration of
the basin structure and the rupturing fault.

While a detailed analysis and complex characterization of the seismic motion is necessary
and possible in the seismological investigations, it is not commonly applied in the earthquake-
engineering practice. Instead of a complex time history of the displacement, particle-velocity
or acceleration at each point of the investigated area of the free surface they require at most
one scalar quantity representative of the earthquake motion at a given point of the free surface.
Several single-valued or integral characteristics of the earthquake motion were defined for this
purpose. Here we consider peak horizontal acceleration, PHA , that is the maximum value of the
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Fig. 14.5. Sequence of the wavefield snapshots for the simulated thrust earthquake beneath the Grenoble
basin - the first part. The color scale indicates the absolute value of the horizontal component of the particle
velocity at the free surface. For the movie click here.

http://www.physics.sk/aps/pubs/2007/aps-07-02/Horizontal_RT.avi
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Fig. 14.6. Sequence of the wavefield snapshots for the simulated thrust earthquake beneath the Grenoble
basin - the second part. The color scale indicates the absolute value of the horizontal component of the
particle velocity at the free surface.
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Fig. 14.7. Sequence of the wavefield snapshots for the simulated thrust earthquake beneath the Grenoble
basin - the third part. The color scale indicates the absolute value of the horizontal component of the particle
velocity at the free surface.
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Fig. 14.8. Geometrical configuration of the Grenoble sedimentary basin and dynamically rupturing strike-
slip (vertical) fault: interface between sediments and bedrock with indication of the sediment thickness, the
FE region (red box) covering the ruptured fault area (yellow area inside the red box), projections of the FE
region and ruptured fault area onto the flat free surface. The ruptured fault area reaches depth of 3.5 km.

modulus of the total horizontal component of acceleration, Arias intensity, AI , and cumulative
absolute velocity, CAV . The two latter characteristics are defined, e.g., Reiter (1990), as

AI =
π

2 g

∫ t0

0

a2(t) dt , (14.6)

CAV =
∫ t0

0

| a(t) | dt , (14.7)

where t0 is time when the strong motion ceases and a(t) is the horizontal acceleration (of
seismic motion).

Figure 14.12 shows the Arias intensity, peak horizontal acceleration, and cumulative absolute
velocity evaluated at the free surface for the two simulated earthquakes.

Summarizing the sequences of snapshots and the three characteristics of the simulated earth-
quake motions we can conclude that the two earthquakes produce considerably different space-
time variations of the surface motion in the Grenoble basin as well as considerably different
spatial distributions of the Arias intensity, peak horizontal acceleration, and cumulative absolute
velocity. It is very likely that we can take this observation as a strong indication of the very lim-
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Fig. 14.9. Sequence of the wavefield snapshots for the simulated strike-slip earthquake near the Grenoble
basin - the first part. The color scale indicates the absolute value of the horizontal component of the particle
velocity at the free surface. For the movie click here.

http://www.physics.sk/aps/pubs/2007/aps-07-02/Vertical_RT.avi
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Fig. 14.10. Sequence of the wavefield snapshots for the simulated strike-slip earthquake near the Grenoble
basin - the second part. The color scale indicates the absolute value of the horizontal component of the
particle velocity at the free surface.
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Fig. 14.11. Sequence of the wavefield snapshots for the simulated strike-slip earthquake near the Grenoble
basin - the third part. The color scale indicates the absolute value of the horizontal component of the particle
velocity at the free surface.
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max = 0.53 m/s

max = 0.25 m/s

max = 1.55 m/s2 max = 5.75 m/s

max = 1.21 m/s2 max = 4.55 m/s

AI PHA CAV

AI PHA CAV

Fig. 14.12. Arias intensity (AI), peak horizontal acceleration (PHA), and cumulative absolute velocity
(CAV ) for the two simulated earthquakes - top panel for the thrust earthquake, bottom panel for the strike-
slip earthquake. The values relate to the free surface.

ited meaning of the estimates of the earthquake motion based on the simulations for the vertical
incidence of a plane wave.

We were also interested in comparison of the earthquake motions due to the finite dynamic
sources with those due to equivalent point kinematic sources. A point source is defined by its
strike, dip, rake, see Fig. 3.3, scalar seismic moment M0, eq. (3.49), and source-time function
s(t), eq. (3.47). Therefore we numerically integrated slip at each time level over the whole
ruptured area at that time level. The obtained time function of the slip was then divided by the
final size of the ruptured area A , eq. (3.46). This gave the average slip as function of time
Du(t), eq. (3.46). Its final value defines the final average slip Du , eq. (3.46). Finally, the
source-time function s(t) was then obtained by dividing Du(t) by the final average slip Du .
The obtained scalar seismic moment is M0 =̇ 8.8 Nm. The source-time function is shown in Fig.
14.13. Values of strike, dip and rake are 90o, 0o and 90o for the thrust fault, and 45o, 90o and
90o for the strike-slip fault.

In the first comparison of the dynamic and equivalent point sources we considered two hypo-
thetical locations of sources along the Belledonne fault. They are shown in Fig. 14.14 and termed
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Fig. 14.13. Source-time function of the point source equivalent to the finite dynamic source considered in
the simulations.
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Fig. 14.14. Two locations of the earthquake sources in the Belledonne Massif - ’left’ and ’right’ The lines
indicate dynamic sources on the vertical faults, stars indicate epicenters of the equivalent point sources.
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Fig. 14.15. Difference in the Arias intensity a) due to different locations of the dynamic sources, b) due
to different locations of the equivalent point sources, c) due to different (dynamic and point) sources at the
’left’ location, d) due to different (dynamic and point) sources at the ’right’ location.

’left’ and ’right’ locations. We performed four simulations - for the point source at the ’left’ lo-
cation, dynamic source at the ’left’ location, point source at the ’right’ location, and dynamic
source at the ’right’ location. The results are summarized in Figs. 14.15 - 14.17. The figures
show differences in the Arias intensity, peak horizontal acceleration, and cumulative absolute
velocity due to different locations of the same types of the sources as well as due to different
types of the sources at the same locations. The figures indicate that the directivity effect is under-
estimated when the equivalent point source is used. Apart from the directivity effect, the source
location is more important than the type of the source. Note that these conclusions are indicated
for relatively small-size earthquakes. We should not a priori assume the latter conclusion for
larger events.

In order to compare the earthquake motion due to the hypothetical thrust earthquake beneath
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Fig. 14.16. Difference in the peak horizontal acceleration a) due to different locations of the dynamic
sources, b) due to different locations of the equivalent point sources, c) due to different (dynamic and point)
sources at the ’left’ location, d) due to different (dynamic and point) sources at the ’right’ location.

Grenoble with motion produced by the equivalent point source located on the horizontal fault, we
performed simulation for the latter case. Figure 14.18 shows differences in the Arias intensity,
peak horizontal acceleration, and cumulative absolute velocity due to different types of source
on the horizontal fault beneath Grenoble. It follows from the figure that maxima of the Arias
intensity, peak horizontal acceleration, and cumulative absolute velocity determined from the
simulation for the equivalent point source overestimate maxima determined from the dynamic
simulation by 20, 20 and 40 %, respectively.

All the comparisons strongly suggest that the dynamically faulting sources, that is, the most
realistic sources, should be modeled in the simulations aiming in the earthquake motion predic-
tions.
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Fig. 14.17. Difference in the cumulative absolute velocity a) due to different locations of the dynamic
sources, b) due to different locations of the equivalent point sources, c) due to different (dynamic and point)
sources at the ’left’ location, d) due to different (dynamic and point) sources at the ’right’ location.

15 Concluding Remarks

As we mentioned in the introduction, there are several powerful numerical-modeling methods.
It is very likely that none of them is (in its recent elaboration) and can be (in future) better than
others in all important aspects and properties. In other words, in our opinion, it is very likely that
the finite-difference, finite-element, spectral-element, and arbitrary high-order derivative – dis-
continuous Galerkin methods will further develop and be widely applied in future. In principle,
for solving a problem one should choose the best suited of the available methods - not vice versa.
In practice, unfortunately but understandably, one sometime prefers to accommodate (modify)
the problem configuration to the particular method developed or in use in the team/lab.

We strongly believe that the best time of the finite-difference method in seismology is in the
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Fig. 14.18. Difference in the Arias intensity, peak horizontal acceleration, and cumulative absolute velocity
between the dynamic and equivalent point sources on the thrust fault beneath Grenoble.
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future. We hope that our monograph provides a strong indication for this. Better incorporation
of the boundary conditions on non-planar surfaces, optimization, and enhancement of the com-
putational efficiency are still ahead of us as well as reasonable hybrid combinations with other
numerical methods.

References

Aboudi, J., 1971. The motion excited by an impulsive source in an elastic half-space with a
surface obstacle. Bull. Seism. Soc. Am. 148, 747-763.

Aki, K. and P. G. Richards, 1980. Quantitative Seismology. Theory and Methods, Vol. I and II.
W. H. Freeman & Co., San Francisco.

Aki, K. and P. G. Richards, 2002. Quantitative Seismology. Second Edition. University Science
Books.

Akin, J. Ed, 1986. Finite Element Analysis for Undergraduates. Academic Press.

Alekseev, A. S. and B. G. Mikhailenko, 1980. The solution of dynamic problems of elastic
wave propagation in inhomogeneous media by a combination of partial separation of variables
and finite-difference methods. J. Geophys. 48, 161-172.

Alterman, Z. and F. C. Karal, 1968. Propagation of elastic waves in layered media by finite-
difference methods. Bull. Seism. Soc. Am. 58, 367-398.

Alford, R. M., K. R. Kelly, and D. M. Boore, 1974. Accuracy of finite difference modeling of
the acoustics wave equation. Geophysics 39, 834-842.

Alterman, Z. and D. Loewenthal, 1970. Seismic waves in a quarter and three-quarter plane.
Geophys. J. Roy. Astr. Soc. 20, 101-126.

Alterman, Z. and A. Rotenberg, 1969. Seismic waves in a quarter plane. Bull. Seism. Soc. Am.
59, 347-368.

Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, 1984. Computational Fluid Mechanics
and Heat Transfer. Hemisphere Publishing Corporation.

Andrews, D. J., 1973. A numerical study of tectonic stress release by underground explosions.
Bull. Seism. Soc. Am. 63, 1375-1391.

Andrews, D. J., 1976a. Rupture propagation with finite stress in antiplane strain. J. Geophys.
Res. 81, 3575-3582.

Andrews, D. J., 1976b. Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81, 5679-
5687.

Andrews, D. J., 1999. Test of two methods for faulting in finite-difference calculations. Bull.
Seism. Soc. Am. 89, 931-937.



References 395

Aochi, H. and E. Fukuyama, 2002. Three-dimensional nonplanar simulation of the 1992 Lan-
ders earthquake. J. Geophys. Res. 107.

Aoi, S. and H. Fujiwara, 1999. 3D finite-difference method using discontinuous grids. Bull.
Seism. Soc. Am. 89, 918-930.

Archuleta, R. J., 1976. Experimental and numerical three-dimensional simulations of strike-
slip earthquakes. PhD. Thesis. University of California, San Diego.

Balazovjech, M. and L. Halada, 2006. Effective computation of restoring force vector in FEM.
Submitted to Kybernetika.

Barenblatt, G. I., 1959. Concerning equilibrium crack forming during brittle fracture. The sta-
bility of isolated cracks. Relationship with energetic theories. Appl. Math. Mech. 23, 1273-
1282.

Beeler, N. M., T. E. Tullis, and J. D. Weeks, 1994. The roles of time and displacement in the
evolution effect in rock friction. Geophys. Res. Lett. 21, 1987-1990.

Belytschko, T., Liu, W. K., and B. Moran, 2000. Nonlinear Finite Elements for Continua and
Structures. John Wiley & Sons, New York.

Ben-Menahem, A. and S. J. Singh, 1981. Seismic Waves and Sources. Springer.

Bielak, J., K. Loukakis, Y. Hisada, and Ch. Yoshimura, 2003. Domain reduction method for
three-dimensional earthquake modeling in localized regions. Part I: Theory. Bull. Seism. Soc.
Am. 93, 817-824.

Bizzarri, A. and M. Cocco, 2003. Slip-weakening behavior during the propagation of dynamic
ruptures obeying to rate- and state-dependent friction laws. J. Geophys. Res. 108, 2373.

Bizzarri, A. and M. Cocco, 2005. 3D dynamic simulations of spontaneous rupture propagation
governed by different constitutive laws with rake rotation allowed. Annals of Geophysics 48,
279-299.

Blanch, J. O., J. O. A. Robertsson, and W. W. Symes, 1995. Modeling of a constant Q:
Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique.
Geophysics 60, 176-184.

Bohlen, T. and E. H. Saenger, 2006. Accuracy of heterogeneous staggered-grid finite-difference
modeling of Rayleigh waves, Geophysics 71, T109-T115.

Boore, D. M., 1970. Love waves in nonuniform waveguides: finite difference calculations. J.
Geophys. Res. 75, 1512-1527.

Boore, D., 1972. Finite-difference methods for seismic wave propagation in heterogeneous ma-
terials. In Methods in Computational Physics, Vol. 11, B. A. Bolt, ed., Academic Press, New
York.

Bouchon, M., 1981. A simple method to calculate Green’s functions for elastic layered media.
Bull. Seism. Soc. Am. 71, 959-971.



396 FD and FE Modeling in Seismology

Bouchon, M. and O. Coutant, 1994. Calculation of synthetic seismograms in a laterally-varying
medium by the boundary element - discrete wavenumber method. Bull. Seism. Soc. Am. 84,
1869-1881.

Bouchon, M. and F. J. Sánchez-Sesma, 2007. Boundary integral equations and boundary ele-
ments methods in elastodynamics. In Advances in Wave Propagation in Heterogeneous Earth,
157-189, R.-S. Wu and V. Maupin, eds., in the series Advances in Geophysics, Vol. 48, R.
Dmowska, ed. Elsevier - Academic Press.

Carcione, J. M., 2001. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic
and Porous Media. Pergamon.

Carcione, J. M. and F. Cavallini, 1994. A rheological model for anelastic anisotropic media
with applications to seismic wave propagation. Geophys. J. Int. 119, 338-348.

Carcione, J. M., G. C. Herman, and A. P. E. ten Kroode, 2002. Seismic modeling. Geophysics
67, 1304-1325.

Carcione, J. M., D. Kosloff, and R. Kosloff, 1988a. Wave propagation simulation in a linear
viscoacoustic medium. Geophys. J. 93, 393-407.

Carcione, J. M., D. Kosloff, and R. Kosloff, 1988b. Wave propagation simulation in a linear
viscoelastic medium. Geophys. J. 95, 597-611.

Chaljub, E., Komatitsch, D., Vilotte, J. P., Capdeville, Y., and Festa, G., 2007. Spectral
Element Analysis in Seismology. In Advances in Wave Propagation in Heterogeneous Earth,
365-420, R.-S. Wu and V. Maupin, eds., in the series Advances in Geophysics, Vol. 48, R.
Dmowska, ed. Elsevier - Academic Press.

Christensen, R. M., 1971. Theory of Viscoelasticity. An Introduction. Academic Press.

Cocco, M. and A. Bizzarri, 2002. On the slip-weakening behavior of rate- and state-dependent
constitutive laws. Geophys. Res. Lett. 29, 10.1029/2001GL013999, 11,1-11,4.

Cohen, G. C., 2002. Higher-order Numerical Methods for Transient Wave Equations. Springer.

Cotton, F., C. Berge, F. Lemeille, A. Pitarka, B. Lebrun, and M. Vallon, 1998. Three-
dimensional simulation of earthquakes in the Grenoble’s basin. In The Effects of Surface Ge-
ology on Seismic Motion, Vol. 2, 873-878, K. Irikura, K. Kudo, H. Okada, and T. Sasatani,
eds., Balkema, Rotterdam.

Coutant, O., 1989. Program of numerical simulation AXITRA. Res. Rep. LGIT (in French),
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