
Characterizing Seismic Scattering in 3D
Heterogeneous Earth by a Single Parameter

Jagdish Chandra Vyas*1, Martin Galis2,3, and Paul Martin Mai1

ABSTRACT
We derive a theoretical parameter for three seismic scattering regimes where seismic
wavelengths are either much shorter, similar, or much longer than the correlation length
of small-scale Earth heterogeneities. We focus our analysis on the power spectral density
(PSD) of the von Karman autocorrelation function (ACF), used to characterize the spatial
heterogeneity of small-scale variations of elastic rock parameters that cause elastic seismic-
wave scattering. Our analysis is based on the assumption that the PSD of the medium
heterogeneities at the corresponding wavenumber is related to the wavefield scattering.
Our theoretical findings are verified by numerical simulations. The seismic scattering
effects in our simulations are assessed by examining attenuation of peak ground acceler-
ation. We discover (1) that seismic scattering is proportional to the standard deviation of
velocity variations in all three regimes, (2) that scattering is inversely proportional to the
correlation length for the regime where seismic wavelengths are shorter than correlation
length, but directly proportional to the correlation length in the other two regimes, and
(3) that scattering effects are weak due to heterogeneities characterized by a gentle decay
of the von Karman ACF for regimes where seismic wavelengths are similar or much longer
than the correlation length.

KEY POINTS
• We derive a theoretical parameter that characterizes seis-

mic scattering in 3D for three scattering regimes.

• Seismic scattering is a complex function of correlation
length and Hurst exponent of random media.

• Our findings will help studies on ground-motion simula-

tions in 3D to properly simulate elastic scattering.

Supplemental Material

INTRODUCTION
Heterogeneities in the Earth’s crust and upper mantle cause
seismic-wave scattering, manifested in so-called seismic coda
waves that trail the main seismic phases. Often, coda waves
are prominent features of seismic recordings; they decay slowly
with time, whereby the statistics of the temporal decay provide
information about the scattering process and the medium
through which the waves traveled (e.g., Aki, 1969; Ritter et al.,
1997; Sato and Fehler, 1998; Sato et al., 2012; Imperatori and
Mai, 2013, 2015). After the Aki (1969) interpretation that coda
waves are backscattered energy from uniformly distributed
heterogeneities in the Earth, several theoretical models were
presented to explain seismic scattering, such as the single scat-
tering model, the multiple scattering model, the diffusion
model, or the energy-flux model (Aki and Chouet, 1975; Sato,
1977; Gao et al., 1983; Frankel and Wennerberg, 1987). In

addition, the coda envelope broadens with increasing travel
distance due to wavefield scattering (Sato, 2016), a process that
can be modeled employing a Markov approximation as sto-
chastic treatment of the wave equation in random media (Sato
et al., 2012; Sato, 2016). In contrast, S-wave coda excitation is
mainly dominated by scattering of direct S waves from random
heterogeneities in the Earth that can be modeled applying the
Born approximation (Sato et al., 2012; Sato and Emoto, 2017).
In summary, coda waves are seismic-wave energy trapped in
the Earth due to the small-scale heterogeneities in the Earth.

Small-scale heterogeneities in the Earth can be described by
a random spatial field superimposed onto a background homo-
geneous medium. For this purpose, several random-field mod-
els have been proposed; these are conveniently characterized
by an autocorrelation function (ACF). For example, von
Karman, Gaussian, exponential and Henyey–Greenstein ACF
or a fractal distribution are used to describe random fields of
seismic-wave velocity variations in the Earth (e.g., Frankel and
Clayton, 1986; Holliger and Levander, 1992; Sato and Fehler,
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1998; Sato, 2019). Most commonly, the von Karman ACF is
used (e.g., Hartzell et al., 2010; Imperatori and Mai, 2013;
Bydlon and Dunham, 2015). The power spectral density (PSD)
of the von Karman AFC in 3D is given by

EQ-TARGET;temp:intralink-;df1;53;692p�km� �
σ2�2 ���

π
p

a�3Γ�H � 1:5�
Γ�H��1� k2ma2��H�1:5� ; �1�

in which a, H, σ, and Γ are correlation length, Hurst exponent,
standard deviation, and the Gamma function, respectively. We
denote the wavenumber (2π/wavelength) of medium hetero-
geneity by km, and of the seismic wavefield by kw, and write
wavenumber k in case km and kw can be used interchangeably.

Several studies examined the range for correlation lengths,
standard deviation, and Hurst exponent in the Earth, both in
observational studies and numerical simulations. Frankel and
Clayton (1986) reported that velocity fluctuations with stan-
dard deviation of 5% and correlation lengths of 10 km (or
greater) for 2D random media explain coda waves from micro-
earthquakes and travel-time anomalies across seismic arrays.
Holliger (1996) obtained correlation lengths of 10–100 m
and Hurst exponent in the 0.1–0.2 range by analyzing sonic
logs. Ritter et al. (1998) estimated wave-velocity perturbations
of 3%–7% and correlation length of 1–16 km for the litho-
sphere in central France. Recently, Sato (2019) reported that
velocity perturbations are 1%–10% in the Earth’s crust and
upper mantle and that the Hurst exponent typically falls in
the 0.0–0.5 range, whereas correlation lengths vary widely
depending on sample size or dimension of the measurement
system. Overall, standard deviation, Hurst exponent, and cor-
relation lengths are found to be in the 1%–10%, 0.0–0.5, and
1–15 km ranges, respectively.

Seismic-wave scattering occurs as the elastic waves encoun-
ter spatial variations of elastic medium properties. Although
the deterministic reflection of a seismic wave at an internal
interface of a seismic-velocity contrast could be classified as
“seismic scattering,” the common nomenclature is that seismic
scattering is due to elastic-wave interactions with a spatially
heterogeneous medium. In this context, the (statistical) char-
acteristics of the scattered wavefield depend on the stochastic
properties of the medium. This concept is conveniently des-
cribed considering the wavelengths (λ) or wavenumbers (kw)
of the elastic wave, and characteristic scales (wavelengths) of
the random media.

Based on wavelength λ or wavenumber kw of the seis-
mic wave, and the correlation length a of the random media,
seismic-wave scattering can be classified into three regimes:
(1) kw × a≫ 1�λ ≪ a�; (2) kw × a ≈ 1�λ ≈ a�; (3) kw × a ≪ 1
�λ≫ a� (Sato and Fehler, 1998; Sato et al., 2012). The regime
kw × a≫ 1 characterizes high-frequency scattering in which
seismic wavelengths are much shorter than correlation lengths.
This regime is important for the earthquake engineering
community in the context of high-frequency (10–20 Hz)

ground-shaking estimation, because seismic scattering redis-
tributes seismic-wave energy (i.e., ground-motion amplitudes)
in space and time. The regime kw × a ≈ 1 represents the diffrac-
tion condition, the most fundamental type of scattering.
Finally, the regime kw × a ≪ 1 denotes low-frequency scatter-
ing for which seismic wavelengths are much longer than the
correlation length of the random medium. This regime is im-
portant for global seismology, which uses primarily long wave-
lengths (0.01–0.5 Hz) to invert for the deterministic velocity
structure of the Earth or earthquake source parameters (e.g.,
centroid moment tensors).

Numerical and theoretical studies investigating the effects
of seismic scattering on earthquake ground shaking suggest
strong attenuation of ground motion due to wavefield scatter-
ing (Shapiro and Kneib, 1993; Mai, 2009; Hartzell et al., 2010;
Imperatori and Mai, 2012, 2013; Yoshimoto et al., 2015; Vyas
et al., 2018). Bydlon and Dunham (2015) explained theoreti-
cally how the parameters describing the von Karman ACF con-
trol wavefield scattering in 2D. Using numerical simulations,
they verified that a parameter p0 � σ=aH determines the
nature of scattering in the kw × a≫ 1 limit, regardless of the
specific values of σ and a. However, how the other parameters
of the von Karman ACF (a, σ, and H) affect 3D seismic
scattering has not been explored yet in detail.

Here, we investigate seismic-wave scattering in 3D and
verify our theoretical results by numerical simulations. First,
we examine the mathematical expression for the PSD of the
von Karman AFC (equation 1) to identify parameters that
represent scattering behavior in 3D for the three different
regimes, kw × a≫ 1, kw × a ≈ 1, and kw × a ≪ 1. Then, we test
our theoretical findings through numerical simulations that
cover the parameter space of these three regimes and allow
us to examine how scattering manifests itself in seismic wave-
forms and ground-motion amplitudes.

THEORY
Bydlon and Dunham (2015) investigated high-frequency scat-
tering (f � 1–30 Hz) by considering a 2D problem and the
regime kw × a≫ 1. To analyze scattering under these assump-
tions, they simplified the PSD of the von Karman ACF to
obtain the root mean square (rms) fluctuations of normalized
seismic-wave velocity (wave speed), and then derived which
parameters (i.e., a, H, and/or σ) control wavefield scattering.
Here, we extend their approach to 3D by considering three
different kw × a regimes.

Wavefield scattering is the strongest if the wavenumber of
the seismic wave is comparable to the wavenumber of hetero-
geneities in the medium. Hence, we simplify the PSD for the
three regimes (kw × a≫ 1, kw × a ≈ 1, and kw × a ≪ 1) under
the diffraction condition to obtain the rms of fluctuations of
normalized wave velocity (computed as the square root of
the mean power, denoted as PRM). By assuming the diffraction
condition, we derive theoretically the parameter PRM, which in
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fact dictates the wavefield scattering in 3D. Seismic scattering
associated with a particular seismic wavelength will depend on
the amplitudes of velocity variations corresponding to that
wavelength. However, we aim to understand the overall wave-
field scattering behavior for a range of seismic wavelengths and
heterogeneity scales in the medium. Therefore, our PRM der-
ivations are not only applicable for a monochromatic source or
a single-wavelength medium, but instead capture the broad-
band nature of scattering. We only summarize the final equa-
tions for PRM for each regime in the main article; further details
of the derivations are provided in the supplemental material to
this article.

Regime I: kw × a≫ 1
Our PRM derivation for this regime assumes that the source
excites waves of equal amplitude (a flat source spectrum) with
wavenumbers from kmin to infinity, all of which interact with
heterogeneities in the medium with the same range of wave-
numbers (albeit at different “intensity” or strength). This
assumption is not completely satisfied in nature as earthquakes
typically excite only a limited range of frequencies, and not all
of these frequencies will interact with the generally scale-lim-
ited medium heterogeneities. However, the assumption allows
us to calculate the overall wavefield scattering behavior for the
regime kw × a≫ 1, for which seismic wavelengths are much
shorter than the correlation length of small-scale Earth hetero-
geneities. Then, the rms fluctuations of normalized wave veloc-
ity (PRM) can be approximated by
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Therefore, the PRM dependency is given by
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in which we approximate the term depending on H by a quad-
ratic function (with coefficients c0 � 0:89, c1 � 0:53, and
c2 � −0:08; see Fig. S1a and derivation in the supplemental
material for details). We characterize the scattering behavior
for the entire regime kw × a≫ 1, rather than for a particular
wavelength in this regime using integration limits in equa-
tion (2) from kmin to infinity, and not over any arbitrary wave-
number range. Therefore, the parameter PRM (equation 3)
becomes independent of wavenumber. Comparing equation (3)
with parameter p0 � σ=aH (Bydlon and Dunham, 2015)
reveals that even in the regime kw × a≫ 1, scattering in 3D
is more complex than in 2D. Equation (3) illustrates that in
the high-frequency scattering regime (a) scattering is propor-
tional to the standard deviation of the velocity fluctuations,
(b) scattering is inversely proportional to the correlation length

a, and (c) the Hurst exponent has a strongly nonlinear effect on
scattering. Interestingly, if the Hurst exponent approaches its
theoretical lower limit of zero (H → 0), equation (3) can be
further simplified to

EQ-TARGET;temp:intralink-;df4;308;692PRM ∝ σ; �4�

indicating that scattering is controlled by the standard devia-
tion of the velocity variations in this case.

Regime II: kw × a ≈ 1
We assume that the source excites waves having a flat source
spectrum with wavenumbers from k1 to k2, all of which inter-
act with medium heterogeneities of the same wavenumber
range. If seismic wavelengths are comparable to the correlation
length of heterogeneities, the rms fluctuations of normalized
wave velocity can be approximated by
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1
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Therefore, the PRM dependency is given by
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in which coefficients are given as c1 � 0:93, and c2 � −0:27
(see Fig. S1b). Analyzing equation (6) for PRM reveals that
(a) scattering is proportional to σ, similar to the regime
kw × a≫ 1, (b) scattering is proportional to correlation length
a, in contrast to regime kw × a≫ 1 (compare equation 6 with
equation 3), and (c) scattering is correlated with the Hurst
exponent (as H approaches zero, scattering effects weaken
and become eventually negligible).

Regime III: kw × a ≪ 1
Here, we assume that the source excites waves of equal ampli-
tude (a flat source spectrum) with wavenumbers from zero to
k1, all of which interact with medium heterogeneities. If seis-
mic wavelengths are much longer than the correlation length
of the heterogeneities, the rms fluctuations of normalized wave
velocity can be approximated by

EQ-TARGET;temp:intralink-;df7;308;172PRM�
�������������������������������������
1
4π
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4π
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4

a
3
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k
3
2
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Therefore, the PRM dependency is given by
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in which coefficients c1 � 0:93, and c2 � 0:40 (see Fig. S1c).
Only constant c2 is different between equation (8) and
equation (6), therefore, PRM for the regime kw × a ≪ 1 is
similar to that for kw × a ≈ 1, except that the effect of H on
scattering is stronger for kw × a ≪ 1 than for kw × a ≈ 1
because c2 > 0 (compare equation 6 and equation 8).

VERIFICATION OF THEORY BY SIMULATIONS
In this section, we verify our findings (equations 3, 4, 6, and 8)
by conducting seismic-wavefield simulations in randommedia.
Because our simulations do not strictly satisfy the assumptions
used for the derivations of PRM, we validate only proportion-
ality or inverse proportionality of PRM with correlation length,
standard deviation, and Hurst exponent, rather than the
complete expressions (equations 3, 4, 6, and 8). To numerically
test our results for the three scattering regimes, we fix the cor-
relation length a and modify the source frequency to radiate
seismic waves with different frequencies (i.e., we are altering
the wavenumber kw). For computing synthetic seismograms,
we use a generalized 3D finite-difference method with the
second-order accuracy in space and time (Ely et al., 2008).
Our simulations consider several discretized Earth models, a
point-source earthquake model, and receiver locations at
which ground motions are stored. We then analyze waveforms
and peak ground acceleration (PGA), and confront the
numerical results with our theoretical analysis.

Setup for numerical modeling
We consider a point source (moment magnitudeMw ∼ 2:84) at
a depth of 7.5 km, with strike, dip, and rake of 22.5°, 90°, and
0°, respectively. The source time function (STF) is a Gaussian.
We define STFs to radiate frequencies required to properly
sample the three regimes (fmax � 5:0 Hz for kw × a≫ 1,
fmax � 0:5 Hz for kw × a ≈ 1, and fmax � 0:03 Hz for
kw × a ≪ 1, see Fig S2; fmax is the high-frequency limit of
the flat portion of the slip velocity spectrum). For example,
a point source radiating frequencies of 5.0, 0.5, and 0.03 Hz
in a heterogeneous medium with background shear-wave
velocity 3:464 km=s and stochastic perturbations with
correlation length of 1 km yields kw × a ≈ 9:0, 0.9, and 0.05,
respectively.

To create a velocity model with small-scale heterogeneities,
we add random-field variations of seismic-wave velocities,
characterized by an isotropic von Karman ACF, to the uniform
background Earth model (with S-wave velocity 3464 m=s,
P-wave velocity, 6000 m=s, and density 2700 kg=m3). In total,
we generate 12 3D computational models (M1–M12; Table 1),
considering three correlation lengths (1.0, 5.0, and 10.0 km),
two values of standard deviation (5%, 10%), and two Hurst
exponents (0.1, 0.5). For each combination of medium param-
eters, we create one realization of random inhomogeneity in S
wave speed, P wave speed, and density. S-wave velocity distri-
butions at the surface are shown for all 12 computational

models (Fig. 1a,b). Theoretical 1D power spectra for seven
selected models are plotted to illustrate effects of correlation
lengths, standard deviation, and Hurst exponent on the
spectral shape (Fig. 1c). Power spectra for two specific models,
M2 and M11, are examined for the three scattering regimes
considering the three STFs used in this study (Fig. 1d).

The size of the computational domain must be chosen such
that seismic waves propagate to large-enough distances that
ensure sufficient wave interaction with medium hetero-
geneities to develop scattering. At the same time, the domain
should be as small as possible to minimize computational cost.
Given these constraints, we define different computational
domain sizes and grid spacings, depending on scattering
regime. For the regime kw × a≫ 1, we use grid spacing
h � 25 m (dt � 0:0015 s) on a domain of 60 × 60 × 15 km,
allowing travel distance of ∼40 wavelengths (at f � 5:0 Hz).
Combining these models with STF1 (Fig. S2a) yields kw × a
values in the range 9–90. For kw × a ≈ 1, we use h � 75 m
(dt � 0:0045 s) and a larger domain, 355 × 355 × 30 km,
corresponding to travel distance of ∼50 wavelengths (at
f � 0:5 Hz). The eight corresponding models are denoted
by the suffix “-L” (see Table 1 and Fig. S3) and when combined
with STF2 (Fig. S2b), they result in kw × a values between 0.9
and 4.5. For kw × a ≪ 1, we use h � 1000 m (dt � 0:055 s)
and an extra-large domain, 2000 × 2000 × 60 km (ignoring
the spherical nature of the Earth), denoted by the suffix “-
EL” (see Table 1 and Fig. S4). When combined with STF3
(Fig. S2c), the corresponding kw × a values fall in the 0.27–
0.5 range. Owing to the very long wavelengths in this regime
(∼115 km at f � 0:03 Hz), the domain allows travel distances
of only ∼15 wavelengths, significantly lower than those in the

TABLE 1
Parameters for the 28 Computational 3D Earth Models
Generated for This Study

Model Reference

Correlation
Length
a (km)

Standard
Deviation
σ (%)

Hurst
Exponent
H

M1, M1-L 1.0 5 0.1
M2, M2-L, M2-EL 5.0 5 0.1
M3, M3-EL 10.0 5 0.1
M4, M4-L 1.0 10 0.1
M5, M5-L, M5-EL 5.0 10 0.1
M6, M6-EL 10.0 10 0.1
M7, M7-L 1.0 5 0.5
M8, M8-L, M8-EL 5.0 5 0.5
M9, M9-EL 10.0 5 0.5
M10, M10-L 1.0 10 0.5
M11, M11-L, M11-EL 5.0 10 0.5
M12, M12-EL 10.0 10 0.5

Parameters of 28 computational 3D models generated using random fields
characterized by von Karman autocorrelation functions (parameterized by
correlation length, standard deviation, and Hurst exponent). The suffixes “-L” and
“-EL” indicate large and extra-large models, respectively.
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Figure 1. (a,b) S-wave speed distribution at the free surface for 12 3D com-
putational models for the regime kw × a≫ 1, generated using three
correlation lengths (1.0, 5.0, and 10.0 km), two standard deviations (5%
and 10%) and two Hurst exponents (0.1 and 0.5). The black star marks the
epicenter. The sites used for waveform comparison (black triangles, s1, s2,
s3, s4, s5, and s6) and ground-motion analysis (black dots in circular rings)
are also shown. The focal mechanism plot shows the earthquake source.
Panels (a) and (b) depict random media with Hurst exponent 0.1 and 0.5,
respectively. (c) Theoretical 1D power spectral density (PSD) for 3D Earth

structure for seven selected models. Correlation length and Hurst exponent
alter the shape of the power spectra (solid lines), whereas standard
deviation only scales the PSD (mark dashed line; notice the scaling of M4
compared to M1, but their identical shape). (d) The theoretical power
spectra of the random media are constrained by the dimensions of the
computational model and the spatial grid size. Dashed and solid lines are
spectra related to models M2 and M11, whereas three different colors
depict power spectra sampled according to the three scattering regimes.
EW, east–west; NS, north–south.
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two previous regimes. However, the cost for computational
models allowing travel distances of ∼45–50 wavelengths would
be exorbitant. In total, we use 28 computational models with
random inhomogeneities, 12 of which are for kw × a≫ 1,
eight for kw × a ≈ 1, and eight for kw × a ≪ 1 regimes. Our
simulations consumed nearly four million core-hours of
computational resources on a Cray XC40 supercomputer.
To establish a base case for comparison, we also conduct
simulations in a homogeneous medium for each regime.

We store synthetic seismograms at receivers placed in con-
centric rings for kw × a≫ 1, but for kw × a ≈ 1 and kw × a ≪ 1
we consider only a one quadrant to save computational costs
(Fig. 1a, and Figs. S3a and S4a). The epicenter is placed in
the center of the simulation domain for kw × a≫ 1, but for
kw × a ≈ 1 and kw × a ≪ 1 it is in the lower left corner.
Receiver geometry and epicenter location are designed to
obtain the best possible azimuthal coverage of stations and
to allow for sufficiently large travel distances for seismic waves
to develop scattering, at the same time also minimizing com-
putational costs. Virtual stations are distributed along rings
with radial spacing of 0.1, 0.2, and 3.5 km, for kw × a≫ 1,
kw × a ≈ 1, and kw × a ≪ 1 regimes, respectively. Therefore,
each ring (arc) of stations contains a different number of sta-
tions at different azimuths. The smallest ring (arc) used for
PGA statistics has 314 (radius 5 km), 196 (radius 25 km),
and 134 (radius 300 km) stations for the three regimes
(kw × a≫ 1; kw × a ≈ 1; kw × a ≪ 1). Therefore, our receiver
geometry is statistically independent and PGA statistics are
robust. All waveforms are low-pass filtered using a fourth-
order Butterworth filter with cutoff frequencies of 5, 0.5,
and 0.03 Hz for the three scattering regimes, respectively.

Quantifying seismic scattering in numerical results
Seismic scattering redistributes energy in space and time
from direct P and S waves into the late-arriving coda waves.
Consequently, PGA in a homogeneous medium will be, on aver-
age, higher than in a scattering medium. Therefore, we examine
ratios of PGA values to quantify scattering “strength” in numeri-
cal simulations. Horizontal components of acceleration are
mostly used in earthquake engineering applications (e.g.,
Boore and Atkinson, 2008; Chiou and Youngs, 2008), because
wave amplitudes on the vertical component are usually smaller
than on the horizontal components. Therefore, we analyze hori-
zontal PGA (computed as maximum magnitude of acceleration
from the two horizontal components). We illustrate scattering
effects and resulting PGA values by comparing waveforms for
selected receivers s1, s2, and s3 (see Fig. 1a for their locations).

In Figure 2, we compare horizontal-component ground-
acceleration waveforms at selected stations for the regime
kw × a≫ 1. Figure 2a compares waveforms and PGA values
for two values of standard deviation (models M3 and M6) with
those for the homogeneous medium. PGA values are consis-
tent with our expectation that stronger scattering leads to lower

PGA. In this particular case, the scattering for model M3 is
weaker than for model M6 (see also acceleration snapshots
in Fig. S5). In addition, ground-acceleration comparison for
M6 at three stations (Fig. S6) shows prominent coda evolution
and reduced maximum acceleration values as epicentral dis-
tance increases (from s4 to s6). Figure 2b reveals that wave-
forms for two models with different correlation lengths (M1
and M3) are almost identical, with only small time shifts.
This indicates that the two models yield almost identical levels
of scattering (confirmed also by comparing acceleration snap-
shots for M1 and M3 in Fig. S5). Correspondingly, PGA values

Figure 2. Horizontal components (EW and NS) of ground acceleration (m=s2)
at sites s1, s2, and s3 (Fig. 1a). Black dotted lines indicate theoretical P- and
S-wave arrival times in the homogeneous medium. Color-coded numbers
indicate peak ground acceleration (PGA) values at individual sites.
Waveforms are normalized by their PGA value in the homogeneous-medium
simulations for a given site. (a) Illustration of scattering controlled by σ for
kw × a≫ 1 and small H; (b) Illustration of negligible effects of correlation
length on scattering for kw × a≫ 1 and small H.
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are comparable. In addition, these comparisons (Fig. 2a,b)
suggest that scattering is primarily controlled by the standard
deviation of the medium heterogeneities, whereas the corre-
lation length has a negligible effect for a small H-value
(H � 0:1), consistent with our theoretical analysis in equa-
tion (4). However, we note that PGA only works well in such
comparisons because we computed a reference solution for the
homogeneous medium. Without such a reference case, inter-
preting PGA values directly as indicator for “scattering
strength” would be misleading.

Statistical analysis of scattering
Next, we calculate the mean and standard deviation of PGA
values for all stations at a given epicentral distance and for
a given computational model (see Fig. S7 for a comparative
summary of all computational models). To estimate the
average scattering-related PGA reduction at a given epicentral
distance, we define the “mean PGA ratio” (MPR), at a particu-
lar epicentral distance, as the ratio between the mean PGA
values from any heterogeneous Earth model to the mean PGA
values from the reference homogeneous Earth model. As epi-
central distance increases, the MPR is expected to decrease
because the redistribution of seismic energy due to scattering
is cumulative with propagation distance.

Figure 3 summarizes our results for kw × a≫ 1. For
H � 0:1, we find the MPRs for models with σ � 10% (M4,
M5, and M6) are lower than for models with σ � 5% (M1,
M2, and M3) (Fig. 3a). At the same time, MPRs of both groups
are very similar, supporting our theoretical conclusion that
for small H the correlation length has insignificant effects
on scattering, which in this regime is controlled by standard
deviation (equation 4). The apparent plateau in MPRs for dis-
tances 10–20 km is a consequence of source effects being
masked by wavefield scattering effects due to the hypocenter
location (see Fig. S8 for more details on the effects of hypocen-
tral depths on MPRs). Figure 3b compares solutions for
H � 0:5, for which we expect a significant effect of both cor-
relation length and standard deviation. For fixed σ, we observe
that the MPRs for models with shorter correlation length are
lower than those with longer correlation length (MPRM7 <
MPRM8 < MPRM9; similarly, MPRM10<MPRM11<MPRM12).
This finding is consistent with our conclusion that scattering
is inversely proportional to correlation length for large H
(equation 3). Also, MPRs for models with σ � 10% are
lower than those for corresponding models with σ � 5%
(MPRM10 < MPRM7, MPRM11<MPRM8, MPRM12 < MPRM9),
demonstrating that scattering is proportional to the standard
deviation of velocity variations for large H. Thus, these obser-
vations validate our theoretical conclusions for the regime
kw × a≫ 1.

The MPR analysis for regime kw × a ≈ 1 is summarized in
Figure 4. For both values of H, the MPRs for models with
shorter correlation length are higher than MPRs for models

with longer correlation length (MPRM1−L > MPRM2−L,
MPRM4−L>MPRM5−L, MPRM7−L > MPRM8−L, MPRM10−L>
MPRM11−L), revealing that scattering is proportional to corre-
lation length (see Fig. 4a,b). The MPRs for models with
σ � 5% are higher than those for model with σ � 10%
(MPRM1−L > MPRM4−L, MPRM2−L > MPRM5−L, MPRM7−L >
MPRM10−L, MPRM8−L > MPRM11−L), indicating that scattering
is proportional to the standard deviation of velocity fluctua-
tions. The MPRs for models withH � 0:1 are larger than those
for models with H�0:5 (MPRM1−L > MPRM7−L, MPRM2−L >
MPRM8−L, MPRM4−L > MPRM10−L, MPRM5−L > MPRM11−L),
therefore, scattering is proportional to the Hurst exponent
H. These observations are also consistent with our theoretical
findings for kw × a ≈ 1 (see equation 6).

Finally, we show MPR statistics for the regime kw × a ≪ 1
(Fig. 5). First, recall that due to prohibitively large computa-
tional costs we used a smaller computational domain (see
the Setup for Numerical Modeling section). Consequently,
scattering is less well developed for kw × a ≪ 1, and hence

Figure 3. Mean PGA ratios (MPRs) for all 12 numerical simulations as a
function of distance, depicting the effects of wavefield scattering on
ground motions in the regime kw × a≫ 1. Panels (a) and (b) depict MPR for
media with H � 0:1 and H � 0:5, respectively. Gray dashed lines are
plotted to facilitate the MPR comparison in two nearby panels. Wavefield
scattering is proportional to the standard deviation of medium hetero-
geneities, and inversely proportional to correlation length for large Hurst
exponent (H � 0:5), but remains nearly unaffected by variations in cor-
relation length for small Hurst exponent (H � 0:1). The kw × a maxima for
correlation lengths of 1, 5, and 10 km are 9.07, 45.36, and 90.72,
respectively.
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effects on MPRs are not as pronounced as in the other two
regimes. Still, the effects are strong enough to support our
theoretical derivation (see waveform comparison in Fig. S9
and station locations in Fig. S4). The MPRs for models
with 10 km correlation length are lower than those for 5 km
correlation length (MPRM3−EL < MPRM2−EL, MPRM6−EL <
MPRM5−EL, MPRM9−EL < MPRM8−EL, MPRM12−EL <
MPRM11−EL), showing that scattering is proportional to
correlation length. The MPRs for models with σ � 10% are
lower than those for σ � 5% (MPRM12−EL < MPRM9−EL,
MPRM11−EL < MPRM8−EL), suggesting that scattering is also
proportional to the standard deviation of velocity variations.
These observations agree well with our theoretical considera-
tions for kw × a ≪ 1 (see equation 8).

In summary, our results from numerical simulations are
consistent with our conclusions based on theoretical derivation
for all three considered scattering regimes.

DISCUSSION AND CONCLUSIONS
We derive a new parameter PRM to quantify 3D seismic-
wavefield scattering. PRM is based on the assumption that
small-scale heterogeneities in seismic velocity are characterized

by the von Karman ACF. PRM helps understand the influence
of the parameters of the von Karman ACF on seismic scatter-
ing for three considered regimes (kw × a≫ 1, kw × a ≈ 1, and
kw × a ≪ 1). We test our theoretical consideration through
statistical analysis of a suite of numerical simulations that
capture seismic scattering in different scattering regimes.

We find that the strength of wavefield scattering in all three
regimes is proportional to the standard deviation of hetero-
geneities. Seismic scattering is also proportional to the corre-
lation length in the regimes kw × a ≈ 1 and kw × a ≪ 1, but for
the regime kw × a≫ 1 the scattering is inversely proportional
to correlation length. For regime kw × a≫ 1, we also find that
if the Hurst exponent H approaches zero, scattering will be
controlled solely by standard deviation. However, for kw × a ≈
1 and kw × a ≪ 1, scattering is only weakly affected for small
values of H, with scattering vanishing in the limit of H → 0.

To further explain these findings, we integrate the PSD for
the 3D problem (equation 1) with respect to wavenumber km:

EQ-TARGET;temp:intralink-;df9;320;94

Z
∞

0
p�km�dkm � 4π2a2σ2H: �9�

Figure 4. MPRs for eight numerical simulations as a function of distance,
depicting the effects of wavefield scattering on ground motions in the
regime kw × a ≈ 1. Panels (a) and (b) depict MPR for media with H � 0:1
and H � 0:5, respectively. Gray dashed lines are plotted to facilitate the
MPR comparison in two nearby panels. Wavefield scattering is proportional
to correlation length, Hurst exponent, and standard deviation of medium
heterogeneities. The highest values of kw × a for correlation lengths of 1
and 5 km are 0.90 and 4.53, respectively.

Figure 5. MPRs for all eight numerical simulations as a function of distance,
depicting the effects of wavefield scattering on ground motions in the
regime kw × a ≪ 1. Panels (a) and (b) depict MPR for media with H � 0:1
and H � 0:5, respectively. Gray dashed lines are plotted to facilitate the
MPR comparison in two nearby panels. Wavefield scattering is proportional
to correlation length, Hurst exponent, and the standard deviation of medium
heterogeneities. The highest values of kw × a for correlation lengths of 5
and 10 km are 0.27 and 0.54, respectively.
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Equation (9) represents the area under the power spectrum
for a 3D isotropic PSD along one wavenumber axis; it reveals
that the area under the power spectrum depends on a, H, and
σ, implying also that the area under the power spectrum will be
zero if any of a or H or σ is zero. For example, M2 has larger
area under the power spectrum than M1 due to larger corre-
lation lengths of M2, although standard deviation and Hurst
exponent are identical for M1 and M2 (see Fig. 1c). The area
under the power spectrum can be linked to wavefield scattering
as it represents the total scattering power of the heterogeneous
medium in terms of the sum of amplitude squares of seismic
velocities. Correspondingly, in the limit of any of the von
Karman parameters approaching zero, wavefield scattering will
become negligible.

Quantitative analysis of power spectra in Figure 1c helps
interpret the implications of equation (9) for the three scatter-
ing regimes. Therefore, our theoretical findings, confirmed by
numerical simulations, can be explained by the amplitude and
shape of the PSD. The standard deviation scales the power
spectra without changing the shape of the power spectra
(hence, area under the power spectra), resulting in scattering
proportional to σ for all three regimes (kw × a≫ 1, kw × a ≈ 1,
and kw × a ≪ 1). The tails of the power spectra (decaying part)
show inverse proportionality with correlation length a (e.g.,
compare tails of M7, M8, and M9 in Fig. 1c), thus resulting
in scattering being inversely proportional to a for the
regime kw × a≫ 1. However, the plateau and corners
(corner wavenumber � 2π=a) of the power spectra scale with
correlation length, leading to scattering being proportional to
correlation length for kw × a ≪ 1 and kw × a ≈ 1, respectively
(e.g., compare plateau and corners of M7, M8, and M9 in
Fig. 1c). Furthermore, the plateau and corner of power spectra
grow as H increases; therefore, scattering is proportional to H
for kw × a ≪ 1 and kw × a ≈ 1. Figure 1c also shows that the
tails of the power spectra tend to merge for small H (see
M1, M2, and M3) and diverge as H increases (compare M7,
M8, and M9), implying a more complex dependency on H for
scattering in the regime kw × a≫ 1. Hence, our findings can be
explained by the shape and amplitude of the PSD function of
the von Karman ACF.

Comparing our results for kw × a≫ 1 for the 3D problem
(equation 3) with the 2D results by Bydlon and Dunham
(2015) (p0 � σ=aH) reveals that the effect of standard devia-
tion and correlation length remains the same, but the effect
of the Hurst exponent H is stronger in 3D. However, if the
Hurst exponent approaches zero, scattering effects are domi-
nated by standard deviation, both in 2D and 3D. This is an
important finding, because values of H smaller than 0.5 have
been reported by Sato (2019) for the Earth’s crust and mantle.

Here, we propose to quantify the overall wavefield scatter-
ing directly via an integral of the PSD function of the random
media. We note that Sato et al. (2012) analyzed a plane wave
scattered by a localized inhomogeneity using the wave

equation. They solved the wave equation utilizing Born
approximation, that is, they assumed that the amplitude of
velocity variations is negligibly small compared to background
velocity, that the amplitude of the scattered wavefield is
negligibly small compared with the amplitude of incident
wavefield, and that the scattered wavefield has only a small
phase change after passing through the heterogeneity. They
found that the scattering coefficient depends on the PSD
function of the random media as follows (equation 4.25 from
Sato et al., 2012):

EQ-TARGET;temp:intralink-;df10;308;614g�θ;ω� � k4w
π
P

�
2kw sin

θ

2

�
: �10�

In equation (10), θ is the angle between incident and scat-
tered waves; ω and kw are angular frequency and wavenumber
of the incident wavefield, respectively. The scattering coeffi-
cient reveals that a wave with wavenumber kw interacts with
medium heterogeneities with wavenumber km, leading to

EQ-TARGET;temp:intralink-;df11;308;496km � 2kw sin
θ

2
� 2 sin

θ

2
kw � Ckw: �11�

The scaling factor C is a function of the scattering angle θ
and ranges from 0 to 2, for forward (θ � 0) and backward
(θ � π) scattering, respectively. The average value of C (over
θ) indicates the overall interaction between km and kw, aver-
aged over all directions. The average value of C is 1.27, there-
fore km ∼ kw. This is consistent with our assumption for the
derivation of PRM, although we apply an ideal diffraction con-
dition (km � kw). Our PRM results will not change even if we
use a more relaxed diffraction condition (i.e., km ∼ kw). Hence,
our theory complies with Sato et al. (2012), but taking a differ-
ent perspective on evaluating the wavefield scattering. The
detailed theoretical analysis to fully describe the wavefield
scattering in 3D requires considering the 3D elastic-wave equa-
tion with complex earthquake source characteristics (radiated
wavefield) in 3D random media with anisotropic wave propa-
gation. This derivation is beyond the scope of the present study.

In summary, our theoretical analysis of the von Karman
PSD, used to represent random spatial variation in seismic-
wave velocities and rock density, helps develop a physics-based
understanding of how standard deviation, correlation length,
and Hurst exponent govern 3D seismic-wavefield scattering
for three scattering regimes (kw × a≫ 1, kw × a ≈ 1, and
kw × a ≪ 1). This will help studies on ground-motion simula-
tions for earthquake shaking as well as research on global seis-
mic wave propagation in 3D Earth models to properly simulate
elastic-wavefield scattering.

DATA AND RESOURCES
Ground-motion simulations carried out to verify the outcomes of
theoretical derivation generated nearly 2.5 TB of data that can be
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provided via personal communication. This article has a supplemental
material that comprises the complete derivation of the root mean
square fluctuations of normalized wave velocity using power spectral
density of the von Karman autocorrelation function for three scatter-
ing regimes (kw × a≫ 1, kw × a ≈ 1, and kw × a ≪ 1). The supple-
mental material also contains figures of the quadratic fit to ratios
of gamma functions, three Gaussian source time functions, simula-
tions setup depicting receiver geometry and S-wave speed variations,
acceleration waveforms comparison from few receivers, snapshots of
ground-acceleration wavefield at the Earth surface, and peak ground
acceleration statistics.
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