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S U M M A R Y
We present synthetic tests of 2-D adjoint tomography of surface wave traveltimes obtained
by the ambient noise cross-correlation analysis across the Czech Republic. The data coverage
may be considered perfect for tomography due to the density of the station distribution.
Nevertheless, artefacts in the inferred velocity models arising from the data noise may be still
observed when weak regularization (Gaussian smoothing of the misfit gradient) or too many
iterations are considered. To examine the effect of the regularization and iteration number on
the performance of the tomography in more detail we performed extensive synthetic tests.
Instead of the typically used (although criticized) checkerboard test, we propose to carry
out the tests with two different target models—simple smooth and complex realistic models.
The first test reveals the sensitivity of the result on the data noise, while the second helps to
analyse the resolving power of the data set. For various noise and Gaussian smoothing levels,
we analysed the convergence towards (or divergence from) the target model with increasing
number of iterations. Based on the tests we identified the optimal regularization, which we
then employed in the inversion of 16 and 20 s Love-wave group traveltimes.

Key words: Numerical approximations and analysis; Tomography; Seismic tomography;
Europe.

1 I N T RO D U C T I O N

With increasing computational power, the seismic tomography
based on the so-called adjoint calculation of sensitivity kernels in 3-
D models is becoming a common tool for improving our knowledge
of the Earth’s structure (e.g. Gauthier et al. 1986; Tromp et al. 2005;
Fichtner et al. 2006; Liu & Tromp 2006, etc.). The greatest advan-
tage of the adjoint method is the usage of numerical solution of the
elastodynamic equation (EDE), meaning the least amount of sim-
plifications (approximations) in the forward problem. To obtain the
sensitivity kernel one needs only two calculations solving the EDE,
which makes the method computationally feasible. Inversion is then
performed by an iterative procedure of improving model parameters
based on the kernel calculation and misfit between data and synthet-
ics. Adjoint tomographic calculations usually employ full waveform
information, that is surface and body waves by means of traveltimes
(e.g. Tape et al. 2010) or instantaneous phase misfits obtained by
the time–frequency analysis (e.g. Fichtner et al. 2009; Colli et al.
2013; Fichtner et al. 2013; Rickers et al. 2013). Both amplitude and

phase misfits were used in the adjoint tomographic inversion, for
example, of North Atlantic and Europe by Zhu et al. (2013). The
adjoint method is closely related to the scattering-integral method
(Zhao et al. 2005; Chen et al. 2007b), which is under certain condi-
tions (e.g. large number of sources) even more efficient (Chen et al.
2007a).

In this study, the adjoint tomography is combined with trav-
eltime measurements originating from the ambient-noise cross-
correlations. It has been shown that by the cross-correlation of
diffuse wave fields between two receiver points, the Green’s func-
tion between receivers may be extracted (e.g. Weaver & Lobkis
2002). Many studies have been devoted to the extraction of Greens’
functions, see, for example, Shapiro & Campillo (2004) and Bensen
et al. (2007).

The ambient-noise-based Greens’ functions are usually domi-
nated by surface waves. Furthermore, there were also successful
efforts to extract body waves (e.g. Gouédard et al. 2008; Zhan et al.
2010; Poli et al. 2012a,b; Lin et al. 2013; Lin & Tsai 2013; Boué
et al. 2013).
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Nevertheless, in most cases the application of the ambient
noise measurement is focused on the surface wave tomography
considering only vertical component of the Rayleigh waves.
Rayleigh wave group or phase velocity maps of different regions
from ambient noise data have already been retrieved using tomo-
graphic methods, for example, Shapiro et al. (2005), Yang et al.
(2007), Moschetti et al. (2007), Verbeke et al. (2012). Love-wave
tomography was performed by, for example, Bensen et al. (2008).

Surface wave tomography aiming to retrieve 2-D surface wave
velocity maps from ambient noise data usually employs the ray
methods for traveltime calculation (e.g. Barmin et al. 2001). Sev-
eral surface wave tomography studies that compared the results
obtained using the ray tomography with the Gaussian smoothing
constraint with those using the finite-frequency kernels from the
scattering theory (Born approximation) have found no significant
improvement with the finite-frequency method (e.g. Sieminski et al.
2004; Zhou et al. 2005; Boschi 2006). However, other authors (e.g.
Ritzwoller et al. 2002; Yang & Forsyth 2006) have claimed sig-
nificant improvement when using the finite-frequency sensitivity
kernels. Peter et al. (2009) used the membrane wave approximation
instead of Born approximation to simulate finite-frequency surface
wave propagation. They demonstrated significant improvement by
comparing with the ray tomography results in synthetic tests in case
of short-wavelength heterogeneities, but only marginal improve-
ment for real data applications. Trampert & Spetzler (2006) ascribe
the contradictory results between the different authors to the impor-
tance of regularization effects in both the finite-frequency and ray
approaches.

Recently, first attempts to perform full 3-D adjoint tomography
employing ambient noise data have been made by, for example, Xu
et al. (2013), Chen et al. (2014) and Gao & Shen (2014). However,
they come with large computational expense, making any extensive
synthetic testing difficult. Less expensive approach is the more tra-
ditional one mentioned above, where one first inverts for 2-D surface
wave velocity maps at distinct periods, which are then interpreted
in terms of a 3-D structure.

Here we employ the iterative 2-D adjoint tomography method
with the membrane wave approximation. Despite the method pro-
vides 2-D finite-frequency sensitivity kernels, an additional smooth-
ing of a kernel is commonly applied for reducing singularities
(peaks) in the position of point sources occurring in the EDE, for
example, Tape et al. (2007, 2010) and Peter et al. (2011). Generally,
the strength of smoothing depends on the level of noise present in
the data. However, especially in the adjoint tomographic studies it
is usually chosen ‘ad-hoc’ and its impact on the inversion results is
not properly analysed.

Another technical problem occurring in the iterative methods
is the choice of the number of iteration steps. Both—amount of
smoothing and the number of iterations—are affecting quality of
the resulting model. For example, application of the smoothing
function with a small width or too many iterations lead to rather
complex models, which merely translate the noise present in data
into artefacts in the model. On the other hand, oversmoothing or
stopping the iteration process too early results in oversimplified
models, generally loosing a large amount of information in the
data.

In this paper, we perform a surface wave adjoint tomography em-
ploying the Love group traveltimes obtained from the ambient noise
cross-correlations across the Czech Republic. In order to identify
the proper smoothing strength and the optimal number of itera-
tion steps, we perform synthetic tests with data corrupted by noise
estimated from a real data set. Instead of using standard (albeit

criticized) checkerboard test, we propose synthetic tests for two tar-
get models: a simple smooth model and a model with small-scale
heterogeneities. Using the first model we investigate occurrence of
artefacts due to data noise. Using the second model we test relia-
bility of inferring small-scale structures. Combining all synthetic
tests we achieve the best relation between the quality of the ob-
tained model and the regularization in terms of (i) the amount of
the smoothing and (ii) number of iterations.

After understanding and discussing both the limits and benefits
of our method, we apply our methodology to the real data set, that is
the 16 and 20 s Love-wave group traveltimes in the Czech Republic.

2 DATA

The data consist of surface wave traveltimes obtained using ambient
noise cross-correlations. The ambient noise data were recorded at
stations located in the Czech Republic as well as in the adjacent bor-
der regions. The 54 stations (see Fig. 1a) include permanent stations
of the Czech Regional Seismological Network (CRSN) and Vir-
tual European Broadband Seismic Network (VEBSN), and tempo-
rary stations, which operated within passive experiments PASSEQ
(Wilde-Piórko et al. 2008), BOHEMA I, II and III (Plomerová
et al. 2003; Babuška et al. 2005). The stations were equipped with
broad-band sensors, most of them with STS-2, few with Guralp.
Three components were recorded continuously with the sampling
frequency 20 Hz. More details on the processing noise data for ob-
taining surface wave traveltimes can be found in Appendix A and
in the paper by Růžek et al. (2012).

Because not all stations were in operation simultaneously, the
maximum number of station pairs with available ambient noise data
is only 819. Altogether 5525 Love-wave dispersion data were picked
in the period range of 2–20 s. The traveltime values corresponding
to a station-pair dispersion curve at a given period serve as input
data in our inverse problem. In this work, we utilize only the longest
wavelength Love-wave data corresponding to the periods of 20 and
16 s. Fig. 1(a) shows the 20 s Love-wave data coverage. Each of
the 568 lines connects two stations with estimated traveltime value.
Fig. 1(b) shows an example of a 2-D sensitivity kernel correspond-
ing to the 20 s Love wave between two stations indicating an areal
extent of the sensitivity of the waves used.

3 M E T H O D

3.1 Forward problem

The data are the cross-correlation traveltimes at 16 and 20 s (repre-
senting rather long periods in crustal studies). According to Fig. 1b,
the corresponding waves have a wide-area sensitivity to the struc-
tural model. Therefore, it is desirable that the method employed for
forward calculations can model the finite-frequency effects. Thus,
we apply the membrane-wave approximation to model the surface
wave propagation (e.g. Tanimoto 1990; Peter et al. 2007; Tape et al.
2007). With 2-D modelling, the approach enables extensive syn-
thetic tests which are not feasible in 3-D. We favour this over the ray
method because it enables us to use structural models with strong
small-scale heterogeneities which pose a serious problem for the
ray-tracing methods.

In particular, when considering only Love waves, the membrane-
wave approximation leads to solving scalar wave equation in 2-D.
Furthermore, we assume homogeneous density distribution with
arbitrarily chosen value. The perturbations in the group velocities
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Figure 1. (a) Positions of stations used in the ambient noise processing. The stations are connected with lines along which traveltimes of the 20 s Love waves
for the station pairs were obtained. The figure demonstrates the almost perfect data coverage of the studied domain. (b) Normalized traveltime sensitivity kernel
for membrane waves with dominant period 20 s between two selected stations.

are then interpreted using perturbations in parameter μ appearing in
the membrane-wave equation (e.g. Tape et al. 2007). We use Ricker
wavelet (centred at a considered period) as a source-time function.
It represents any waveform of a given frequency content. Therefore,
since we work with the group surface wave traveltimes at periods
of 20 and 16 s, the inferred velocity maps (see below) correspond
to group surface wave velocity heterogeneities at the corresponding
periods.

3.2 Inverse problem

Here we invert the traveltime residuals at each period independently
(noise cross-correlation signal was bandpass-filtered for each period
separately). The misfit is defined as the L2 norm of the weighted
cross-correlation traveltime residuals �Ti,

χ = 1

2

∑
i

hi�T 2
i . (1)

The sum is taken over all measured traveltime residuals (station-
station pairs) at the given period, hi represents the traveltime weight.
In our application, we assign hi = 0.5 if the receiver acts both
as source and receiver (to prevent from having duplicate data),
otherwise hi = 1. The traveltime residual �Ti between the synthetic
seismogram ui and observed seismogram u0

i is given as the time of
their cross-correlation maximum:

�Ti = arg max
t

∫
ui (τ )u0

i (t + τ )dτ. (2)

When interpreting the complete cross-correlation waveform, the
correct approach to incorporate source in the adjoint calculation
would follow Tromp et al. (2010). However, since our data con-
sist of noise cross-correlation traveltime values only (i.e. complete
observed waveforms are not used), we use the following sim-
plified approach. We create an ‘observed’ waveform considering
a point source with Ricker-wavelet time function in a homoge-
neous medium with velocity equal to the station–station distance
divided by the measured traveltime. The traveltime of this waveform
then corresponds to the traveltime obtained from the noise cross-
correlations. Ricker-wavelet source is also employed to generate
synthetic waveforms in the adjoint inversion.

The objective of the inverse problem is to find model parame-
ters for which misfit χ is minimal. This is accomplished using the
conjugate gradient method for which the misfit gradient must be
evaluated. The misfit gradient in direction δm is calculated using
the Fréchet derivative kernels Ki, defined as

δmχ =
∑

i

hi�Ti

∫
V

Ki δm dV . (3)

We apply the adjoint method to calculate kernels Ki. In case of
membrane waves, the kernel for the parameter μ corresponding to
the given traveltime residual �Ti is given by (e.g. Fichtner et al.
2006)

Ki =
∫

t
(∇ui ) · (∇u†

i )dt, (4)

where ui represents the forward wavefield and u†
i the so-called ad-

joint wavefield. The adjoint wavefield u†
i is calculated by back-

propagating the wavefield from the adjoint sources f †
i (Luo &

Schuster 1991)

f †
i = − u̇i∫

u̇i
2dt

δ(x − xi ), (5)

where xi stands for the position of the receiver. This means that the
adjoint source is a point source located at the receiver’s position
with the time function given by the normalized synthetic velocity
u̇i from the forward calculation.

The adjoint method was implemented into software package Seis-
Sol2D. The forward calculation is carried out by the Discontinuous
Galerkin method with the Arbitrary High Order Time Derivatives
(ADER-DG) on unstructured meshes (Dumbser & Käser 2006;
Käser & Dumbser 2006; de la Puente et al. 2007; Dumbser et al.
2007; Käser et al. 2007). The model parameters follow the same
triangular computational mesh given by the numerical solver of the
wave equation. Model parameters are constant in the elements. The
total number of elements is over 7000.

3.3 Iteration scheme and regularization

According to eq. (3), the misfit gradient is obtained as a sum
of kernels multiplied by �Tihi. The conjugate gradient method
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(specifically Polak–Ribiére scheme) is applied for iteratively im-
proving the model.

As commonly applied in the adjoint methods, the misfit gradient
is convolved with the Gaussian bell. This efficiently removes the
waveform singularities at the sources and receivers – see Fig. 1b,
where an example of the kernel for 20 s waves is shown. No other
advanced preconditioning, for example, the source subspace projec-
tion (Tape et al. 2009) or approximate Hessian (Chen et al. 2007a),
was applied for the sake of simplicity.

The step size taken in the descent direction is calculated as a
minimum of a parabola fitted to at least three test models obtained
by perturbing the model in the descent direction.

4 S Y N T H E T I C T E S T S

Using the synthetic tests we investigate two effects on the conver-
gence towards a correct model: the effect of (i) noise level added to
synthetics and (ii) spatial Gaussian smoothing of the gradient.

To quantify model improvement, we define the model misfit as
the L2 norm of the difference between the obtained model mn at
iteration n and target (i.e. true) model mtarg normalized by the L2
norm of the initial model m0:

ζ = ||mn − m targ||
||m0|| · 100% (6)

Usually the curve has a local minimum. We denote the model corre-
sponding to the minimum as the optimal model. Note that the model
misfit is unknown in real applications because we do not know the
true model.

In our synthetic tests we use two models: Model I represents
a smooth structure and Model II contains strong small-scale het-
erogeneities. Both models originate from the model obtained by
the preliminary inversion of the 20 s Love-wave data. Note that
our models are closer to reality than, for example, the checkerboard
model (standardly used in the seismic tomography despite criticism,
e.g. by Lévêque et al. 1993).

The data coverage, that is the source-receiver configuration used
in the synthetic tests, is the same as in the case of the real 20/16 s
Love-wave data inversion. This may additionally help to distinguish
which areas show stable results and are not so much affected by the
errors in the data or insufficient data coverage. The analysis of the
areas with stable results is useful when interpreting results of real
data application. We also perform an additional test with a modified
station distribution.

4.1 Target models

The tests are performed using two different target models:

(i) Model I: smooth model with small maximum amplitudes of
the heterogeneity.

(ii) Model II: complex model with pronounced small-scale struc-
tures and large maximum amplitudes.

The models are based on the real group velocity model in the
studied region. Model I was created by smoothing Model II by
convolution with the spatial Gaussian bell of 200 km width. This
suppresses the small-scale structures in Model II and reduces the
amplitudes of heterogeneities. Model II was obtained by the adjoint
inversion of the 20 s Love group traveltimes with an initial parameter
setting. It is suitable to test the inversion for the short-wavelength
structures in Test II (see Fig. 2b).

Figure 2. Velocity (target) models I (a) and II (b) for synthetic tests using
20 s data. Stations and sources are shown by inverted triangles and circles,
respectively.

The two target models used to generate synthetic data for the tests
are shown in Fig. 2. To reduce the time demand of the computations,
not all receivers are used as sources. The stations acting simultane-
ously as the point source in forward calculations are marked with a
circle. Note that the corresponding source station pairs are down-
weighted by hi = 0.5 in the data misfit; see Section 3, eq. (1).

4.2 Synthetic data errors and regularization

We employ the 16 and 20 s Love-wave group traveltimes to estimate
data error to be used in the synthetic tests. Because they are deter-
mined by almost the same structure, the differences between the
corresponding values do not originate from the differences between
the physical models but from the errors of the traveltime estimation.

Fig. 3(a) shows differences between the 20 and 16 s Love-wave
group traveltimes as functions of distance. The absence of an obvi-
ous correlation with distance supports our assumption on the origin
of the differences. The histogram of the differences between the 20
and 16 s Love-wave group traveltimes is shown in Fig. 3(b). The
histogram is fitted by a Gaussian distribution centred close to 0 with
σ t = 1.53. This additionally confirms that the differences between
the data sets are random, originating rather from the data processing
than from properties of the real structure.
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Figure 3. Differences between the 20 and 16 s Love-wave group traveltimes plotted in terms of (a) station-pair distance and (b) differences displayed as a
histogram and fitted by the Gaussian distribution.

Figure 4. Gaussian functions used for generating traveltime noise in the
synthetic tests: red, green and blue curves correspond to the Gaussian distri-
butions with the standard deviations σ t (from real data), 1/3σ t and 3/2σ t,
respectively.

In the following tests, we use three values of the noise level spec-
ified in terms of the standard deviation. One of them corresponds to
the real noise-level σ t. The other two levels are chosen for analysing
the effect of smaller and larger data noise considering 1/3σ t and
3/2σ t, respectively. The Gaussian distributions for all three noise
levels are shown in Fig. 4. The ‘accurate’ synthetic seismograms
calculated for models shown in Fig. 2 are shifted by a value gener-
ated randomly from the corresponding Gaussian distribution. The
waveforms themselves are not perturbed.

We smooth the calculated misfit gradients by means of convo-
lution with a 2-D isotropic Gaussian function. We consider three
widths (denoted as σ x), 50, 100 and 150 km, representing different
strengths of the smoothing. The smallest width corresponds to the
wavelength of the 20 s data (or little less). This might be considered
the natural choice because it prevents the smaller-than-wavelength
structures without oversmoothing. The other two smoothing levels
represent two different degrees of over-regularization. With increas-
ing level of smoothing the smaller-scale heterogeneities should be
suppressed and the resulting model is expected to contain less de-
tailed structure.

4.3 Test I—inversion of the long-wavelength structures

The results for Test I are shown in the left column of Fig. 5. The
individual rows show results for the three gradient smoothing levels

σ x (50, 100 and 150 km) with distinct colours and symbols. The
decrease of data misfit (traveltime residual RMS) for the three noise
levels is plotted in grey using the respective symbols. Fig. 6 shows
several model examples at selected iteration steps and for differ-
ent levels of the gradient smoothing σ x. Note that the areas with
negligible model update are masked.

For the weakest smoothing σ x = 50 km (Fig. 5a), the optimal
model was achieved in 1–3 iteration steps for all noise levels.
Fig. 6(a) shows the optimal model (iteration 3) for noise level σ t

and smoothing σ x = 50 km. In the case of the lowest noise level
the results remain stable with further iterations and artefacts do not
appear (Fig. 6c). For other noise levels, the model misfit starts to
increase from the optimum. This is due to emergence of small-scale
false structures originating from the noise in the data. The stronger
the noise, the more pronounced heterogeneities are obtained (com-
pare Figs 6b and d), which results in the increase of the model
misfit.

With the increasing level of the gradient smoothing, the results
stabilize in the optimum after a larger number of iteration steps
(Figs 5c and e). Fig. 6(e) shows the model example for σ x = 100 km
and data noise σ t obtained after the seventh iteration. The best results
in Test I were achieved when the strongest smoothing (σ x = 150 km)
was applied, even for the highest level of noise. This is due to the fact
that the target model is very smooth. The example model obtained
after the seventh iteration for noise level σ t is shown in Fig. 6(f).
Note that the long-wavelength structures in all the inferred models
in Fig. 6 are similar because they are obtained in the initial iterations.

To sum up Test I, if data are corrupted by low noise level, the
results are stable and do not depend on the amount of regularization
(i.e. smoothing level and number of iterations). If the noise level
is higher, the smoothing corresponding to the wavelengths used,
that is σ x = 50 km, is mostly inadequate (Fig. 6d). The inversion
results in model with false structures despite the almost perfect
station coverage. Therefore, a certain degree of over-regularization
is necessary for obtaining a more stable result. However, in the case
of very high data noise, it may be still insufficient and the inversion
should be stopped after just a few iterations. Assuming that noise
in the real data is close to the noise σ t estimated from differences
between 20 and 16 s Love-wave data, the most reliable results are
obtained with smoothing width of at least 100 km and up to the
sixth iteration.

4.4 Test II—inversion of a realistic structure

The evolution of the model misfit and data misfit during iterations
of Test II is shown in the right column of Fig. 5. Gradient smoothing
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Figure 5. Results of Test I (left column) and Test II (right column). Colour curves and left vertical axis: convergence towards the target model represented by
the model misfit. Grey curves and right vertical axis: data misfit in terms of traveltime residual RMS. Each row corresponds to a different level of the gradient
smoothing: 50 km (top), 100 km (middle) and 150 km (bottom). The individual lines and symbols correspond to the different levels of noise applied to the
synthetic data.

σ x increases in Fig. 5 from the top to bottom. For illustration, Fig. 7
shows several examples of models obtained during the inversions.

Common characteristic of both tests is the overall behaviour of
the model misfit with iterations: Except for the cases with the lowest
noise level, the divergence from the target model (expressed by the
increase in the model misfit) emerges after achieving the optimum.
The main difference from Test I is the generally higher number
of iterations needed to achieve the optimum, namely 6–8. In other
words, since the target model contains smaller-scale structures than
that of Test I, more iterations are needed in order to obtain the
main features of Model II. Figs 7(a) and (b) show models obtained
after iteration 3 and 7 (optimal), respectively, considering the same
parameters (σ t noise level and σ x = 50 km). The inferred structures

differ mainly in the value of the maximum amplitudes: the inversion
is not able to reveal smaller-scale structures with correct amplitudes
in the initial phase of the inversion.

To test solely the effect of smoothing, we have also performed
a noise-free test (not shown here). For all σ x the amplitudes were
increasing with increasing iterations, still the correct values were
not achieved. This was clearly controlled by the smoothing con-
straint that generally blurs the structures. In particular, for smooth-
ing σ x = 50 km the amplitudes of the heterogeneities obtained by
the inversion of the noise-free and noisy data are similar only during
the first several iteration steps. In later steps, the artefacts of noisy
data occur and inversion of the noise-free data performs much bet-
ter. Obviously, when the gradient smoothing is increased, the results
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Regularization in 2-D adjoint tomography 793

Figure 6. Models obtained in Test I for various noise levels (σ t,1/3σ t and 3/2σ t; see Fig. 4), various smoothing levels σ x and iterations.

stabilize close to the optimum for more iterations, see Fig. 5(d). For
the smoothing of 100 km and 150 km, the amplitudes of the hetero-
geneities are similar for all iterations, both for the noise-free and
noisy data inversion.

The problem arises with application of the strongest smoothing
of 150 km, when the recovered model is bound to contain only very
long wavelength structures, see Fig. 7(f). This is observed as the
higher value of the model misfit in the optimum as compared with
other cases, Fig. 5(f).

It is important to note that none of the smallest scale structures of
Model II were correctly resolved for any of the cases considered, not
even considering noise-free data. These structures emerge during
very late iteration steps (much later after the optimum is achieved)
and are, therefore, most vulnerable to adverse effects of the data

noise. This should be always taken into account when the model
with too many details is found.

To examine whether the conclusions of the previous tests are
not biased by using the same station configuration in all cases,
we perform a synthetic test with a different station configuration
but with the same target model. Synthetic data are generated using
Model II and noise level σ t. The width of smoothing function σ x

applied to the misfit gradient is 50 km. The number of sources and
receivers is unchanged, the locations of stations are simply swapped
north to south and vice versa.

The results of the inversion are shown in Fig. 8 together with
the results of the inversion using original stations’ positions for
comparison. In particular, Fig. 8(a) shows the model misfit and
the decrease of the data misfit with iterations. The decrease of
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Figure 7. Same as Fig. 6, but for Test II.

Figure 8. (a) Model and data misfit with iterations for the original and modified station configurations using Model II, noise level σ t and gradient smoothing
50 km. (b) Model for modified station configuration in the minimum of the model misfit.
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the data misfit is almost identical for both configurations. The
behaviour of the model misfit with iterations also confirms that
the optimal models are obtained at iterations 6 and 7 as found
above. The model misfit in the case of the modified station con-
figuration is generally higher than the one from Test II. Fig. 8(b)
shows the model obtained at iteration 7 (i.e. the optimal model).
The model does not contain false heterogeneities. However, the
inversion is unable to recover all structures due to the insuf-
ficient station coverage (see, e.g. strong low-velocity anomaly
in the southeast). This also explains the increase in the model
misfit.

To conclude, Test II confirms several outcomes of Test I: in
cases of the weaker smoothing, the false small-scale structures
evolve during later iteration steps. However, extreme oversmooth-
ing and/or too few iteration steps may lead to smoothed struc-
tures with underestimated amplitudes. The best results for Test II
are achieved using gradient smoothing of maximally 100 km in
6-8 iteration steps. This conclusion is independent of the station
configuration.

5 R E A L DATA E X A M P L E : I N V E R S I O N
O F T H E 2 0 A N D 1 6 s L OV E - WAV E G RO U P
T R AV E LT I M E S I N T H E C Z E C H
R E P U B L I C

We have applied the adjoint tomographic inversion to the 20 and
16 s Love-wave group traveltimes obtained by cross-correlation of
the ambient noise on the territory of the Czech Republic.

We assume that the real data error corresponds to the variance
σ t, estimated from the differences between the 16 and 20 s travel-
time data (Section 4.2). From the synthetic tests with the Gaussian
errors (Section 4) it follows that the iteration process should be
stopped after 6 iterations considering Gaussian smoothing width
σ x = 100 km. If the noise level was underestimated and the real
model contains small-scale structures, the result should be stable
without any profound artefacts (Section 4.4). In case the real model
does not contain small-scale structures and the data noise level is
higher, the obtained model may suffer from false small-scale het-
erogeneities. However, the amplitudes of these anomalies should
not be high (Section 4.3) and the artefacts should not be dominant
features in the obtained models. When increasing the number of it-
erations above 6, the heterogeneities in the velocity image increase
only in their amplitudes. Test II shows similar effects as a conse-
quence of the data noise. Geological interpretations that consider
only the shape of the heterogeneities would probably not be sig-
nificantly affected. However, interpretations based on the local 1-D
velocity profiles obtained from the inferred dispersion curves must
carefully take this possibility into account.

The inferred models are shown in Figs 9(a) and (b) for the 20 and
16 s waves, respectively. The recovered models are obviously similar
which supports both the obtained results and the assumption that the
differences between the two data sets originate in the measurement
errors.

Figs 9(c) and (d) show the decrease of the data misfit for the two
periods considered. The distribution of the traveltime residuals is
also shown (Figs 9e and f). It is obvious that the greatest change
in the data misfit is achieved already at the first iteration. However,
some considerable improvement in the traveltime residuals is still
evident up to iteration 3. There is only a small improvement dur-
ing the next iteration steps. This behaviour suggests that the real
structure is indeed more complicated than that of Test I.

Inversion using other frequency data and also the Rayleigh wave
data together with geologic interpretations are the subject of our
further study.

6 D I S C U S S I O N

We have analysed the choice of regularization parameters for the
2-D adjoint tomography using synthetic tests. We benefit from hav-
ing two independently obtained data sets of close frequency content,
namely the 20 and 16 s Love-wave group traveltimes from noise cor-
relations. The differences between the data sets exhibit a Gaussian
distribution. Assuming that these differences are mostly due to the
measurement error, their standard deviation is used as a reference
data noise for the synthetic tests.

We have used the synthetic tests to identify the appropriate
smoothing strength and the optimal number of iteration steps so
that the inferred model contains not only large-scale but also small-
scale heterogeneities without false structures. Instead of using the
typical checkerboard test, we suggest performing synthetic tests
with two very different structural characteristics—smooth (Test I)
and complex (Test II) target models. We show that the optimal
strength of regularization depends not only on the level of noise
but also on the complexity of the target model. Furthermore, even
the proper regularization does not necessarily stabilize the result in
the optimum. Estimating where the obtained model is still reliable
and where the false structures develop is the key purpose of our
synthetic tests.

Generally, during the first iteration steps of the inversions the
structural model is improved at the longest wavelengths and both
the model and the data misfit decrease considerably. During fur-
ther iterations, the shorter wavelength structures of the model are
revealed. At this point the performance of the inversion depends
on the noise and smoothing levels. For the lowest noise level the
model does not evolve considerably. In case of strong noise and
weak smoothing, the difference between the target and the inverted
model grows with further iterations. This result may be surprising
given the almost perfect station coverage. For the higher noise level
the increase of the model misfit starts earlier and is steeper. Never-
theless, the data misfit keeps decreasing, showing that the inversion
starts explaining the noise in the data by new artificial structures in
the model.

A similar test where we changed the position of stations con-
firms that the conclusions are independent on the source-receiver
coverage.

One important feature revealed by the synthetic tests is the be-
haviour of the data misfit with increasing number of iterations. In
Test I, the data misfit improved significantly at the first iteration and
remained almost unchanged for the rest of the inversion process.
In Test II, the decrease of the data misfit exhibits more complex
behaviour (resembling quadratic decrease) during the first few iter-
ations and remains almost constant after iteration 4. The final data
misfit value depends almost entirely on the level of noise applied
to data. This means that the misfit behaviour with iterations gives
indication not only of the noise level present in data but also of
the complexity of the structural model with respect to the starting
model.

We have also investigated application of the common L-curve
method to identify the optimal iteration step for a given noise level
and given smoothing (see Appendix B). Since it was difficult for us
to draw conclusions based on the usual analysis of the L curve, we
prefer the above mentioned approach and rather combine both tests
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Figure 9. Results of real Love-wave data inversion: left 20 s; right 16 s. (a, b) Group velocity models; (c, d) traveltime residual RMS with iterations; (e, f)
traveltime residual histograms for initial model and resulting model.

to obtain the optimal values of the gradient smoothing and number
of iterations for our particular application.

The inferred optimal regularization parameter setting was applied
to real data of the 20 and 16 s Love waves. In this way we obtained
tomographic maps of the Czech Republic’s shallow crust with the
highest resolution and reliability possible, for the given data and
method.

In the real data application, the decrease of the data misfit ob-
served in Figs 9(c) and (d) does not resemble the behaviour observed
in Test I. This indicates that the real model is not extremely smooth,
but contains rather smaller-scale structures. The traveltime resid-
ual RMS value, to which the data misfit of the real-data inversion
converged, is greater than 2 s which would correspond to the great-
est noise level (3/2σ t) in the synthetic tests. We note that when
we underestimated the data noise, according to Test II the gradient
smoothing σ x = 100 km gave similar results for both noise levels
up to iteration 13 (see Fig. 5d).

If the initial and target models are close, the first iteration of
the nonlinear inversion may be considered as the result of the stan-
dard linearized inversion. Therefore, we are able to compare these

methods reasonably only in Test I (the smooth model). In this case,
almost the same model misfit was achieved at the first iteration for
all noise levels and all regularizations. After this step (i.e. in the
nonlinear part of the inversion), there is no considerable improve-
ment with iterations; on the contrary, it may lead only to complex
models formed by artefacts if improper smoothing is applied. How-
ever, when the initial model is not close to the target one (see our
Test II), the model misfit does not reach the optimal value in the first
iteration step. It is attained in further iteration steps (the nonlinear
inversion). To sum up, the regularization, as applied in our problem,
mostly affects the nonlinear part of the inversion.

We note that since the full 3-D adjoint inversions are computa-
tionally extremely expensive, the tests presented in this paper are
feasible only in 2-D. We believe that they provide important insight
into the method itself and reveal its main problems and limitations
in general. From the presented numerical experiments, one may in-
fer that the regularization (e.g. in the form of gradient smoothing)
is recommended to be greater than the wavelength considered to
prevent the bold structural artefacts. The proper number of itera-
tions cannot be easily generalized because it strongly depends on
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the choice of the initial model. For applications similar to ours, the
tests suggest that the number should be rather low (≈5–10). Other-
wise, the model may be spoiled by the data noise artefacts even if
the data coverage seems perfect.

7 C O N C LU S I O N

The tomographic problem addressed in the present study is based
on the iterative adjoint inversion of the Love-wave group travel-
times obtained from the ambient noise cross-correlations across the
Czech Republic. In order to investigate the undesired regularization
effects due to the Gaussian smoothing and the choice of the total
number of iterations, we performed synthetic tests for two different
target models—a simple smooth and a more complex heterogeneous
model. We analysed effects of smoothing strengths and data noise
levels. In particular, we used realistic noise levels derived from dif-
ferences of the observed traveltimes at two adjacent periods (16
and 20 s). Tests with the simple model demonstrate the possibil-
ity of obtaining false small-scale structures even in areas with an
ideal station coverage, when insufficient smoothing is applied or
too many iteration steps are performed. Contrarily, the tests with
the complex target model reveal the possible resolving power of the
present data set. The tests made it possible to find the optimal reg-
ularization parameters for the investigated problem (100 km wide
smoothing Gaussian and 6 iterations). The conclusions are rela-
tively insensitive to the station distribution. Eventually, we applied
the regularization parameter setting in the real data inversion of the
Love-wave groups at the 16 and 20 s periods. The real data inversion
results are very similar and show only minimal discrepancies.
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Ongoing passive seismic experiments unravel deep lithosphere structure
of the Bohemian Massif, Stud. Geophys. Geod., 49(3), 423–430.

Barmin, M.P., Ritzwoller, M.H. & Levshin, A.L., 2001. A fast and reliable
method for surface wave tomography, Pure appl. Geophys., 158(8), 1351–
1375.

Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F.,
Moschetti, M.P., Shapiro, N.M. & Yang, Y., 2007. Processing seismic
ambient noise data to obtain reliable broad-band surface wave dispersion
measurements, Geophys. J. Int., 169(3), 1239–1260.

Bensen, G.D., Ritzwoller, M.H. & Shapiro, N.M., 2008. Broadband ambient
noise surface wave tomography across the United States, J. geophys. Res.,
113(B5), doi:10.1029/2007JB005248.

Boschi, L., 2006. Global multiresolution models of surface wave propaga-
tion: comparing equivalently regularized Born and ray theoretical solu-
tions, Geophys. J. Int., 167(1), 238–252.
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Luo, Y. & Schuster, G., 1991. Wave-equation traveltime inversion, Geo-
physics, 56(5), 645–653.

Moschetti, M.P., Ritzwoller, M.H. & Shapiro, N.M., 2007. Surface wave
tomography of the western United States from ambient seismic noise:
Rayleigh wave group velocity maps, Geochem. Geophys. Geosyst., 8(8),
Q08010, doi:10.1029/2007GC001655.

Peter, D., Tape, C., Boschi, L. & Woodhouse, J., 2007. Surface wave tomog-
raphy: global membrane waves and adjoint methods, Geophys. J. Int.,
171(3), 1098–1117.

Peter, D., Boschi, L. & Woodhouse, J.H., 2009. Tomographic resolution
of ray and finite-frequency methods: a membrane-wave investigation,
Geophys. J. Int., 177(2), 624–638.

Peter, D. et al., 2011. Forward and adjoint simulations of seismic wave
propagation on fully unstructured hexahedral meshes, Geophys. J. Int.,
186(2), 721–739.
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imaging regional Earth structure based on three-dimensional reference
models, Bull. seism. Soc. Am., 95(6), 2066–2080.

Zhou, Y., Dahlen, F.A., Nolet, G. & Laske, G., 2005. Finite-frequency effects
in global surface-wave tomography, Geophys. J. Int., 163(3), 1087–1111.
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A P P E N D I X A : A M B I E N T N O I S E DATA
P RO C E S S I N G

The ambient noise processing follows the procedures in Bensen
et al. (2007). The first phase (i.e. the single-station data prepara-
tion) consists of data selection and basic preprocessing, such as de-
meaning and downsampling. In the next step, the temporal running-
absolute-mean normalization using 150-s long window was applied
to reduce the effect of the strong events in records.

During the next phase of the data processing, the records are cut
into 1 hr segments and rotated to R-T-Z coordinates. The signals
are then cross-correlated between the stations for every component
to reveal the Greens’ functions. All the obtained 1-hr long cross-
correlations are summed to improve the signal-to-noise ratio (SNR).
The shortest time interval of stacking the signal was 26 d, the longest
was more than 8 yr, the mean interval is 2.66 yr. Only the Green
functions with SNR>5 were used to estimate the traveltime data.

In the R-T-Z coordinate system, the transverse component corre-
sponds to the Love wave Green’s function. To obtain the dispersion
measurements, narrow bandpass filters of given central frequencies
were applied. The envelope of the filtered signal was calculated and
the maximum of the envelope function was picked as the group
traveltime corresponding to the filter frequency. Altogether 5525
Love-wave dispersion data were picked for all frequencies. The
traveltime values corresponding to the dispersion curve at a given
frequency of the station–station pair serve as input values in the
inverse problem of this study.

A P P E N D I X B : L - C U RV E C R I T E R I O N

One of the most common way to estimate the ideal value of neces-
sary regularization is the so-called L-curve criterion. This criterion
is based on the fact that the dependency of data misfit with respect
to a model characteristic is supposed to have shape of letter L. The
most suitable model is chosen as that corresponding to the corner
of the L-curve, where the sufficient decrease of the data misfit is
achieved by the model with the smallest complexity.

The gradient inversion method is known to change the model
parameters on long wavelengths during the first iteration steps and

 at U
niverzita K

arlova v Praze on June 16, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Regularization in 2-D adjoint tomography 799

Figure B1. L-curve plot between model complexity and data misfit for Test I (a) and Test II (b) traveltime Gaussian noise with standard deviation σ t.

the smaller-scale features of the model are obtained during the later
steps. Indeed, the model complexity increases with iterations as
shown in our Tests I and II. For several test examples, we demon-
strate the performance of the L-curve and try to use this criterion to
estimate which iteration gives the best result. The plot of data misfit
with respect to the model complexity measured by the norm of the
Laplace operator applied to the model, ||∇2mn||, for every iteration
is used as the modification to the standard L-curve plot. The corner
in the plot should reveal when to stop the iteration process.

The L-curves for the synthetic Tests I and II with the Gaussian
noise of variance σ t added to the synthetic data and different gra-
dient smoothing levels σ x are shown in Fig. B1. During the first
few iterations, there is a sharp decrease of the data misfit with a
small change in the model complexity. After that, the model com-
plexity continues to increase while the decrease in the data misfit
slows down. When the strongest smoothing is applied to the gradi-
ent (blue curves in Fig. B1), the curve tends to be more complicated
containing one or several local edges. We assume that the model
complexity is being artificially reduced during iterations while the

data misfit is decreasing. This would also explain the absence of the
edges in case of the weakest smoothing which corresponds to the
original wavelength of the data set.

Let us remark that the optimal models for Tests I and II are
achieved at iterations 2 and 6–8, respectively. After that, depending
on the amount of smoothing, the model misfit starts to increase.
Omitting the local edges in the curve, the optimal models deter-
mined according to the L-curve criterion are achieved for Test I at
iteration 2 for 50 km smoothing, at iteration 3 for 100 km smoothing
and at iteration 4 for 150 km smoothing. According to the results
shown in Fig. 5 of the main text, these conclusions drawn according
to the L-curve plot are reasonable. The optimal model according to
the L-curve criterion for Test II would be at iteration 4 for 50 km
smoothing, iteration 3 for 100 km smoothing and iteration 6 for
150 km smoothing. Comparing with Fig. 5, in case of a complex
target model, the optimal iteration step suggested by the L-curve
would be underestimated resulting in the oversmoothing the model.
This analysis documents that the L-curve criterion is difficult to
apply.
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