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ABSTRACT
By analyzing the equations ofmotion and constitutive relations in thewavenumber domain,
we gain important insight into attributes determining the accuracy of finite-difference (FD)
schemes. We present heterogeneous formulations of the equations of motion and constit-
utive relations for four configurations of a wavefield in an elastic isotropic medium. We
Fourier-transform the entire equations to thewavenumber domain. Subsequently, we apply
the band-limited inverse Fourier transform back to the space domain. We analyze conse-
quences of spatial discretization and wavenumber band limitation. The heterogeneity of
the medium and the Nyquist-wavenumber band limitation of the entire equations has
important implications for an FD modeling: The grid representation of the heterogeneous
medium must be limited by the Nyquist wavenumber. The wavenumber band limitation
replaces spatial derivatives both in the homogeneous medium and across a material inter-
face by continuous spatial convolutions. The latter means that the wavenumber band limi-
tation removes discontinuities of the spatial derivatives of the particle velocity and stress at
the material interface. This allows to apply proper FD operators across material interfaces.
A wavenumber band-limited heterogeneous formulation of the equations of motion and
constitutive relations is the general condition for a heterogeneous FD scheme.

KEY POINTS
• We address fundamentals of the finite-difference (FD)

modeling of seismic wave propagation and earthquake

motion.
• Implications of heterogeneity of medium and spatial dis-

cretization for FD schemes are found.

• Grid representation of a heterogeneous medium must be
limited by the Nyquist wavenumber.

INTRODUCTION
Topics of the finite-difference (FD) method
The FD method in present-day seismology is a global name for a
large family of numerical-modeling methodologies. They all are
based on one unifying concept: approximating equations, boun-
dary conditions and initial conditions by an FD scheme. A com-
plete FD methodology must comprise a time–space grid; schemes
for updating wavefield at interior grid points, points at and near
the Earth’s free surface, and points at and near the other borders of
the grid; a rheological model of the medium; a discrete represen-
tation of smooth and discontinuous material heterogeneity; a dis-
crete representation of a wavefield source. Individual FD method-
ologies used in seismology differ in one or several of these con-
stituents. They rarely comprise all the state-of-the-art ingredients.

The most significant development in FD methodology in
recent years has been focused on the optimal FD approximations

of the spatial derivatives. The goal of development is to find FD
approximations with (1) the same high-order accuracy in space
and time, in all propagation directions and in a wide range of
wavenumbers, and (2) optimal balance between increasing order
of accuracy and computational demands. For recent reviews, we
refer to Zhou et al. (2021) and Moczo et al. (2021).

The task of finding the best FD approximation is definitively
far from being trivial and, thus, understandably, most of the
authors have not addressed the other persisting and pertinent
aspect of FD schemes—implementation of internal material
interfaces.

The most important approaches to represent a material
interface in an FD grid until 2013 are comprehensively pre-
sented by Moczo et al. (2014) and analyzed by Vishnevsky et al.
(2014). Here, we will mention the important contributions
developed afterward.
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Recent advances in representation of material
interfaces
Mittet (2017) represented a sharp (high impedance contrast)
material interface in elastic media using a Heaviside step func-
tion in the space domain, transformed the representation to the
wavenumber domain, and eventually returned to the space
domain using a band-limited inverse Fourier transform. The
maximum wavenumber corresponds to the one allowed by a
spatial grid. Mittet (2017) also suggested an alternative approach:
a fine-grid model is created first, and then it is low-pass filtered
to remove wavenumbers inappropriate for the coarser grid used
for the FD simulation. The fine grid is then sampled at the
required coordinates for the coarse grid. Mittet (2021a,b) elab-
orated clever detailed analyses of accuracy of his approach,
explained the cause of some typical numerical errors appearing
in pseudospectral and FD simulations in heterogeneous media,
and investigated the implementation of small-scale hetero-
geneities. Mittet (2021a,b) demonstrated a sub-cell resolution
of his implementation.

Moczo et al. (2014, 2019), Kristek et al. (2017, 2019), and
Gregor et al. (2021, 2022) developed orthorhombic representa-
tions of strongly heterogeneous elastic, viscoelastic, and poroe-
lastic media with material interfaces. Their main idea was to best
represent smooth and discontinuous material heterogeneity in
the FD modeling using the standard staggered-grid scheme
(fourth-order accurate in space, second-order accurate in time).
All schemes keep computational efficiency of the corresponding
velocity–stress or velocity–pressure–stress staggered grid
schemes for smoothly and weakly heterogeneous media while
having a sub-cell resolution capability. The viscoelastic medium
has rheology of the generalized Maxwell body (equivalent to the
generalized Zener body). The poroelastic mediummay have zero
resistive friction or nonzero resistive friction or Johnson-Koplik-
Dashen frequency-dependent permeability and resistive friction.
All FD schemes are capable of sub-cell resolution.

Mittet (2017) observed that there are cases in seismic explo-
ration in which an accurate description of interface is important
(the seabed being a good example). Moczo et al. (2018) pointed
out the need for, and importance of geometrically and rheolog-
ically complex models in identifying key structural parameters
and key characteristics of earthquake ground motion.

Jiang and Zhang (2021) developed a tilted transversely iso-
tropic equivalent medium parameterization method for repre-
senting tilted elastic material interfaces in higher order FD
schemes on a coarse Lebedev grid. The authors report that
their method has a sub-cell resolution capability. For the hori-
zontal interface, the equivalent elasticity matrix is the same as
that of the orthorhombic representation (Kristek et al., 2017).
If the material interface passes through the grid cell at an arbi-
trary angle, the Bond transformation is applied for obtaining
the tilted transversely isotropic equivalent medium.

Koene et al. (2022) tested and compared several approaches
to represent tilted (dipping) material interfaces: sampling at

coarse resolution (a local pointwise representation of any
material heterogeneity), an anti-aliased step function and low-
pass filtering of the high-resolution oversampled grid model
(the two mentioned Mittet’s approaches), an equivalent medium
with Schoenberg–Muir calculus (Schoenberg and Muir, 1989;
Muir et al., 1992), and an equivalent medium with orthorhombic
averaging (Moczo et al., 2014; Kristek et al., 2017), which coin-
cides with the Schoenberg–Muir approach for an interface par-
allel with a grid plane. Based on their method of comparison,
they conclude that the Schoenberg–Muir approach is an efficient
method to minimize errors in elastic simulations with inclined
interfaces in 2D problems.

Specific aspects
There are several interesting aspects of representing and imple-
menting material interfaces in FD schemes. We mention them
here because they are very relevant andmotivating for this article.

• The Heaviside step function was used for representing a
material interface by Zahradník and Priolo (1995). They
used it in their theoretical analysis to show that the 2D
displacement formulation of the equation of motion can
be considered a heterogeneous formulation of the equation
of motion which can account for presence of the material
interface without explicit use of the boundary conditions if
material heterogeneity is properly implemented in an FD
scheme. Zahradník and Priolo, however, did not directly
use the Heaviside step function to implement the material
interface in their FD scheme. Neither did they apply the
grid-imposed wavenumber band limitation. Moczo (1998)
pointed out the idea of Zahradník and Priolo (1995) but
did not use the Heaviside step function either to represent
the material interface.

• Mittet (2017) observed that a simple product of a material
coefficient and a wavefield variable in the spatial domain
corresponds to a convolution in the wavenumber domain.

• It is well known that spatial derivatives of wavefield variables
are discontinuous at the material interface. In the hetero-
geneous FD schemes, FD spatial operators are applied in all
interior grid points to calculate spatial derivatives of the
wavefield variables. We are not aware of any paper explain-
ing whether it is possible or not across an interface.

• We in our previous papers and, as far as we know, other
numerical modelers simply applied FD spatial operators to
calculate spatial derivatives of the wavefield variables across
the material interface without explaining whether it is pos-
sible or not.

• It is commonly assumed that using the higher order spatial
FD operators improves accuracy, but we are not aware of any
explanation why this should be so if the long-stencil spatial
operator is applied across the material interface.

• Mora (1986), Igel et al. (1995), and Fichtner (2011) replaced
spatial derivatives by the wavenumber band-limited discrete
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operators—they correctly applied the wavenumber limit
imposed by the spatial grid. They, however, did not address
the presence of a material interface.

• To the best of our knowledge, the Fourier transform to the
wavenumber domain and the subsequent band-limited
inverse Fourier transform back to the space domain have
not been applied to the entire equations of motion and con-
stitutive relations to examine the fundamental implications
for FD approximations of the equations. The wavenumber-
domain view on the entire equations is the key novel aspect
of our approach.

Structure of this article
In this article, we address the following topics:

1. elemental consideration on implementation of a material
interface in an FD grid;

2. 1D problem in an unbounded homogeneous elastic medium:
time–space domain view and frequency–wavenumber view;

3. 1D, 2D SH, and 3D problem in a model of two homo-
geneous elastic half-spaces: time–space domain view and
frequency–wavenumber view; and

4. implications for FD modeling.

Let us point out one aspect. We restrict our analysis to the
simplest case of a planar material interface perpendicular to a
coordinate axis. We do this for two basic reasons: (a) It is
important to investigate the implications of the presence of
a material interface (the simplest sharp spatial heterogeneity)
in the simplest possible grid position (perpendicular to a coor-
dinate axis) for the FD modeling. (b) A planar interface in a
general orientation and a nonplanar interface bring such addi-
tional complexity to the problem that they require special
approximate approaches. At the same time, they do not cancel
or reduce the importance of the findings based on the analysis
of the interface considered in this study.

ELEMENTAL CONSIDERATION ON A MATERIAL
INTERFACE IN AN FD GRID
For simplicity and essential view, consider a 1D problem of two
homogeneous half-spaces. Next, consider, for example, a veloc-
ity–stress formulation of the equation of motion and constit-
utive law. From now on, for brevity, they will be referred to as
VS equations.

We want to solve the problem using a heterogeneous FD
scheme, that is, one and the same scheme for any interior grid
point no matter what the position of the grid point with respect
to the material interface is.

The heterogeneous FD scheme must solve such VS equa-
tions that are valid for any point (any spatial position, not a
grid point here) of the medium.Wemay call the corresponding
VS equations a heterogeneous formulation of the VS equations.
It must have the same form for a point away of the material

interface and a point directly at the material interface.
Obviously, it must account for the boundary conditions at
the material interface. The implementation of the boundary
conditions can be achieved by considering equations for both
half-spaces, explicit accounting for continuity of continuous
wavefield variables, and accompanying averaging of discon-
tinuous wavefield variables and material parameters.

The implementation of the boundary conditions determines
a structure of the heterogeneous formulation. The hetero-
geneous formulation corresponds to principles of averaging
presented by Backus (1962).

There is another equally important aspect of constructing an
FD scheme. The scheme is constructed on a spatial grid. Assume
a uniform spatial grid with a grid spacing h. Considering the
Nyquist sampling limit, the minimum wavelength that can be
“seen” (supported or propagated) by the grid is λmin � 2h.
The corresponding maximum spatial frequency, the Nyquist
wavenumber, is kN � 2π=λmin � π=h. Consequently, an FD
discretization of the heterogeneous formulation of the VS equa-
tions should account for the maximum admissible wavenumber.

This can be achieved in three steps: (a) Fourier transforma-
tion of the time–space heterogeneous formulation into the
time–wavenumber domain, (b) wavenumber k ∈ h−kN ; kNi
band-limited inverse Fourier transformation back to the
time–space domain, and (c) FD discretization of the wavenum-
ber band-limited heterogeneous formulation.

We can see that as soon as we assume a spatial grid for con-
structing a heterogeneous FD scheme, we immediately involve
two interconnected aspects of construction: a heterogeneous
formulation with its averaging structure and wavenumber
band limitation.

Thus, if we want to solve VS equations by a heterogeneous
FD scheme, we need (a) a heterogeneous formulation of the VS

equations and (b) wavenumber band limitation. The wave-
number band limitation must be applied to the heterogeneous
formulation.

In the following sections, we present detailed analyses of four
canonical problems to identify the basic aspects of the FD dis-
cretization: 1D problem in an unbounded medium, 1D problem
in two homogeneous half-spaces, 2D SH problem in two homo-
geneous half-spaces, and eventually 3D problem in two homo-
geneous half-spaces. The unbounded medium is analyzed to
obtain basic consequences of the wavenumber band limitation.

1D PROBLEM IN AN UNBOUNDED
HOMOGENEOUS MEDIUM
Time–space domain view
Wave propagation in an unbounded homogeneous elastic
medium can be described by the VS equations:

EQ-TARGET;temp:intralink-;df1;308;107ρ
∂v�z; t�

∂t
� ∂σ�z; t�

∂z
;C

∂σ�z; t�
∂t

� ∂v�z; t�
∂z

; �1�
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in which ρ and C are density and compliance, v(z,t) and σ�z; t�
are the particle velocity and stress, and z and t are the spatial
coordinate and time, respectively.

Assume an FD scheme solving these equations. A stability
analysis of the scheme yields a stability condition for a time
step Δt�c; h�, in which c � 1=

������
ρC

p
is the wave speed and h

is a grid spacing. A dispersion analysis yields a dispersion error
ε�Nλ; pΔt� as a function of the number of grid spacings Nλ

per wavelength λ for a chosen value pΔt of a fraction of the
maximum possible Δt. A model of medium together with
the maximum angular frequency ωmax of the wavefield imply
a minimum wavelength λmin � 2πc=ωmax. A choice of an
admissible value of the error ε, based on an appropriate
criterion, implies Nλmin

and, consequently, values of the grid
spacing h and time step Δt.

Frequency–wavenumber domain view
Consider the following definitions of the Fourier and inverse
Fourier transforms:

EQ-TARGET;temp:intralink-;df2;53;497

˜̂φ�k;ω� � F t→ω;z→kfφ�z; t�g

≡
Z

∞

−∞

�Z
∞

−∞
φ�z; t� exp�−iωt�dt

�
exp�ikz�dz

≡
Z

∞

−∞
�φ̂�z;ω�� exp�ikz�dz

φ�z; t� � F −1
ω→t;k→zf ˜̂φ�k;ω�g

≡
1
2π

Z
∞

−∞

�
1
2π

Z
∞

−∞

˜̂φ�k;ω� exp�iωt�dω
�
exp�−ikz�dk

≡
1
2π

Z
∞

−∞
�φ̃�k; t�� exp�−ikz�dk: �2�

Here, k and ω mean wavenumber and angular frequency,
respectively. Application of F t→ω;z→k to equation (1) gives,

EQ-TARGET;temp:intralink-;df3;53;301 − ωρ ˜̂v�k;ω� � k ˜̂σ�k;ω�;−ωC ˜̂σ�k;ω� � k ˜̂v�k;ω�: �3�

We consider a continuum (that is, not a grid of discrete points
or a mesh of elements). However, having in mind an FD scheme
solving equation (1), we will look at the equations from the per-
spective of the FD discretization. A discretization necessarily
implies limitations in the frequency and wavenumber domains.

We can always choose a source-time function with spec-
trum limited to ω < ωmax. Therefore, in our analysis we
may restrict to F z→k and consider VS equations in the follow-
ing form instead of equation (3):

EQ-TARGET;temp:intralink-;df4;53;145ρ
∂ṽ�k; t�

∂t
� −ikσ̃�k; t�;C ∂σ̃�k; t�

∂t
� −ikṽ�k; t�: �4�

Now, we need an elementary but important consideration.
Assume v = 0 and σ � 0 at t = 0, that is, prior activation of
the wavefield source. Then the source limits wavefield to

frequencies ω < ωmax. This and the wave speed c imply the
minimum wavelength λmin � 2πc=ωmax and thus the maxi-
mum wavenumber kN � 2π=λmin. Next, consider a spatial dis-
cretization. The Nyquist spatial sampling admits the maximum
grid spacing h � λmin=2 and thus kN � π=h. Consequently,
the wavenumber spectrum of the simulated wavefield is all
the time(!) limited to k ∈ h−kN ; kNi.

There are two immediate consequences:

1. We have to apply a band-limited inverse Fourier transform
to equation (4):

EQ-TARGET;temp:intralink-;df5;320;602

F −1
k→zjkN−kN

�
ρ
∂ṽ�k; t�

∂t

�
� F −1

k→zjkN−kN f−ikσ̃�k; t�g

F −1
k→zjkN−kN

�
C
∂σ̃�k; t�

∂t

�
� F −1

k→zjkN−kN f−ikṽ�k; t�g: �5�

2. For the left sides of equation (5), we can write,

EQ-TARGET;temp:intralink-;df6;320;510

F −1
k→zjkN−kN

�
ρ
∂ṽ�k;t�
∂t

�
�ρF −1

k→zj∞−∞
�
∂ṽ�k;t�
∂t

�
�ρ

∂v�z;t�
∂t

F −1
k→zjkN−kN

�
C
∂σ̃�k;t�

∂t

�
�CF −1

k→zj∞−∞
�
∂σ̃�k;t�

∂t

�
�C

∂σ�z;t�
∂t

: �6�

Consider the right sides of equation (5). The bands-limited
inverse Fourier transform is to be applied to the spectral prod-
uct of −ik and σ̃�k; t� or ṽ�k; t�. We know from the convolution
theorem that an inverse Fourier transform of a product of two
spectra is equal to a convolution of inverse Fourier transforms
of individual spectra. The question is whether this is valid also
in the range of k ∈ h−kN ; kNi. In Appendix A, we show that for
φ̃1�k� and φ̃2�k� equal to zero outside h−kmax; kmaxi,
EQ-TARGET;temp:intralink-;df7;320;327

F −1
k→zjkmax

−kmax
fφ̃1�k; t�φ̃2�k; t�g � F −1

k→zjkmax
−kmax

fφ̃1�k; t�g�z

F −1
z→kjkmax

−kmax
fφ̃2�k; t�g: �7�

Here, z above * indicates convolution in the spatial domain.
Since

EQ-TARGET;temp:intralink-;df8;320;237F −1
k→zjkN−kN f−ikg �

1
hz

cos

�
πz
h

�
−

1
πz2

sin

�
πz
h

�
; �8�

and, based on the consideration preceding equations (5) and (6),

EQ-TARGET;temp:intralink-;df9;320;184F−1
k→zjkN−kN fφ̃�k; t�g � φ�z; t�;φ ∈ fσ; vg; �9�

the application of the k ∈ h−kN ; kNi band-limited inverse
Fourier transform to equation (4) yields,
EQ-TARGET;temp:intralink-;df10;320;118

ρ
∂v�z; t�
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�

�
1
hz

cos

�
πz
h

�
−

1
πz2

sin

�
πz
h

��
�z σ�z; t�

C
∂σ�z; t�

∂t
�

�
1
hz

cos

�
πz
h

�
−

1
πz2

sin�πz
h

��
�z v�z; t�: �10�
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This equation is the k ∈ h−kN ; kNi band-limited version of
the original equation (1). The function in convolution (deriva-
tive of function sinc) is illustrated in Figure 1.

Let us observe that there is an alternative way of reaching
equation (10). The right sides of equation (5) can be treated as
follows. Because σ̃�k; t� and ṽ�k; t� are band limited within
h−kN ; kNi, as explained earlier, it is possible to replace the
band-limited integration by the ordinary inverse Fourier trans-
form and ik by ikΠ�k=kN�, in which Π is the standard centered
(unit-width) boxcar function. The inverse Fourier transform of
ikΠ�k=kN� is the derivative of a sinc function.

The first lesson from the wavenumber-domain view
Assuming the maximum wavefield frequency ωmax, due to
source spectrum, and the Nyquist wavenumber kN � π=h,
due to grid spacing h, we have transformed equation (1) to
(10). Equations are valid for unlimited ranges of time, space,
frequency, and wavenumber in an unbounded homogeneous
elastic medium. Equation (1) is k ∈ h−kN ; kNi band-limited
in the wavenumber domain. The spatial derivatives of the par-
ticle velocity and stress are replaced by continuous spatial con-
volution integrals for z ∈ �−∞; ∞�.

Because the unbounded computational domain must
be replaced by a finite spatial grid, the continuous spatial
convolution integrals for z ∈ �−∞; ∞� must be approxi-
mated by discrete convolution sums within a finite range
of z.

The most important aspect is that the FD-simulated wave-
field in a grid model of an unbounded homogeneous medium
can be, in principle, accurate up to the Nyquist wavenum-
ber kN .

1D PROBLEM IN TWO HOMOGENEOUS HALF-
SPACES
Consider a model of two homogeneous half-spaces, labeled −
and � for z < zMI and z > zMI, respectively, with a welded
material interface at z � zMI. Material parameters are discon-
tinuous at the material interface. The boundary conditions at
the material interface are continuity of the particle velocity v
and continuity of stress σ. Spatial derivatives ∂v=∂z and ∂σ=∂z
are discontinuous at the material interface.

Equations in the time–space domain
Velocity–stress equations inside half-spaces. With an
obvious abbreviated notation, we may write the VS equations
in the half-spaces as,

EQ-TARGET;temp:intralink-;df11;308;692ρ−
∂v�z; t�

∂t
� ∂σ�z; t�−

∂z
; ρ�

∂v�z; t�
∂t

� ∂σ�z; t��
∂z

; �11�

EQ-TARGET;temp:intralink-;df12;308;646C− ∂σ�z; t�
∂t

� ∂v�z; t�−
∂z

;C� ∂σ�z; t�
∂t

� ∂v�z; t��
∂z

: �12�

Velocity–stress equations at the material interface. To
find VS equations at the material interface, we need to combine
equations (11) and (12), and the boundary conditions at the
material interface. In the equations of motion (equation 11),
we account for the continuity of temporal derivatives of the
particle velocity and arithmetically average discontinuous spa-
tial derivatives of stress. This implies that also densities are
arithmetically averaged at the material interface. In the constit-
utive equation (12), we account for the continuity of temporal
derivatives of stress and arithmetically average discontinuous
spatial derivatives of the particle velocity. This implies that also
compliances are arithmetically averaged at the material inter-
face. Thus, we have,

EQ-TARGET;temp:intralink-;df13;308;419hρiz ∂v
∂t

�
	
∂σ

∂z



z
; hCiz ∂σ

∂t
�

	
∂v
∂z



z
: �13�

Here, hiz indicates the arithmetic averaging at the material
interface:

EQ-TARGET;temp:intralink-;df14;308;329

	
∂φ
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z
:�1
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�
∂φ

∂z

����
z�z−MI

�∂φ

∂z

����
z�z�MI

�
�∂φ

∂z

����
z�zMI

;φ∈fv;σg; �14�

EQ-TARGET;temp:intralink-;df15;308;275hpiz � 1
2
�p− � p�� � pjz�zMI

; p ∈ fρ;Cg: �15�

Let us underline: though equation (13) is valid at the
material interface, importantly, apart from the averaging, they
have the same forms as the equations inside the half-spaces.

Velocity–stress equations for the entire model: A
heterogeneous formulation. Equation (13) can be also
considered equations valid for the entire model. This is because
(a) at any spatial position inside the half-spaces the averages
give correct local values of the material parameters and field
variables, and (b) at the material interface they properly aver-
age both the material parameters and spatial derivatives.

Equation (13) can be specified for the entire model of the
two homogeneous half-spaces as,

Figure 1. Illustration of the spatial function in convolutions in equation (10).
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Equations (10) are
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in which Heaviside unit step function is assumed as,

EQ-TARGET;temp:intralink-;df17;53;665H�z� � 0; z < 0 � 1
2
; z � 0 � 1; z > 0: �17�

Wavenumber-domain view
Spatially sampled terms. In a grid and in an FD scheme, all
material parameters and field variables are individually spa-
tially sampled. Instead of ρ�z�, a(z,t), and σ�z; t�, consider
functions spatially sampled using the shah (or Dirac comb)
sampling function with period equal to the grid spacing h,

EQ-TARGET;temp:intralink-;df18;53;536δ�h��z� :�
X∞
n�−∞

δ�z − nh� : �18�

Fourier transform of the spatially sampled density is,

EQ-TARGET;temp:intralink-;df19;53;469

F z→k

�X∞
n�−∞

δ�z − nh�ρ�z�
�
�

�
1
h

X∞
n�−∞

δ�k − n2kN�
�
�k ρ̃�k� �

� 1
h

X∞
n�−∞

ρ̃�k − n2kN� �: ρ̃�2kN ��k�: �19�

Function ρ̃�2kN ��k� is a 2kN-periodic repetition of the Fourier
spectrum ρ̃�k�. Since ρ̃�k� is nonzero in �−∞;∞�, ρ̃�2kN ��k� is
aliased in any interval �k0; k0 � 2kN �, in which k0 is an arbitrary
real number. To avoid the aliasing, we must band-limit ρ̃�k� in
�−kN ; kN �. Let us denote the band-limited function as ρ̃kN �k�
and its periodic repetition as ρ̃�2kN �kN

�k�:

EQ-TARGET;temp:intralink-;df20;53;302

1
h

X∞
n�−∞

ρ̃kN �k − n2kN� �: ρ̃�2kN �kN
�k�: �20�

Analogously, for the spatially sampled acceleration, we
have,

EQ-TARGET;temp:intralink-;df21;53;223ã�2kN ��k� :� 1
h

X∞
n�−∞

ã�k − n2kN�; �21�

and its band-limited version will be referred to as ã�2kN �kN
�k�. We

recall that the wavefield function ã�k� is implicitly band limited
(as explained in the Frequency–Wavenumber Domain View
section). The spatially sampled stress is,

EQ-TARGET;temp:intralink-;df22;53;120σ̃�2kN ��k� :� 1
h

X∞
n�−∞

σ̃�k − n2kN�; �22�

and its band-limited version is σ̃�2kN �kN
�k�.

Equations with spatially sampled terms. Because equa-
tion (16) has the same structure, we can explicitly address only
one of them. Consider the first of the equations. Omitting the
symbol of averaging on the right side, we may write,

EQ-TARGET;temp:intralink-;df23;320;692ρ�z�a�z; t� � ∂σ�z; t�
∂z

: �23�

Consider a shah-sampling function applied to the equation:

EQ-TARGET;temp:intralink-;df24;320;626
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δ�z − nh�ρ�z�a�z; t� �
X∞
n�−∞

δ�z − nh� ∂σ�z; t�
∂z

: �24�

Apply the Fourier transform to the left side of the preceding
equation:

EQ-TARGET;temp:intralink-;df25;320;535F z→k

�X∞
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�
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� ρ̃�2kN ��k� �k ã�k�: �25�

Because ã�k� is band limited, the latter convolution can be
written as a periodic convolution:

EQ-TARGET;temp:intralink-;df26;320;405ρ̃�2kN ��k� �k;�2kN � ã�2kN �kN
�k� :�

Z
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−kN

ρ̃�2kN ��k − k′�ã�2kN �kN
�k′�dk′:

�26�

To avoid aliasing of density, we have to replace ρ̃�2kN � by its
band-limited version:

EQ-TARGET;temp:intralink-;df27;320;314ρ̃�2kN �kN
�k� �k; �2kN � ã�2kN �kN

�k�: �27�

This is the periodic convolution of two 2kN-periodic func-
tions in the wavenumber domain. The resulting convolution is
therefore also a 2kN-periodic function. Since both ρ̃kN �k� and
ãkN �k� are �−kN ; kN � band-limited, the convolution is not
aliased in �−kN ; kN �.

We now transform the right side of equation (24) to the
wavenumber domain:

EQ-TARGET;temp:intralink-;df28;320;185F z→k

�X∞
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δ�k−n2kN���k ikσ̃�k;t�:

�28�

Let us comment on term ikσ̃�k; t�. It is a Fourier transform
of the spatial derivative of σ�z; t�: discontinuity of the spatial
derivative at the material interface does not affect the Fourier-
transform integral.
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The right side of equation (28) is a 2kN-periodic repetition
of ikσ̃�k; t�. Denote

EQ-TARGET;temp:intralink-;df29;41;718s̃�k; t� :� d̃�k�σ̃�k; t�; d̃�k� :� ik: �29�

Then, the right side of equation (28) can be written as
s̃�2kN ��k; t�. Function s̃�2kN ��k; t� is a 2kN-periodic function.
To avoid aliasing, function s̃�k; t� must be band limited. As
explained earlier, σ̃�k; t� is implicitly band limited. We, how-
ever, must limit d̃�k�. We have already applied such limitation
in the Frequency–Wavenumber Domain View section (equa-
tion 8). Denoting the band-limited d̃�k� as d̃kN �k�, we can write
a wavenumber version of equation (23) as,

EQ-TARGET;temp:intralink-;df30;41;574ρ̃�2kN �kN
�k� �k;�2kN � ã�2kN �kN

�k� � d̃�2kN �kN
�k� σ̃�2kN �kN

�k; t�: �30�

Return to the space domain. In this stage, we can apply an
inverse Fourier transform to equation (30) to return to the
space domain and our model of two half-spaces. Recall the
density distribution:

EQ-TARGET;temp:intralink-;df31;41;471ρ−H�zMI − z� � ρ�H�z − zMI�: �31�

The Fourier transform in the wavenumber domain is,
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�
πδ�−k� � exp�ikzMI�

ik

�

� ρ�
�
πδ�k� − exp�ikzMI�

ik

�
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The band-limited Fourier transform is,
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with

EQ-TARGET;temp:intralink-;df34;41;223w̃�k� � Π�k=kN� � 1 ; k ∈ h−kN ; kNi
0 ; k ∉ h−kN ; kNi : �34�

The band-limited inverse Fourier transform of relation gives
the band-limited density distribution in the space domain:
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π
Si�kN�z − zMI��; �35�

in which

EQ-TARGET;temp:intralink-;df36;41;93Si�kN�z − zMI�� :�
Z

kN �z−zMI�

0

sin u
u

du: �36�

Because the factors in equation (30) are 2kN periodic, ρkN �z�
must be spatially sampled in the space-domain equation:
ρkN �zn� with zn representing discrete positions.

Eventually, equation (30) and an analogous one for the sec-
ond of equation (16) are transformed to the following equa-
tions:
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The spatial coordinate zn indicates that the field variables
and material parameters relate to discrete spatial positions
equidistantly spaced with the grid spacing h.

Equation (37) is equation for spatially sampled field varia-
bles and material parameters. The equations, and thus the wave
propagation in the spatial grid, are not affected by wavenum-
bers larger than kN because in the wavenumber domain the
functions are 2kN-periodic.

Figure 2 shows the band-limited distribution of the compli-
ance in the second of equation (37). For comparison, the figure
also shows a compliance corresponding to the band-limited
shear modulus.

The second lesson from the wavenumber-domain
view
Recall that equation (16) is valid for unlimited ranges of time,
space, frequency, and wavenumber for the model of two homo-
geneous half-spaces. The spatial derivatives of the particle
velocity and stress on the right sides of equation (16) are dis-
continuous at the material interface. Equation (37) is the k ∈
h−kN ; kNi band-limited version of equation (16) for spatially
sampled functions.

The discontinuous spatial derivatives at the material inter-
face are replaced by continuous spatial convolutions. This
means that the wavenumber band limitation removes discon-
tinuities of the spatial derivatives of the particle velocity and
stress at the material interface. Consequently, FD operators
properly approximating the spatial convolutions can be
applied across the material interface.

The heterogeneity of medium and the k ∈ h−kN ; kNi band
limitation of the equations have the important implication for
an FD modeling: The grid representation of the heterogeneous
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medium (generally heterogeneous, not necessarily only a
medium with a single material interface) must be limited up
to the Nyquist frequency kN .

The other fundamental implication is that the material
heterogeneity is represented only by the left sides of
equation (13).

Consider another important aspect of the wavenumber-
domain view: the wavenumber band limitation and its conse-
quences are independent of choice of type of averaging: strictly
mathematically, the arithmetic averaging is a reasonable but
not an unambiguous choice. This also means that the value
of the Heaviside function at z = 0 could remain undefined.
However, the structure of the heterogeneous formulation (that
is the structure of averaging) must be that in equation (13).

2D SH PROBLEM IN TWO HOMOGENEOUS HALF-
SPACES
In this section, we consider a 2D SH problem which, in general,
is described by the following VS formulation:

EQ-TARGET;temp:intralink-;df38;320;575
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� ∂v�x; z; t�

∂z
: �38�

Here, x and z are the horizontal and vertical coordinate
axes, respectively, v is the particle velocity perpendicular to
the vertical xz plane, σxy and σyz are shear stress components,
ρ is density, and Cμ is compliance related to shear modulus μ
as Cμ � 1=μ.

We consider the same model as in the 1D problem: two
homogeneous half-spaces, labeled − and � for z < zMI and
z > zMI, respectively, with a weldedmaterial interface at z � zMI.
Material parameters are discontinuous at the material interface.

The particle velocity v, stress component σyz , and spatial
derivative ∂v=∂x are continuous at the material interface. The
stress component σxy, and spatial derivatives ∂v=∂z, ∂σxy=∂x,
and ∂σyz=∂z are discontinuous at the material interface.

Equations in the time–space domain
Velocity–stress equations inside half-spaces. With an
obvious abbreviated notation, we may write the VS equations
in the half-spaces, omitting the independent variables for brevity,
as,
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Velocity–stress equations at the material interface. In
the equations of motion (equation 39), we arithmetically aver-
age discontinuous spatial derivatives of stress components at

Figure 2. Illustration of the band-limited compliance distribution (BL C) and
the true Heaviside distribution. A compliance corresponding to the band-
limited shear modulus (BL μ) is also shown. It is obvious that the band-
limited shear modulus does not give the same parameterization.
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the material interface. Consequently, also densities are arith-
metically averaged at the material interface. In the constitutive
relations for σxy, we arithmetically average temporal deriva-
tives of σxy . Therefore, we obtain arithmetic averaging of shear
moduli. In the constitutive relations for σyz , we arithmetically
average spatial derivatives of v. Therefore, we obtain arithmetic
averaging of compliances. Eventually, we obtain the following
equations for the material interface:
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As we mentioned in the Elemental Consideration on a
Material Interface in an FDGrid section, this is the proper struc-
ture of the heterogenous formulation consistent with principles
explained by Backus (1962). Therefore, in view of the sub-
sequent application of the Fourier transform to the wavenumber
domain, we cannot use a formal alternative for the second equa-
tion in equation (41), that is, we cannot rewrite it as,
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in which
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C�
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�
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is the harmonic average of compliances. Equation (42) has a
product of two discontinuous quantities on the lhs.

Velocity–stress equations for the entire model: A
heterogeneous formulation. Equations can be also con-
sidered to be equations valid for the entire model—for the rea-
sons explained in the 1D Problem in Two Homogeneous Half-
Spaces section.

Importantly, equation (38) can be also considered to be a
suitable and mathematically correct heterogeneous formulation
for the entire model, if we properly define values of material
parameters and spatial derivatives at the material interface.

Equation (41) can be specified for the entire model of the
two homogeneous half-spaces:
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Wavenumber-domain view
Comparing equation (44) with (16), we see that we have a new
type of term on the right side of the second of equation (44).
Thus, we must address explicitly this term. For brevity, let us
write it as,

EQ-TARGET;temp:intralink-;df45;308;679μ�z� ∂v�x; z; t�
∂x

: �45�

Because the wavefield is 2D, we must apply sampling in
both x and z directions.

An application of the Fourier transform F x→kx ;z→kz to the
spatially sampled shear modulus gives,
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Function μ̃�2kN ;2kN ��kx; kz� is a 2kN-periodic repetition of the
Fourier spectrum μ̃�kx; kz� in both kx and kz . Since μ̃�kz� is non-
zero in the entire unlimited kz range, μ̃�2kN ;2kN ��kx; kz� is aliased
for kz ∈ �k0; k0 � 2kN �, in which k0 is an arbitrary real number.
To avoid the aliasing, wemust band-limit μ̃�kz� in kz ∈ �−kN ; kN �.
Let us denote the band-limited function as μ̃kN �kz� and the peri-
odic repetition defined by as μ̃�2kN ;2kN �kN

�kx; kz�:
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An application of the Fourier transform F x→kx ;z→kz to the
second factor in equation (45) with the spatially sampled par-
ticle velocity yields,
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Let

EQ-TARGET;temp:intralink-;df49;308;210d̃�kx� :� ikx; �49�

EQ-TARGET;temp:intralink-;df50;308;170q̃�kx ; kz ; t� :� d̃�kx�ṽ�kx; kz ; t�: �50�

Equation (48) can be then written as q̃�2kN ;2kN ��kx; kz ; t�. It is
2kN-periodic in both kx and kz . To avoid aliasing, q̃�kx; kz ; t�
must be band limited. As already explained, we do not need to
explicitly band limit ṽ�kx; kz ; t�. We, however, must limit
d̃�kx�—as in the Frequency–Wavenumber Domain View
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section. Denoting the band-limited d̃�kx� as d̃kN �kx�, we can
write a wavenumber version of equation (45) as,
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This is the periodic convolution of two periodic functions
analogous to convolution, as explained in the Wavenumber-
Domain View section. The second equation of equation (44)
can be then written as,
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Return to the space domain. In this stage, we can apply an
inverse Fourier transform to equation (44) to return to the space
domain and our model of two half-spaces. Let p ∈ fρ; μ;Cμg and
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The Fourier transform in the wavenumber domain is,
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The band-limited Fourier transform is,
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in which
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The band-limited inverse Fourier transform of relation
(equation 55) is,
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As explained in the Wavenumber-Domain View section,
pkN �x; z� must be spatially sampled in the space-domain
equation: pkN �xm; zn� with xm and zn representing discrete
positions:
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Eventually, equation (44) is transformed to the following
equation:
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Here,
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� 1
π2

�
1

hΔznMI
cos�kNΔznMI� −

1
πΔz2nMI

sin�kNΔznMI�
�
;

�60�

in which

EQ-TARGET;temp:intralink-;df61;320;431ΔznMI :� zn − zMI: �61�

Equation (59) is equation for spatially sampled field
variables and material parameters. The equations, and thus
the wave propagation in the spatial grid, are not affected by
wavenumbers larger than kN because in the wavenumber
domain the functions are 2kN-periodic and h−kN ; kNi band
limited. These equations are to be compared with
equation (44).

The third lesson from the wavenumber-domain view
We have transformed the original equation (44) valid for
unlimited ranges of time, space, frequency, and wavenumber
to the ki ∈ h−kN ; kNi; i ∈ fx; zg band-limited equation (59) for
spatially sampled functions.

In addition to the lesson formulated in The Second Lesson
from the Wavenumber-Domain View section, the investiga-
tion of the 2D SH problem has brought another finding. The
second and third of equation (59) are constitutive relations of
an anisotropic medium. The true physical model for the 2D SH
problem is isotropic, being described just by the shear modulus
μ. It is clear from equation (41) that the averaging implies two
material parameters needed for incorporating a simple hori-
zontal planar interface between two homogeneous half-spaces:
hμiz and hCμiz . The anisotropy of the effective wavenumber
band-limited medium is illustrated in Figure 3 using Thomsen
anisotropic parameter for the shear-wave speed ratios between
the lower and upper half-spaces.
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Is the latter consequence related to averaging or wavenumber
band limitation? As explained in the Elemental Consideration
on a Material Interface in an FD Grid section, these two aspects
cannot be considered independent. Just opposite. The wave-
number limitation must be applied to the heterogeneous formu-
lation which is determined by implementation of the boundary
conditions and is consistent with principles of averaging
(Backus, 1962). Both the heterogeneous formulation and wave-
number band limitation are the inevitable consequences of
spatial discretization.

Let us add two comments related to the approaches by
Mittet (2017) and Koene et al. (2022).

A dipping material interface in 2D P–SV problem is
represented by Mittet (2017) using a 1D band-limited
Heaviside function applied to compliance separately along
grid lines in the one Cartesian direction and then in the
other. Because Mittet (2017) applies the band-limited rep-
resentation of the arithmetic averaging solely to the compli-
ance, his approach is correct only in case of a plane wave
propagating in the direction perpendicular to the material
interface.

Koene et al. (2022) apply a 1D band-limited Heaviside func-
tion to compliance in the vertical Cartesian direction in case of
the dipping interface. Therefore, their approach is correct only
in case of a plane wave propagating in the vertical direction and
horizontal material interface.

3D PROBLEM IN TWO HOMOGENEOUS
HALF-SPACES
Equations in the time–space domain
Assuming all field variables being functions of spatial coordinates
and time, and material parameters being functions of spatial
coordinates, a 3D wavefield is described by equations of motion:

EQ-TARGET;temp:intralink-;df62;308;238ρ
∂vi
∂t

� ∂σ ij
∂xj

; i; j; k ∈ f1; 2; 3g; �62�

and constitutive relations,

EQ-TARGET;temp:intralink-;df63;308;172

∂σ ij
∂t

� λ
∂εkk
∂t

δij � 2μ
∂εij
∂t

; �63�

or, alternatively,

EQ-TARGET;temp:intralink-;df64;308;107

∂σ ij
∂t

� λ
∂vk
∂xk

δij � μ

�
∂vi
∂xj

� ∂vj
∂xi

�
; �64�

(a) (b)

Figure 3. Illustration of anisotropy of the effective medium: Thomsen aniso-
tropic parameter γ quantifying the level of anisotropy (a) for the range
[0.1,10] of the shear-wave speed ratios between the lower and upper half-
spaces and (b) for two values.

Volume 113 Number 1 February 2023 www.bssaonline.org Bulletin of the Seismological Society of America • 291

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/113/1/281/5770691/bssa-2022133.1.pdf
by 14217 
on 22 February 2023



since

EQ-TARGET;temp:intralink-;df65;53;731

∂εij
∂t

� 1
2

�
∂vi
∂xj

� ∂vj
∂xi

�
: �65�

Here, λ is a Lamé parameter, εij is the strain component, and
δij is Kronecker symbol. Other symbols have been already defined.

We consider the same model of two homogeneous half-
spaces, labeled − and � for z < zMI and z > zMI, respectively,
with a welded material interface at z � zMI. Material param-
eters are discontinuous at the material interface.

Stress components σzx; σzy; σzz and strain components
εxx; εyy; εxy are continuous at the material interface. Stress
components σxx ; σyy; σxy and strain components εzx; εzy; εzz
are discontinuous at the material interface.

Equations inside half-spaces. We will omit here equations
of motion for individual half-spaces because they are analo-
gous to those in the 2D SH problem. In the following, we
directly write equations for the material interface and the entire
model. We must address, however, the constitutive relations.
Inside half-spaces, we can write,

EQ-TARGET;temp:intralink-;df66;53;459

σ−xx � M−εxx � λ−εyy � λ−ε−zz
σ�xx � M�εxx � λ�εyy � λ�ε�zz

; �66�

EQ-TARGET;temp:intralink-;df67;53;415

σ−yy � λ−εxx �M−εyy � λ−ε−zz
σ�yy � λ�εxx �M�εyy � λ�ε�zz

; �67�

EQ-TARGET;temp:intralink-;df68;53;371

σzz � λ−εxx � λ−εyy �M−ε−zz
σzz � λ�εxx � λ�εyy �M�ε�zz

; �68�

EQ-TARGET;temp:intralink-;df69;53;328

σ−xy � 2μ−εxy
σ�xy � 2μ�εxy

; �69�

EQ-TARGET;temp:intralink-;df70;53;284

σyz � 2μ−ε−yz
σyz � 2μ�ε�yz

; �70�

EQ-TARGET;temp:intralink-;df71;53;242σzx � 2μ−ε−zxσzx � 2μ�ε�zx: �71�

Stress components at the material interface. To account
for the boundary conditions at the material interface, we arith-
metically average discontinuous stress and strain components.
Based on derivation in Appendix B, we obtain the following
relations for the normal stress components at the material
interface:

EQ-TARGET;temp:intralink-;df72;53;124hσxxiz � hΘizεxx � hPizεyy � hΓizσzzhσyyiz

� hPizεxx � hΘizεyy � hΓizσzzhCMizσzz
� hΓizεxx � hΓizεyy � hεzziz : �72�

For the shear stress components, we easily obtain,

EQ-TARGET;temp:intralink-;df73;320;731hσxyiz � 2hμizεxyhCμizσyz � 2hεyzizhCμizσzx � 2hεzxiz : �73�

Coefficients are defined as,

EQ-TARGET;temp:intralink-;df74;320;666

M :� λ� 2μ; Γ :� λ

M
;CM :� 1

M
;Cμ :�

1
μ

Θ :� M − λΓ � M −
λ2

M
;P :� λ − λΓ � λ −

λ2

M
: �74�

Equations at the material interface and in the entire
model. Similarly to the previous 1D and 2D problems, we
can write equations valid at the material interface and also
in the entire model in the velocity–stress formulation:

EQ-TARGET;temp:intralink-;df75;320;523

hρiz ∂vx
∂t �

	
∂σxx
∂x



z
�

	
∂σxy
∂y



z
�

	
∂σxz
∂z



z

hρiz ∂vy
∂t �

	
∂σyy
∂y



z
�

	
∂σyz
∂z



z
�

	
∂σyx
∂x



z

hρiz ∂vz
∂t �

	
∂σzz
∂z



z
�

	
∂σzx
∂x



z
�

	
∂σzy
∂y



z

; �75�

EQ-TARGET;temp:intralink-;df76;320;409

∂
∂t hσxxiz � hΘiz ∂vx

∂x � hPiz ∂vy
∂y � hΓiz ∂σzz

∂t

∂
∂t hσyyiz � hPiz ∂vx

∂x � hΘiz ∂vy
∂y � hΓiz ∂σzz

∂t

hCMiz ∂σzz
∂t � hΓiz ∂vx

∂x � hΓiz ∂vy
∂y �

	
∂vz
∂z



z
; �76�

EQ-TARGET;temp:intralink-;df77;320;311 	
∂σxy
∂t



z
� hμiz

�
∂vx
∂y

� ∂vy
∂x

�

hCμiz
∂σyz
∂t

�
	
∂vy
∂z

� ∂vz
∂y



z

hCμiz
∂σzx
∂t

�
	
∂vz
∂x

� ∂vx
∂z



z
: �77�

Let

EQ-TARGET;temp:intralink-;df78;320;197p ∈ fρ; μ;Cμ;CM ;Θ;P; Γg: �78�

Similarly to the previous 1D and 2D problems, we can
specify equations (75)–(77) for the entire model of two half-
spaces by considering the following expressions for the
material parameters in the entire model:

EQ-TARGET;temp:intralink-;df79;320;94hpiz � p−H�zMI − z� � p�H�z − zMI�: �79�
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Transformed band-limited equations for spatially
sampled functions
Comparing equations (44) and (75)–(77), we can see that the
equations for the 3D problem do not include new type of term.
This allows for generalizing the wavenumber-domain analysis
in the 2D SH Problem in Two Homogeneous Half-Spaces sec-
tion to the 3D problem and writing the transformed equations.
Omitting discrete spatial positions and time as independent
variables �xm; yj; zn; t�, we can write the equations in the fol-
lowing form:

EQ-TARGET;temp:intralink-;df80;41;614ρkN
∂vx
∂t

� Dx �x σxx � Dy �y σxy � Dz �z σxzρkN
∂vy
∂t

� Dy �y σyy � Dz �z σyz � Dx �x σyxρkN
∂vz
∂t

� Dz �z σzz � Dx �x σzx � Dy �y σzy; �80�

EQ-TARGET;temp:intralink-;df81;41;517

∂σxx
∂t

�ΘkN �Dx�x vx��PkN �Dy�y vy��ΓkN
∂σzz
∂t

∂σyy
∂t

�PkN �Dx�x vx��ΘkN �Dy�y vy��ΓkN
∂σzz
∂t

CMkN

∂σzz
∂t

�ΓkN �Dx�x vx��ΓkN �Dy�y vy��Dz�z vz ; �81�

EQ-TARGET;temp:intralink-;df82;41;414

∂σxy
∂t

� μkN �Dy �y vx � Dx �x vy�

CμkN

∂σyz
∂t

� Dz �z vy � Dy �y vz

CμkN

∂σzx
∂t

� Dx �x vz � Dz �z vx ; �82�

in which Dx�xm� and Dz�zn� are defined by equation (60):

EQ-TARGET;temp:intralink-;df83;41;302Dy�yj� :�
1
π2

�
π

h
1
yj
cos�kNyj� −

1
y2j

sin

�
π

h
yj

��
; �83�

and pkN are defined by for p listed in.

The fourth lesson from the wavenumber-domain
view
We have transformed the original equations (75)–(77) valid for
unlimited ranges of time, space, frequency, and wavenumber to
the ki ∈ h−kN ; kNi; i ∈ fx; y; zg band-limited equations (80)–(82)
for spatially sampled functions. Compared to the previous 2D
SH problem, the 3D wavefield in the same model of two homo-
geneous half-spaces does not provide substantial new insights
related to the wavenumber band limitation.

It is interesting to rearrange constitutive relations to have
temporal derivatives of the stress components on the left sides
expressed solely using particle-velocity components on the
right sides. This is done in Appendix C. The resulting stiffness

matrix has elements that have structures similar to those in the
stiffness matrix for the averaged medium in Kristek et al.
(2017). The obtained effective medium is transversely isotropic
in both cases. The substantial difference is in the wavenumber
band limitation.

CONCLUSIONS
The main conclusions can be summarized as follows:

1. Based on the general elemental considerations and analysis of
equations of motion and constitutive relations for four
canonical model configurations, we demonstrated the follow-
ing: if we want to solve, for example, velocity–stress equations
by a heterogeneous FD scheme, we need (a) a heterogeneous
formulation of the velocity–stress equations and (b) wave-
number band limitation. The heterogeneous formulation
must be consistent with principles of averaging developed
by Backus (1962). The wavenumber band limitation must
be applied to the heterogeneous formulation.

2. We analyzed four canonical problems to identify the basic
aspects of the FD discretization: 1D problem in an unbounded
homogeneous medium, 1D problem in two homogeneous
half-spaces, 2D SH problem in two homogeneous half-spaces,
and 3D problem in two homogeneous half-spaces. Partial
detailed findings and conclusions are formulated in the four
sections on the lessons learned from the investigated problems.

3. In the four problems, we have found the Nyquist-wavenum-
ber band-limited heterogeneous formulations of the veloc-
ity–stress equations. These are the equations that must be
properly discretized by a heterogeneous FD scheme.

4. The wavenumber band limitation replaces spatial derivatives
both in the homogeneous medium and across a material
interface by continuous spatial convolutions. The latter means
that the wavenumber band limitation removes discontinuities
of the spatial derivatives of the particle velocity and stress at
the material interface. This allows for applying proper FD
operators across material interfaces.

5. The heterogeneity of the medium and the Nyquist-wave-
number (kN) band limitation of the equations has the impor-
tant implication for an FDmodeling: The grid representation
of the heterogeneous medium (generally heterogeneous, not
necessarily only a medium with a single material interface)
must be limited up to kN .

6. The averaging and wavenumber band limitation imply
anisotropy of the averaged medium already in the simple
2D SH problem of two homogeneous half-spaces with a
material interface parallel with a coordinate plane (i.e., also
with a grid plane).

7. In developing a heterogeneous FD scheme, the continuous
spatial convolution of an infinite spatial extent must be
properly replaced by a finite-extent discrete convolution.

8. The wavenumber band-limited spatial distribution repre-
senting a material interface has an infinite spatial extent
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and a Gibbs phenomenon. Implementation in the FD
scheme must properly solve both aspects.

9. A case of an oblique planar interface in an unboundedmedium
can be solved using rotation. A nonplanar interface in an
unbounded medium as well as an interface (planar or nonpla-
nar) in a model bounded by a free surface require separate
studies accounting for the findings presented in this article.
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APPENDIX A
Band-limited inverse Fourier transform of a spectral
product
Let,
EQ-TARGET;temp:intralink-;dfa1;320;130

φ̃j�k��F z→kfφj�z�g≡
Z

∞

−∞
φj�z�exp�ikz�dz

φj�z�� F −1
k→zfφ̃j�k�g≡

1
2π

Z
∞

−∞
φ̃j�k�exp�−ikz�dk ; j∈f1;2g:

�A1�
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The inverse Fourier transform of the spectral product is,

EQ-TARGET;temp:intralink-;dfa2;41;731F−1
k→zfφ̃1�k�φ̃2�k�g ≡ F −1

k→zj∞−∞fφ̃1�k�φ̃2�k�g: �A2�

If the spectral product φ̃1�k�φ̃2�k� is equal to zero outside
h−kmax; kmaxi, the integration over �−∞;∞� can be replaced by
integration over h−kmax; kmaxi:
EQ-TARGET;temp:intralink-;dfa3;41;641

F −1
k→zj∞−∞fφ̃1�k�φ̃2�k�g�F−1

k→zjkmax
−kmax

fφ̃1�k�φ̃2�k�g

� 1
2π

Z
kmax

−kmax

Z
∞

−∞
φ1�τ�exp�ikτ�dτ

×
Z

∞

−∞
φ2�ϑ�exp�ikϑ�dϑexp�−ikz�dk: �A3�

Consider now the convolution,

EQ-TARGET;temp:intralink-;dfa4;41;521φ�z� ≡ φ1�z� �z φ2�z� �
Z

∞

−∞
φ1�τ�φ2�z − τ�dτ; �A4�

and the convolution theorem,

EQ-TARGET;temp:intralink-;dfa5;41;458F z→kfφ�z�g ≡ F z→kfφ1�z� �z φ2�z�g � φ̃1�k�φ̃2�k� � φ̃�k�:
�A5�

At the same time, obviously,

EQ-TARGET;temp:intralink-;dfA6;41;392φ�z� � 1
2π

Z
∞

−∞
φ̃�k� exp�−ik z�dk: �A6�

Then,

EQ-TARGET;temp:intralink-;dfa7;41;326

φ�z��φ1�z��zφ1�z�
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2π

Z
∞

−∞
φ̃�k�exp�−ikz�dk� 1

2π

Z
∞
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� 1
2π
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∞

−∞

Z
∞

−∞
φ1�ϑ�exp�ikϑ�dϑ

Z
∞

−∞
φ2�θ�exp�ikθ�dθexp�−ikz�dk:

�A7�

Recalling that φ̃1�k�φ̃2�k� is equal to zero outside
h−kmax; kmaxi,
EQ-TARGET;temp:intralink-;dfa8;41;185

φ1�z� �z φ2�z� �
1
2π

Z
kmax

−kmax

Z
∞

−∞
φ1�ϑ� exp�ikϑ�dϑ

×
Z

∞

−∞
φ2�θ� exp�ikθ�dθ exp�−ik z�dk: �A8�

We know that,

EQ-TARGET;temp:intralink-;dfa9;41;94φ1�z� �z φ2�z� � F−1
k→zfφ̃1�k�g �z F −1

k→zfφ̃2�k�g: �A9�

If we now assume that each of φ̃1�k� and φ̃2�k� is equal to
zero outside h−kmax; kmaxi, we have,

EQ-TARGET;temp:intralink-;dfa10;308;718φ1�z� �z φ2�z� � F −1
k→zfφ̃1�k�g �z F−1

k→zfφ̃2�k�g
� F −1

k→zjkmax
−kmax

fφ̃1�k�g �z F −1
k→zjkmax

−kmax
fφ̃2�k�g:

�A10�

Comparing equations (A3), (A8), and (A10), we obtain,

EQ-TARGET;temp:intralink-;dfa11;308;626

F −1
k→zjkmax

−kmax
fφ̃1�k�φ̃2�k�g

� F −1
k→zjkmax

−kmax
fφ̃1�k�g �z F −1

k→zjkmax
−kmax

fφ̃2�k�g; �A11�

for φ̃1�k� and φ̃2�k� equal to zero outside h−kmax; kmaxi.

APPENDIX B
Averaging procedure applied to normal stress
components
Consider first the continuous stress component σzz . With an
obvious abbreviated notation, we may write for the two half-
spaces:

EQ-TARGET;temp:intralink-;dfb1;308;458

1
M− σzz �

λ−

M− εxx �
λ−

M− εyy � ε−zz

1
M� σzz �

λ�

M� εxx �
λ�

M� εyy � ε�zz : �B1�

Let,

EQ-TARGET;temp:intralink-;dfb2;308;366Γ ≡
λ

M
; CM ≡

1
M

: �B2�

Then,

EQ-TARGET;temp:intralink-;dfb3;308;302C−
Mσzz � Γ−εxx � Γ−εyy � ε−zzC

�
Mσzz � Γ�εxx � Γ�εyy � ε�zz :

�B3�

Averaging the two equations, we obtain,

EQ-TARGET;temp:intralink-;dfb4;308;236hCMizσzz � hΓizεxx � hΓizεyy � hεzziz : �B4�

Continue with σxx for which we may write,

EQ-TARGET;temp:intralink-;dfb5;308;184σ−xx � M−εxx � λ−εyy � λ−ε−zzσ
�
xx � M�εxx � λ�εyy � λ�ε�zz :

�B5�

We need to express ε−zz and ε�zz using continuous field
variables. From equation (B3), we have,

EQ-TARGET;temp:intralink-;dfb6;308;107ε−zz � −Γ−εxx − Γ−εyy � C−
Mσzzε

�
zz � −Γ�εxx − Γ�εyy � C�

Mσzz :

�B6�
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Substitute ε−zz and ε�zz in equation (B5) by the right sides of
equation (B6):

EQ-TARGET;temp:intralink-;dfb7;53;718

σ−xx�M−εxx�λ−εyy−λ
−Γ−εxx−λ

−Γ−εyy�λ−C−
Mσzz

σ�xx�M�εxx�λ�εyy−λ�Γ�εxx−λ�Γ�εyy�λ�C�
Mσzz : �B7�

Considering,

EQ-TARGET;temp:intralink-;dfb8;53;640λCM � λ=M � Γ;Θ ≡M − λΓ;P ≡ λ − λΓ; �B8�

we obtain,

EQ-TARGET;temp:intralink-;dfb9;53;588

σ−xx � Θ−εxx � P−εyy � Γ−σzz

σ�xx � Θ�εxx � P�εyy � Γ�σzz : �B9�

Averaging the two equations, we have,

EQ-TARGET;temp:intralink-;dfb10;53;509hσxxiz � hΘizεxx � hPizεyy � hΓizσzz : �B10�

Eventually, consider σyy :

EQ-TARGET;temp:intralink-;dfb11;53;458σ−yy � λ−εxx �M−εyy � λ−ε−zzσ
�
yy � λ�εxx �M�εyy � λ�ε�zz :

�B11�

Substitute ε−zz and ε�zz in equation (B11) by the right sides of
equation (B6):

EQ-TARGET;temp:intralink-;dfb12;53;368

σ−yy�λ−εxx�M−εyy−λ
−Γ−εxx−λ

−Γ−εyy�λ−C−
Mσzz

σ�yy�λ�εxx�M�εyy−λ�Γ�εxx−λ�Γ�εyy�λ�C�
Mσzz : �B12�

After an easy rearrangement, we obtain,

EQ-TARGET;temp:intralink-;dfb13;53;290σ−yy � P−εxx � Θ−εyy � Γ−σzzσ
�
yy � P�εxx � Θ�εyy � Γ�σzz ;

�B13�

and after averaging the two latter equations, we have,

EQ-TARGET;temp:intralink-;dfb14;53;225hσyyiz � hPizεxx � hΘizεyy � hΓizσzz : �B14�

APPENDIX C
Rearrangement of the wavenumber band-limited
equations in the 3D problem of two homogeneous
half-spaces
Rearrange constitutive relations equations (81) and (82) to
have temporal derivatives of stress components on the left sides
expressed solely using particle-velocity components on the
right sides:

EQ-TARGET;temp:intralink-;dfc1;320;744

∂σxx
∂t

�
�
ΘkN � �ΓkN �2

CMkN

�
�Dx �x vx� �

�
PkN � �ΓkN �2

CMkN

�
�Dy �y vy�

� ΓkN
CMkN

�Dz �z vz�
∂σxx
∂t

�
�
PkN � �ΓkN �2

CMkN

�
�Dx �x vx� �

�
ΘkN � �ΓkN �2

CMkN

�
�Dy �y vy�

� ΓkN
CMkN

�Dz �z vz�
∂σzz
∂t

� ΓkN
CMkN

�Dx �x vx� �
ΓkN
CMkN

�Dy �y vy� �
1

CMkN

�Dz �z vz �;

�C1�
EQ-TARGET;temp:intralink-;dfc2;320;583

∂σxy
∂t

� μkN �Dy �y vx � Dx �x vy�
∂σyz
∂t

� 1
CμkN

�Dz �z vy � Dy �y vz�

∂σzx
∂t

� 1
CμkN

�Dx �x vz � Dz �z vx�: �C2�

Denote
EQ-TARGET;temp:intralink-;dfc3;320;487

∂~σ
∂t

≡
�
∂σxx
∂t

;
∂σyy
∂t

;
∂σzz
∂t

;
∂σxy
∂t

;
∂σyz
∂t

;
∂σzx
∂t

�
T

∂~ε
∂t

≡
�
∂vx
∂x

;
∂vy
∂y

;
∂vz
∂z

;
∂vx
∂y

� ∂vy
∂x

;
∂vy
∂z

� ∂vz
∂y

;
∂vz
∂x

� ∂vx
∂z

�
T
; �C3�

and

EQ-TARGET;temp:intralink-;dfc4;320;404AkN ≡
1

� 1M�kN
;BkN ≡

1
� 1M�kN

�
λ

M

�
kN

CkN ≡ΘkN �
�ΓkN �2
CMkN

�
�
M −

λ2

M

�
kN

�
��

λ

M

�
kN

�
2 1
� 1M�kN

DkN ≡PkN �
�ΓkN �2
CMkN

�
�
λ−

λ2

M

�
kN

�
��

λ

M

�
kN

�
2 1
� 1M�kN

: �C4�

Then, the wavenumber k ∈ h−kN ; kNi band-limited constit-
utive relations can be written as,

EQ-TARGET;temp:intralink-;dfc5;320;280

∂~σ
∂t

jkN � EkN

∂~ε
∂t

jkN ; �C5�

EQ-TARGET;temp:intralink-;dfc6;320;231EkN ≡

CkN DkN BkN 0 0 0
DkN CkN BkN 0 0 0
BkN BkN AkN 0 0 0
0 0 0 μkN 0 0
0 0 0 0 1

CμkN
0

0 0 0 0 0 1
CμkN

2
66666664

3
77777775
: �C6�

Compare this with the corresponding matrix in Kristek et al.
(2017). The matrix elements resemble elements of the stiffness
matrix for the averaged medium in Kristek et al. (2017). The
substantial difference is in the wavenumber band limitation.
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