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PREFACE 
 
I wrote these Lecture Notes on the basis of material I presented during the introductory course 
on the finite-difference method for the undergraduate and graduate students in the Disaster 
Prevention Research Institute, Kyoto University, Japan, in October - December 1997. 

Lecture Notes include only some selected topics of the application of the finite-
difference method to the problems of seismic wave propagation. They are far from being a 
complete introductory course. No way can they replace a theoretical introduction to the finite-
difference method which can be found in the mathematical textbooks; some of them are given 
in References. A reader is strongly recommended to read more about consistency, 
convergence, stability and alternative approaches to constructing finite-difference schemes. 

I hope the Lecture Notes bring together material that is scattered in various journal 
articles. Therefore, they could be useful especially to those students and seismologists who 
are not familiar with the finite-difference method but want to acquire some basic knowledge 
of how the finite-difference method can be used to study seismic wave propagation. 
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PART  A :  INTRODUCTION 
 
 
The Earth’s interior, mainly its upper part, is laterally inhomogeneous with layers and 
blocks of irregular shapes. Since analytical methods do not provide solutions of the equation 
of motion for complex or sufficiently realistic models of the Earth’s interior, computation of 
the seismic wave propagation requires approximate methods. The finite-difference method 
belongs to those that are most frequently used. 
 
 
 
1.  SOLVING  PARTIAL  DIFFERENTIAL  
 EQUATIONS  BY  
 THE  FINITE-DIFFERENCE  METHOD 
 
 
1.1  INTRODUCTION  TO  
 THE  FINITE-DIFFERENCE  METHOD 
 
 
Application of the finite-difference method consists of 
 
a.   Construction of a discrete finite-difference model of the problem: 
 - coverage of the computational region by a grid, 
 - approximation of derivatives by the finite-difference formulae, 
  approximation of functions and  
  approximation of the initial and/or boundary conditions 
  - all at the grid points, 
 - construction of a system of the finite-difference (i.e., algebraic) equations 
 
b.   Analysis of the finite-difference model: 
 - consistency and order of approximation 
 - stability 
 - convergence 
 
c. Numerical computations 
 
 
Grid 
 
Consider domain D D DI B= ∪  where DI  denotes interior and DB  boundary of the do-
main. Let the domain D lie in the four-dimensional space of variables (x, y, z, t). Cover this 
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space by a grid of discrete points 
 

     ( , , , )x y z ti k mA  
 

given by 
 

x x i xi = +0 ∆  ,   y y k yk = +0 ∆  ,   z z zA A= +0 ∆  ,   t t m tm = +0 ∆  , 
 

                 i k, , , , ,A …= ± ±0 1 2 ,. 
            m = 0 1 2, , ,… . 
Here, ∆x, ∆y and ∆z are usually called grid spacings, and ∆t is called time step since t usu-
ally represents time. If x, y and z are Cartesian coordinates, the corresponding spatial grid is 
a rectangular grid.  
 At the grid points a function u x y z t( , , , )  is to be approximated by a grid function 

U x y z ti k m( , , , )A . A value of u x y z ti k m( , , , )A  can be denoted by uik
m
A  while approxima-

tion to uik
m
A  can be denoted by Uik

m
A . 

 A spatial grid that is the most appropriate for the problem under consideration should be 
chosen. In many applications the regular rectangular grid with the grid spacings ∆x = ∆y = = 
∆z = h is a natural and reasonable choice. Other types of grids are used if they better ac-
commodate geometry of the problem (e.g., shapes of material discontinuities) or if they 
simplify finite-difference approximations of derivatives. 
 
 
Approximation of Derivatives 
 
Consider function Φ(x). Taylor’s expansion of the function can be used to derive various 
approximations of the first and higher derivatives of the function. 
 
Taylor’s expansions of the function Φ at x + h and x – h (h can denote a grid spacing ∆x) 
are 

     Φ Φ Φ Φ Φ( ) ( ) ( ) ( ) ( )x h x x h x h x h+ = + ′ + ′′ + ′′′ +
1
2

1
6

2 3 …,  (1.1.1a) 

     Φ Φ Φ Φ Φ( ) ( ) ( ) ( ) ( )x h x x h x h x h− = − ′ + ′′ − ′′′ +
1
2

1
6

2 3 … .  (1.1.1b) 
 
From expansion (1.1.1a) we get 
 

   Φ Φ Φ Φ Φ( ) ( ) ( ) ( ) ( )x h x x h x h x h+ − = ′ + ′′ + ′′′ +
1
2

1
6

2 3 …  , 

         ′ = + − −Φ Φ Φ( ) [ ( ) ( ) ] ( )x
h

x h x O h
1

 
 

and the so-called forward-difference formula 
 

         ′ = + −Φ Φ Φ( ) � [ ( ) ( ) ]x
h

x h x
1

 .          (1.1.2) 
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Similarly, from expansion (1.1.1b) we get 
 

   Φ Φ Φ Φ Φ( ) ( ) ( ) ( ) ( )x x h x h x h x h− − = ′ − ′′ + ′′′ −
1
2

1
6

2 3 …  , 

         ′ = − − +Φ Φ Φ( ) [ ( ) ( ) ] ( )x
h

x x h O h
1

 
 

and the so-called backward-difference formula 
 

          ′ = − −Φ Φ Φ( ) � [ ( ) ( ) ]x
h

x x h
1

 .          (1.1.3) 

 
Both approximations are of the first order since the leading term of the approximation error 
is proportional to h. 
 
Subtracting expansion (1.1.1a) from (1.1.1b) gives 
 

Φ Φ Φ Φ( ) ( ) ( ) ( )x h x h x h x h+ − − = ′ + ′′′ +2
2
6

3 … , 

        ′ = + − − −Φ Φ Φ( ) [ ( ) ( ) ] ( )x
h

x h x h O h
1

2
2  

 

and the so-called central-difference formula 
 

        ′ = + − −Φ Φ Φ( ) � [ ( ) ( ) ]x
h

x h x h
1

2
          (1.1.4) 

 

which is the second-order accurate approximation of the first derivative. 
 
Summing up expansions (1.1.1a) and (1.1.1b) gives the second-order accurate approxima-
tion of the second derivative 
 

         ′′ = + − + −Φ Φ Φ Φ( ) � [ ( ) ( ) ( ) ]x
h

x h x x h
1

22  .        (1.1.5) 
 

Higher-order approximations on a regular grid and approximations on a grid with varying 
grid spacings will be given later. 
 
 
Finite-Difference Scheme 
 
Let f P( )  be a function defined on DI . Let L u( )  be a differential operator. Then 
 

    L u P f P( ( ) ) ( )=  ;  P DI∈        (1.1.6a) 
 

represents a partial differential equation for unknown u(P). 
 
The initial/boundary conditions can be represented by equation 
 

    B u P g P( ( ) ) ( )=  ;  P DB∈  .      (1.1.6b) 
 
Consider problems for which a unique, smooth and bounded solution u exists for any data in 
some class of smooth functions {f, g}. 
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Denote DI

∆  grid points interior to D  and DB
∆  boundary grid points. Let U be a solution of 

the system of the finite-difference equations (or the finite-difference scheme) 
 

    L U f P∆ ( ) ( )=  ;  P DI∈ ∆  ,      (1.1.7a) 

    B U g P∆ ( ) ( )=  ;  P DB∈ ∆  .      (1.1.7b) 
 
Consider the scheme (1.1.7) to be a finite-difference approximation to equations (1.1.6)  
and U a finite-difference approximation to u . 
 It is reasonable to require that U be a close approximation to the solution u at the corre-
sponding grid points for all data that are sufficiently smooth and that U be uniquely defined 
by the scheme (1.1.7). 
 A finite-difference scheme has to be consistent, convergent and stable in order to give  
a reasonable approximation to the solution of the partial differential equation and adjoined 
initial/boundary condition. 
 
 
Properties of a Finite-Difference Scheme 
 
Let Φ(P) be any smooth function in D. For each such a function a local truncation error 
can be defined: 
 

       τ { ( ) } ( ( ) ) ( ( ) )Φ Φ Φ∆P L P L P≡ −  ;       P DI∈ ∆       (1.1.8a) 
and 
         β { ( ) } ( ( ) ) ( ( ) )Φ Φ Φ∆P B P B P≡ −  ;       P DB∈ ∆  .      (1.1.8b) 
 
Then the difference problem (1.1.7) is  consistent  with the problem (1.1.6) if 
 

  τ{ }Φ → 0         (1.1.9a) 
and 
                 β{ }Φ → 0         (1.1.9b) 
 

for  ∆x → 0, ..., ∆t → 0, 
where  stand for appropriate norms. 
 
The difference problem (1.1.7) is said to be a conditionally consistent with the problem 
(1.1.6), if relations (1.1.9) are satisfied only when certain relationship among ∆x, ..., ∆t is 
satisfied. 
 
The difference  solution U is convergent  to the exact solution u if 
 

     u P U P( ) ( )− → 0  ;  P D∈  
 

for ∆x → 0, ..., ∆t → 0. 
 
If the difference solution is convergent for all data in some class of smooth functions  
{f, g}, the corresponding finite-difference scheme is convergent. 
 



 5

A scheme determined by linear difference operators L∆  and B∆  is stable if there a finite 
positive quantity K exists, independent of the grid spacings, such that 
 

        ( )U K L U B U≤ +∆ ∆( ) ( )        (1.1.10) 
 
for all grid functions U on D.  
 
If (1.1.10) is valid for all grid spacings the linear finite-difference scheme is uncondition-
ally stable. If (1.1.10) is valid only for some restricted family of grid spacings in which ∆x, 
..., ∆t may all be made arbitrarily small, the scheme is conditionally stable. 
 
Let us stress that the stability of the finite-difference scheme is a property independent of 
any differential-equation problem. 
 
Finally, we conclude this short review with a very important theorem connecting consis-
tency, stability and convergence of the finite-difference schemes: 
Let L∆  and B∆  be linear difference operators which are stable and consistent with L and B 
on some family of grids in which ∆x, ..., ∆t may be arbitrarily small. Then the difference 
solution U of (1.1.7) is convergent to the solution u of (1.1.6). 
 
We recommend much more reading on the theory of the finite-difference method that can be 
found in the mathematical textbooks, e.g., Forsythe & Wasow (1960), Isaacson & Keller 
(1966), Richtmyer & Morton (1967), Mitchell & Griffith (1980) and Morton & Mayers 
(1994). 
 
 
 
1.2  EXAMPLE : 
 CASE  OF  THE  ONE-DIMENSIONAL  WAVE 
 EQUATION 
 
 
Consider a medium described by density ρ(x) and Lamé’s coefficients µ(x) and λ(x). Fu-
thermore, consider a plane wave propagating in the x-direction. The equation 
 
              ρd E dtt x x= ( )           (1.2.1) 
 
describes either propagation of P-wave if E = +λ µ2  or S-wave if E = µ  and  d  is a corre-
sponding displacement. We used notation 
 

   d
d

ttt =
∂
∂

2

2             and            ( )E d
x

E
d
xx x =









∂
∂

∂
∂

 . 

 
We will follow the example of constructing and investigating the finite-difference scheme 
given by Aki & Richards (1980). 
 
Instead of equation (1.2.1) we can write equivalently two first-order equations 
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    v t x=
1
ρ
τ   ,  τ t xE v=          (1.2.2) 

 
where v d t=  is a particle velocity and τ = E d x  stress. 
 
Denote ρ ρi i x= ( )∆ , E E i xi = ( )∆  and Vi

m  and Ti
m  the finite-difference approximations 

to v v i x m ti
m = ( , )∆ ∆  and τ τi

m i x m t= ( , )∆ ∆ . Approximating v i x m tt ( , )∆ ∆  and 
τ t i x m t( , )∆ ∆  by the forward-difference formula and v i x m tx ( , )∆ ∆  and τx i x m t( , )∆ ∆  by 
the central-difference formula in equations (1.2.2) we get the following finite-difference 
equations: 
 

   ( ) ( )1 1 1
2

1
1 1∆ ∆t

V V
x

T Ti
m

i
m

i
i
m

i
m+

+ −− = −
ρ

 ,      (1.2.3a) 
 

   ( ) ( )1 1
2

1
1 1∆ ∆t

T T E
x

V Vi
m

i
m

i i
m

i
m+

+ −− = −  .      (1.2.3b) 

 
It is easy to check consistency of the scheme (1.2.3) in the homogeneous medium. Check, 
for example, equation (1.2.3a): 
 

   ( ) ( )L
t

v v
xi

m
i
m

i
i
m

i
m

∆ ∆ ∆
= − − −+

+ −
1 1 1

2
1

1 1ρ
τ τ  , 

 

   L v i x m t i x m tt
i

x= −( , ) ( , )∆ ∆ ∆ ∆
1
ρ

τ  . 

 

Substituting Taylor’s expansions instead of vi
m+1 , vi

m , τ i
m
+1  and τ i

m
−1  about ( , )i x m t∆ ∆  in 

L∆  we get 

   L v i x m t i x m t O t O xt
i

x∆ ∆ ∆ ∆ ∆ ∆ ∆= − + +( , ) ( , ) ( ) ( )
1 2
ρ

τ  

and 
       L L O t O x− = − − →∆ ∆ ∆( ) ( )2 0       when     ∆ ∆x t, → 0  . 
 
Similarly we could check consistency of  equation (1.2.3b). 
 The finite-difference scheme given by equations (1.2.3) is consistent with differential 
equations (1.2.2). The scheme is 1st-order accurate in time and 2nd-order accurate in space. 
 
Let us check now stability of the scheme. Assume initial errors in V and T and investigate 
their propagation in the grid. 
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 Let the errors in x i x= ∆  and t m t= ∆  be 
 

      ε ω( ) exp( )T A m t k i xi
m = − +i i∆ ∆  , 

 

     ε ω( ) exp ( )V B m t k i xi
m = − +i i∆ ∆  . 

 
Since the errors satisfy the same equations as the solution itself substitute (1.2.4) into the 
finite-difference equations (1.2.3): 
 

      [ ]B t
t

x
A k x

i
exp ( ) sin− − =i iω

ρ
∆

∆
∆

∆1
2

2  , 

      [ ]A t
E t

x
B k xiexp( ) sin− − =i iω∆

∆
∆

∆1
2

2  . 

 
Eliminating B and A gives 
 

     [ ]exp ( ) (sin )− − = −






iω

ρ
∆

∆
∆

∆t
E t

x
k xi

i
1

2
2

2  , 

      exp ( ) sin− = ±






i iω

ρ
∆

∆
∆

∆t
E t

x
k xi

i
1

1 2

 , 

     exp( ) sin− = ±






 >i iω

ρ
∆

∆
∆

∆t
E t

x
k xi

i
1 1

1 2

 . 

 
It follows from the inequality that ω is complex. This means that the errors grow exponen-
tially with time. The scheme given by equations (1.2.3) is unstable. 
 
Let us try now to approximate vt  and τ t  in (1.2.2) by the central-difference formula. We 
obtain 

       ( ) ( )1
2

1 1
2

1 1
1 1∆ ∆t

V V
x

T Ti
m

i
m

i
i
m

i
m+ −

+ −− = −
ρ

 , 

       ( ) ( )1
2

1
2

1 1
1 1∆ ∆t

T T E
x

V Vi
m

i
m

i i
m

i
m+ −

+ −− = −  . 
 

Substitute the errors (1.2.4) into (1.2.5): 
 

    − =i i2 2B t
t
x

A k x
i

sin sinω
ρ

∆
∆
∆

∆  , 

       − =i i2 2A t
E t

x
B k xisin sinω∆

∆
∆

∆  , 

            (sin ) (sin )ω
ρ

∆
∆
∆

∆t
E t

x
k xi

i

2
2

2=






  , 

             sin sinω
ρ

∆
∆
∆

∆t
E t

x
k xi

i
= ±









1 2

 . 

 

Assume now that 

(1.2.5)

(1.2.4) 
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E t
x

i

iρ






 ≤

1 2

1
∆
∆

. 

Then 
 

      sin ω∆t ≤ 1 
 
and consequently ω is real. This means that the errors (1.2.4) do not grow with time.  
The scheme given by equations (1.2.5) is stable under condition 
 

     ∆
∆

t
x

ci
≤            (1.2.6) 

where 

          c
E

i
i

i
=








ρ

1 2

 . 

 
Condition (1.2.6) is called a stability condition. 
 
Try now to use the central-difference formula over smaller grid distances - ∆x and ∆t in-
stead of 2∆x and 2∆t, respectively. We get first 
 

       ( ) ( )1 1 11 2 1 2
1 2 1 2∆ ∆t

V V
x

T Ti
m

i
m

i
i
m

i
m+ −

+ −− = −
ρ

 .      (1.2.7a) 

 
The approximation leads to the so-called staggered grid: the grid for T is shifted with re-
spect to that for V by ∆x 2  in space and by ∆t 2  in time. 
 
Then equation (1.2.7a) implies 
 

       ( ) ( )1 1
1 2

1
1 2 1 2 1

1 2 1 2

∆ ∆t
T T E

x
V Vi

m
i
m

i i
m

i
m

+
+

+ + +
+ +− = −  .     (1.2.7b) 

 
Ei+1 2  refers to E i x(( ) )+1 2 ∆ . (We want to note here that considering local values ρi  and 
Ei  is usual. It does not follow, however, from the derivation of the scheme itself and should 
be justified a posteriori. Taking local values may be appropriate in sufficiently smooth me-
dia.) 
 
Differencing over twice smaller grid distances implies that the leading term of the approxi-
mation error is now four times smaller than that in the scheme given by equations (1.2.5). 
 In this case stability analysis gives the relation 
 

     sin sin
ω

ρ
∆ ∆

∆
∆t E t

x
k xi

i2 2
1 2

1 2

=










+
 .        (1.2.8) 

 
This means that the stability condition is the same as for the scheme given by equations 
(1.2.5). The physical meaning of the stability condition (1.2.6) is clear: The time step cannot 
be larger than the time necessary for any disturbance to propagate over the distance ∆x. 
 



 9

Let us now investigate equation (1.2.8) since it gives the relation between ω and k (fre-
quency and wavenumber). Assume ∆t and ∆x small enough for the approximations 
 

        sin �
ω ω∆ ∆t t

2 2
=     ,    sin �

k x k x∆ ∆
2 2

=  . 

 
Then it follows from (1.2.8) that 
 

             
ω

ρk
E

c
i

i
=









 =

+1 2
1 2

0  .         (1.2.9) 

 
This means that for small ∆t and ∆x  equation (1.2.8) determines a correct local value of the 
phase velocity. The question is how small ∆x should be in order to justify the approximate 
relation (1.2.9). Obviously ∆x has to be related to a wavelength for which approximation 
(1.2.9) should be valid. 
 
 
Using k = 2π λ  we get from (1.2.8) relations for the actual grid phase and group veloci-
ties: 
 

            c
k

x
t x

c
t
x

xgrid = =








ω
π

λ π
λ

∆
∆ ∆

∆
∆

∆
arcsin sin0  , 

 

            v
k

c
x

c
t
x

x
g
grid = =

−




















∂ω
∂

π
λ

π
λ

0

0

2 1 2

1

cos

sin

∆

∆
∆

∆
 . 

 
 
 
Assuming a homogeneous medium with phase velocity c0 , it is easy to see the dependence 

of cgrid  and vg
grid  on a spatial sampling ratio ∆x λ  and stability ratio c t x0 ∆ ∆ , i. e., the 

so-called grid dispersion, by plotting both velocities normalized by c0 as it is illustrated  in 
Fig. 1.2.1. 
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 Fig. 1.2.1 
 Grid-dispersion curves for the finite-difference scheme (1.2.7) 
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It is clear from the figures that cgrid  and vg
grid  are close to the real phase and group veloci-

ties if ∆x λ < 01.  . This means that at least 10 grid spacings  ∆x  should be used to sample 
the wavelength  λ  in order to avoid the grid dispersion of the phase and group velocities for 
the wavelength  λ . Relation 
 

        ∆ x  < 
λ
10

 

 
can be called a sampling criterion. Let vmin  be a minimum velocity in a medium. Then, if 
we want to have our finite-difference computation ”accurate” up to the frequency fac , the 
grid spacing has to satisfy the sampling criterion 
 

                ∆ x  < 
v

fac

min
10

 .                                       (1.2.10) 



 12

PART  B : APPLICATION  OF  
  THE  FINITE-DIFFERENCE  METHOD 
  TO  THE  EQUATION  OF  MOTION  
  IN  A  PERFECTLY  ELASTIC  MEDIUM 
 
 
 
2.  EQUATION  OF  MOTION 
 
 
Consider a Cartesian coordinate system ( , , )x x x1 2 3 . Denote ρ ( )Gx  density, G Gu x t( , )  dis-
placement vector, 

G Gf x t( , )  body force per unit volume, and τ ij x t( , )G ; i j, , ,= 1 2 3  stress-
tensor, Gx  meaning position and  t  time.  
 
 
Then the equation of motion reads 
 

    ρ τu fi tt ij j i, ,= +    ;       i j, { , , }∈ 1 2 3        (2.0.1) 
where 

   u
u

ti tt
i

, =
∂

∂

2

2          and         τ
∂τ

∂ij j
ij

jx, =   

 

and summation convention for repeated subscripts i and j is assumed. 
 
In the isotropic medium the stress-tensor is given by Hooke’s law 
 
    τ λ δ µij k k ij i j j iu u u= + +, , ,( )   ;        i j, { , , }∈ 1 2 3        (2.0.2) 
 
where λ ( )Gx  and µ ( )Gx  are Lamé’s elastic coefficients and 
 

      u
u
xi j

i

j
, =

∂
∂

 . 

 

As it is clear from equation (2.0.2), the stress-tensor is symmetric: 
 
       τ τij ji=  . 
 
A particle velocity G Gu ( , )x t  is given by 

         G
G

u =
∂
∂

u
t

 .           (2.0.3) 
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Using equations (2.0.1)-(2.0.3) we can consider three formulations of the equation of mo-
tion: 
 
 

Displacement-stress formulation 
 

ρ τu fi tt ij j i, ,= +  
 

τ λ δ µij k k ij i j j iu u u= + +, , ,( )  
 
Velocity-stress formulation 
 

         ρ τui t ij j if, ,= +  
 

        τ λ δ µij t k k ij i j j i, , , ,( )= + +u u u  
 
Displacement formulation 
 

  ρ λ µ µu u u u fi tt k k i i j j j i j i, , , , , , ,( ) ( ) ( )= + + +         (2.0.6) 
 
 
Instead of a concise subscript notation used in equations (2.0.4)-(2.0.6) it may be useful to 
use an alternative notation: 
 

x x= 1  , y x= 2  , z x= 3  , 
 

u u= 1  , v u= 2  , w u= 3  , 
 

 τ τxx = 11  ,  τ τyy = 22  ,   τ τzz = 33  , 
 

  τ τxy = 12  ,  τ τxz = 13  ,   τ τyz = 23  , 
 

 f fx = 1  , f fy = 2  ,  f fz = 3  , 
 

 u u= 1 , v u= 2  , w u= 3  , 
 

and 
 

 u ux = 1 1,  , u uy = 1 2,  ,  u uz = 1 3,  , 
 

 v ux = 2 1,  , v uy = 2 2,  ,  v uz = 2 3,  , 
 

  w ux = 3 1,  ,  w uy = 3 2,  ,   w uz = 3 3,  
 
and analogously for derivatives of the stress-tensor components (e.g., τ τxy x, ,= 12 1  ). 
 
 

Then we can write equation of motion in the three formulations in the 3D, P-SV and SH 
cases as follows. 

(2.0.4) 

(2.0.5) 
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2.1 3D CASE 
 
 
 
 
 
  Gu u x y z t v x y z t w x y z t( ( , , , ), ( , , , ), ( , , , ) )  
 

  τξη ( , , , )x y z t  ; ξ η, { , , }∈ x y z  
 

  
G
f f x y z t f x y z t f x y z tx y z( ( , , , ), ( , , , ), ( , , , ) )  

 

  ρ ( , , )x y z  , λ ( , , )x y z  , µ ( , , )x y z  
 

  Gu u v w( ( , , , ), ( , , , ), ( , , , ) )x y z t x y z t x y z t  
 
 
 
 
Displacement-Stress Formulation 
 
 
 
  ρ τ τ τu ftt xx x xy y xz z x= + + +, , ,  
 

  ρ τ τ τv ftt xy x yy y yz z y= + + +, , ,         (2.1.1a) 
 

  ρ τ τ τw ftt xz x yz y zz z z= + + +, , ,  
 
 
    τ λ µ λ λxx x y zu v w= + + +[ ]2  
 

    τ λ λ µ λyy x y zu v w= + + +[ ]2  
 

     τ λ λ λ µzz x y zu v w= + + +[ ]2  
 
    τ µxy y xu v= +( )  
 

    τ µxz z xu w= +( )  
 

    τ µyz z yv w= +( )  
 
 

(2.1.1b) 
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Displacement Formulation 
 
 
 ρutt =  ρvtt =  ρw tt =  
 

 ( [ ] )λ µ+ 2 ux x  ( )µ vx x  ( )µ wx x  
 

 + ( )µ uy y  + +( [ ] )λ µ2 vy y  + ( )µ w y y  
 

 + ( )µ uz z  + ( )µ vz z  + +( [ ] )λ µ2 w z z  
 

 + ( )λ vy x  + ( )µ uy x  
 

 + ( )λ wz x   + ( )µ uz x        (2.1.2) 
 

 + ( )µ vx y  + ( )λ ux y  
 

  + ( )λ wz y  + ( )µ vz y  
 

 + ( )µ wx z   + ( )λ ux z  
 

  + ( )µ wy z  + ( )λ vy z  
 

 + fx  + fy  + fz  
 
 
 
 
Velocity-Stress Formulation 
 
 
  ρ τ τ τut xx x xy y xz z xf= + + +, , ,  
 

  ρ τ τ τvt xy x yy y yz z yf= + + +, , ,                                                   (2.1.3a) 
 

  ρ τ τ τwt xz x yz y zz z zf= + + +, , ,  
 
 
  τ λ µ λ λxx t x y z, [ ]= + + +2 u v w  
 

  τ λ λ µ λyy t x y z, [ ]= + + +u v w2  
 

  τ λ λ λ µzz t x y z, [ ]= + + +u v w2  
 
  τ µxy t y x, ( )= +u v  
 

  τ µxz t z x, ( )= +u w  
 

  τ µyz t z y, ( )= +v w  

(2.1.3b) 
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2.2 P-SV CASE 
 
 
  Gu u x z t w x z t( ( , , ), , ( , , ) )0  
 

  τξη ( , , )x z t  ; ξ η, { , }∈ x z  
 

  
G
f f x z t f x z tx z( ( , , ), , ( , , ) )0  

 

  ρ ( , )x z  , λ ( , )x z  , µ ( , )x z  
 

  Gu u w( ( , , ), , ( , , ) )x z t x z t0  
 
 
Displacement-Stress Formulation 
 
  ρ τ τu ftt xx x xz z x= + +, ,  
 

  ρ τ τw ftt xz x zz z z= + +, ,  
 
    τ λ µ λxx x zu w= + +[ ]2  
 

    τ λ λ µzz x zu w= + +[ ]2         (2.2.1b) 
 

    τ µxz z xu w= +( )  
 
 
Displacement Formulation 
 
 ρutt =  
 

 ( [ ] ) ( ) ( ) ( )λ µ µ λ µ+ + + + +2 u u w w fx x z z z x x z x  
 
 
 ρw tt =  
 

 ( ) ( [ ] ) ( ) ( )µ λ µ µ λw w u u fx x z z z x x z z+ + + + +2  
 
 

 
Velocity-Stress Formulation 
 
  ρ τ τut xx x xz z xf= + +, ,  
 

  ρ τ τwt xz x zz z zf= + +, ,  
 
 

  τ λ µ λxx t x z, [ ]= + +2 u w  
 

  τ λ λ µzz t x z, [ ]= + +u w2        (2.2.3b) 
 

  τ µxz t z x, ( )= +u w  

(2.2.3a) 

(2.2.1a) 

(2.2.2) 
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2.3 SH CASE 
 
 
 
  Gu v x z t( , ( , , ), )0 0  
 

  τxy x z t( , , )  ; τyz x z t( , , )  
 

  τ τ τ τxx yy zz xz= = = = 0  
 

  
G
f f x z ty( , ( , , ), )0 0  

 

  ρ ( , )x z  , λ ( , )x z  , µ ( , )x z  
 

  Gu v( , ( , , ), )0 0x z t  
 
 
 
Displacement-Stress Formulation 
 
 
  ρ τ τv ftt xy x yz z y= + +, ,           (2.3.1a) 
 
  τ µxy xv=  
 

  τ µyz zv=  
 
 
 
Displacement Formulation 
 
 

 ρ µ µv v v ftt x x z z y= + +( ) ( )           (2.3.2) 
 
 
 
Velocity-Stress Formulation 
 
 
  ρ τ τvt xy x yz z yf= + +, ,           (2.3.3a) 
 
  τ µxy t x, = v  
 

  τ µyz t z, = v  
(2.3.3b) 

(2.3.1b) 
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2.4  HOMOGENEOUS  MEDIUM 
 
 
In the homogeneous medium density ρ  and Lamé’s coefficients are spatial constants. 
Equations (2.1.1), (2.2.1) and (2.3.1) in the displacement-stress formulation do not change 
except that ρ , λ  and µ  in those equations are spatial constants. The same is true about 
equations (2.1.3), (2.2.3) and (2.3.3) in the velocity-stress formulation. 
 
 
Equations (2.1.2), (2.2.2) and (2.3.2) in the displacement formulation can be simplified: 
 
3D Case 
 

 
 ρutt =  ρvtt =  ρw tt =  
 

 [ ]λ µ+ 2 uxx  µ vxx  µ w xx  
 

 + µ uyy  + +[ ]λ µ2 vyy  + µ w yy  
 

 + µ uzz  + µ vzz  + +[ ]λ µ2 wzz  
 

 + λ vyx  + µ uyx  
 

 + λ w zx   + µ uzx         (2.4.1) 
 

 + µ vxy  + λ uxy  
 

  + λ w zy  + µ vzy  
 

 + µ w xz   + λ uxz  
 

  + µ w yz  + λ vyz  
 

 + fx  + fy  + fz  
 
 
P-SV Case 
 
 ρ λ µ µ λ µu u u w w ftt xx zz zx xz x= + + + + +[ ]2  , 
 

 ρ µ λ µ µ λw w w u u ftt xx zz zx xz z= + + + + +[ ]2  , 
 
 
SH Case 
 
                 ρ µ µv v v ftt xx zz y= + +  ,            (2.4.3) 
 

where       u
u

xxx =
∂

∂

2

2  ,    u
u

x yxy =
∂
∂ ∂

2
 , … . 

(2.4.2) 
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3. HETEROGENEOUS  FORMULATION 
 OF  THE  EQUATION  OF  MOTION 
 AND  HETEROGENEOUS 
 FINITE-DIFFERENCE  SCHEMES 
 
 
 
It is relatively easy to replace equations of motion for a homogeneous medium, i.e., equa-
tions (2.4.1)-(2.4.3) by the finite-difference schemes. 
 
Finding appropriate schemes becomes more difficult if material parameters are functions of 
the spatial coordinates. 
 
In a smooth inhomogeneous medium the finite-difference approximations of derivatives in 
the case of the displacement-stress and velocity-stress formulations remain the same as 
those in the homogeneous medium. What, however, is not obvious from the scheme con-
struction itself is a proper material factorization, i.e., determination of the grid material 
parameters. Local (point) values of material parameters or some effective material parame-
ters may be used. A particular choice for a problem under consideration (i. e., medium-
wavefield configuration) should be examined. 
 In the case of the displacement formulation it is necessary to find proper finite-
difference approximations for terms as, e.g.,  
 

        ( )µ w x x  , ( )λ uy x  , 
 

i.e., non-mixed and mixed derivatives in which µ and λ are functions of the spatial coordi-
nates. There are several possible finite-difference schemes. However, they are not equally 
accurate.  
 
If the medium contains material discontinuities we can follow either the so-called homoge-
neous or heterogeneous formulation. 
 In the homogeneous formulation we apply the equation of motion inside blocks and 
boundary condition (usually continuity of displacement and continuity of traction) at the 
discontinuities separating blocks. Such an approach is traditional and usual generally in 
physics. Equation of motion and boundary condition are replaced by the finite-difference 
schemes. 
 In the seismological practice we need to consider material discontinuities of complicated 
shapes. Then the homogeneous approach can be complicated and tedious, in other words, 
impractical. 
 Therefore, the heterogeneous formulation is preferred. In the heterogeneous approach 
no explicit condition is specified. Material discontinuities are accounted for only by spatial 
variations of the material parameters in the equation of motion. 
 The equation of motion is replaced by the finite-difference scheme. It is not so obvious, 
however, whether 
1.  the equation of motion can be used without explicitly specified boundary condition, 
2.  a heterogeneous finite-difference scheme satisfies boundary condition. 
 In order to answer the second question it is necessary to check consistency of a particu-
lar finite-difference scheme at material discontinuities; see Zahradník et al. (1993). The 
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first question was recently addressed by Zahradník & Priolo (1995). Here we present a 
simple case of a horizontal discontinuity. 
 
Let horizontal discontinuity separate two homogeneous halfspaces as it is illustrated in  
Fig. 3.1. 
 
 

 
 
 Fig. 3.1 
 
Density ρ and Lamé’s coefficients λ and µ are functions of the z-coordinate: 
 
    ρ ρ ρ( ) ( ) ( )z H z H z= + ′ −  , 
 

    λ λ λ( ) ( ) ( )z H z H z= + ′ −  ,            (3.1) 
 

    µ µ µ( ) ( ) ( )z H z H z= + ′ −  , 
 
where H z( )  is a unit step function. 
 Consider first the displacement-stress formulation (2.1.1). Due to relations (3.1) and 
(2.1.1b) we distinguish stress-components in the upper and lower halfspaces, 
 
         ρ ρ τ τu H z u H z H z H ztt tt xx xx x( ) ( ) ( ( ) ( ))+ ′ ′ − = + ′ −  
 

          + + ′ −( ( ) ( ))τ τxy xy yH z H z            (3.2) 
 

          + + ′ −( ( ) ( ))τ τxz xz zH z H z  , 
 
and similarly for the v and w components. Differentiating expressions in the parentheses in 
the equation (3.2) we obtain 
 
         ρ ρ τ τu H z u H z H z H ztt tt xx x xx x( ) ( ) ( ) ( ), ,+ ′ ′ − = + ′ −  
 

          + + ′ −τ τxy y xy yH z H z, ,( ) ( )  
 

          + + ′ −τ τxz z xz zH z H z, ,( ) ( )  
 

          + − ′τ δ τ δxz xzz z( ) ( )  . 
 

x 

y 
z 

′ ′ ′ρ λ µ, ,

ρ λ µ, ,
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Rewriting the equation we finally arrive in 
 
 
   ( ) ( ), , ,− + + +ρ τ τ τu H ztt xx x xy y xz z  
             +  
   ( ) ( ), , ,− ′ + ′ + ′ + ′ −ρ τ τ τu H ztt xx x xy y xz z             (3.3) 
             +  
   { } ( )τ τ δxz xz z− ′ = 0  . 
 
 
Equation (3.3) can be symbolically written as  
 
          E H z E H z C z( ) ( ) ( )+ ′ − + =δ 0             (3.4) 
 
where 
 E  represents equation of motion for the  u  component in the lower halfspace, 
′E  represents equation of motion for the  u  component in the upper halfspace 

and 
 C represents the continuity of the x-component of the traction at the discontinuity. 
 
Analogous results can be obtained for the v and w components of the displacement vector 
and, respectively, for the y- and z-components of the traction: 
 
 
   ( ) ( ), , ,− + + +ρ τ τ τv H ztt xy x yy y yz z  
             +  
   ( ) ( ), , ,− ′ + ′ + ′ + ′ −ρ τ τ τv H ztt xy x yy y yz z  
             +  
   { } ( )τ τ δyz yz z− ′ = 0  , 
 
   ( ) ( ), , ,− + + +ρ τ τ τw H ztt xz x yz y zz z  
             +  
   ( ) ( ), , ,− ′ + ′ + ′ + ′ −ρ τ τ τw H ztt xz x yz y zz z  
             +  
   { } ( )τ τ δzz zz z− ′ = 0  . 
 
 
The conclusion is that equations (2.1.1) can be − at least in the considered medium − used 
in the heterogeneous formulation: they can fully account for the boundary condition if the 
material parameters are treated properly. No explicitly formulated adjoined boundary con-
dition is needed. 
 
Consider now the displacement formulation (2.1.2). Due to (3.1) we can rewrite, e.g., 
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 equation for the u-component as 
 
            ρ ρu H z u H ztt tt( ) ( )+ ′ ′ − =  
 

           ( [ ] ( ) [ ] ( ) )λ µ λ µ+ + ′ + ′ ′ −2 2u H z u H zx x x  
 

       + + ′ ′ −( ( ) ( ) )µ µu H z u H zy y y  
 

       + + ′ ′ −( ( ) ( ) )µ µu H z u H zz z z  
 

       + + ′ ′ −( ( ) ( ) )λ λv H z v H zy y x  
 

       + + ′ ′ −( ( ) ( ) )λ λw H z w H zz z x  
 

       + + ′ ′ −( ( ) ( ) )µ µv H z v H zx x y  
 

       + + ′ ′ −( ( ) ( ) )µ µw H z w H zx x z  . 
 
Differentiating expressions in the parentheses gives 
 
            ρ ρu H z u H ztt tt( ) ( )+ ′ ′ − =  
 

           [ ] ( ) [ ] ( )λ µ λ µ+ + ′ + ′ ′ −2 2u H z u H zxx xx  
 

       + + ′ ′ −µ µu H z u H zyy yy( ) ( )  
 

       + + + ′ ′ − − ′ ′µ µ δ µ µ δu H z u z u H z u zzz z zz z( ) ( ) ( ) ( )  
 

       + + ′ ′ −λ λv H z v H zyx yx( ) ( )  
 

       + + ′ ′ −λ λw H z w H zzx zx( ) ( )  
 

       + + ′ ′ −µ µv H z v H zxy xy( ) ( )  
 

       + + + ′ ′ − − ′ ′µ µ δ µ µ δw H z w z w H z w zxz x xz x( ) ( ) ( ) ( ) . 
 
Rearranging the equation we obtain 
 
  ( [ ]λ µ µ µ+ + +2 u u uxx yy zz  
 

       + + + + −λ λ µ µ ρv w v w u H zyx zx xy xz tt ) ( )  
  +  
 

  ( [ ]′ + ′ ′ + ′ ′ + ′ ′λ µ µ µ2 u u uxx yy zz  
 

       + ′ ′ + ′ ′ + ′ ′ + ′ ′ − ′ −λ λ µ µ ρv w v w u H zyx zx xy xz tt ) ( )  
  +  
 

  { ( ) ( ) } ( )µ µ δu w u w zz x z x+ − ′ ′ + ′ = 0  
 
which can be symbolically written in the form of equation (3.4). Analogous equations can 
be obtained for the v and w components of the displacement vector and, respectively, for 
the  y- and z-components of the traction. 

(3.5) 

(3.6) 
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4. FINITE-DIFFERENCE  SCHEMES  FOR  
 INTERIOR  POINTS  ON  REGULAR  GRIDS 
 
 
In order to explain construction of various finite-difference schemes we will use the P-SV 
case which is simpler than the 3D case. However, at the end of the next sections we will 
present also finite-difference schemes for the 3D case. 
 
Consider the x-z plane and cover it by a regular rectangular grid with the spacings 
∆ ∆x z h= = . We can use either a conventional grid or a staggered grid. 
 
 
 

 
 
     i – 1         i          i + 1                      i – 1         i         i + 1 
 
 
 
Fig. 4.1 
Two types of a spatial grid 
 
A conventional grid is usual in the displacement formulation while a staggered grid is used 
in the displacement-stress and velocity-stress formulations. In a conventional grid all dis-
placement components and material parameters are defined at each grid point. In a staggered 
grid, different displacement/particle-velocity components, stress-tensor components, and 
material parameters are defined in different grid positions. 
 
Displacement finite-difference schemes on a conventional grid have been used for modeling 
seismic wave propagation since the end of the sixties, e.g. Alterman & Karal (1968), Kelly 
et al. (1976). Madariaga (1976) suggested a velocity-stress finite-difference scheme on a 
staggered grid. The scheme was adapted for modeling the SH and P-SV waves by Virieux 
(1984, 1986). Levander (1988) developed a fourth-order velocity-stress finite-difference 
scheme on a staggered grid for the P-SV waves. Luo & Schuster (1990) suggested a parsi-
monious staggered-grid finite-difference  scheme for the P-SV waves based on the dis-
placement-stress formulation. While mathematically equivalent to the velocity-stress 
scheme it requires  less computer memory  ( in the 3D case only 75% of that re-quired by 
the velocity-stress scheme) since the  stress-tensor components are not stored. Zahradník 
(1995b) developed a new and accurate second-order displacement scheme on a conventional 
grid for the P-SV waves (easily applicable also to the 3D case). Graves (1996) presented 
fourth-order velocity-stress scheme for the 3D case. Ohminato & Chouet (1997) presented a 

x 

z 

h 

h h

h
−1  −1

 

+1 +1

conventional 
       grid 

staggered 
    grid 
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second-order displacement-stress scheme for the 3D case which also includes 3D topogra-
phy of the free surface.  
 
 
 
4.1 DISPLACEMENT-STRESS  SCHEME  
 ON  A  STAGGERED  GRID  
 
 
Recall equations of motion (2.2.1) : 
 
   ρ τ τu ftt xx x xz z x= + +, ,  
 

   ρ τ τw ftt xz x zz z z= + +, ,  
 
   τ λ µ λxx x zu w= + +[ ]2  
 

   τ λ λ µzz x zu w= + +[ ]2  
 

   τ µxz z xu w= +( )  
 
 
Let us approximate the first spatial derivatives using the central-difference formula applied 
over one grid spacing. We should start with equations for the diagonal stress-tensor compo-
nents. Both equations contain terms proportional to ux  and w z . Therefore, we should local-

ize Txx  and Tzz , the discrete approximations to τxx  and τ zz , in the same grid position, say 
i+ +1 2 1 2 ; see Fig. 4.1.1. Then we obtain for the time level m 
 
 

  ( )T
h

U Ui
xx m

i i
m

i
m

+ + + + + + += + −1 2 1 2 1 2 1 2 1 1 2 1 22
1, [ ]λ µ  

 

         ( )+ −+ + + + +λ i i
m

i
m

h
W W1 2 1 2 1 2 1 1 2

1
 

and 

  ( )T
h

U Ui
zz m

i i
m

i
m

+ + + + + + += −1 2 1 2 1 2 1 2 1 1 2 1 2
1, λ  

 

         ( )+ + −+ + + + +[ ]λ µ2
1

1 2 1 2 1 2 1 1 2i i
m

i
m

h
W W  , 

 
 
where U and W stand for discrete approximations to u and w, respectively. 
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U U

W

W

T
xx
zz

i +1i i +1 2/

+1

+1 2/
h 2

h 2

 
 Fig. 4.1.1 
 Illustration of approximating Ux  and  Wz  
 
If we now localize Txz , a discrete approximation to τxz , at the grid position i , see Fig. 
4.1.2, we obtain the finite-difference approximation of the equation for τxz  at the time level 
m: 

          ( )T
h

U U W Wi
xz m

i i
m

i
m

i
m

i
m, = − + −+ − + −µ

1
1 2 1 2 1 2 1 2  . 

 
 

U

U

W WTxz

−1 2/

+1 2/

h 2

h 2

 i −1 2/ i i +1 2/
 

 Fig. 4.1.2 
 Illustration of approximating Wx  and  Uz  
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The second time derivative, e.g., of the u-component, at the time level m and position 
i +1 2  can be approximated by 

 

    ( )1
22 1 2

1
1 2 1 2

1

∆ t
u u ui

m
i
m

i
m

+
+

+ +
−− +  . 

 
Then the finite-difference approximation of the equation for the u-component at the time 
level m and position i +1 2  is 
 

  ( )ρi i
m

i
m

i
m

t
U U U+ +

+
+ +

−− +1 2 2 1 2
1

1 2 1 2
11

2
∆

 

 

      ( )= − + − ++ + − + + +
1

1 2 1 2 1 2 1 2 1 1 2h
T T T T Fi

xx m
i
xx m

i
xz m

i
xz m

i
x, , , ,  , 

 
where Fi

x
+1 2  is a discrete approximation to f x z tx i m( , , )+1 2 . 

 
Now we can write a complete displacement-stress finite-difference scheme for the P-SV 
waves: 
 
  U U U t Fi

m
i
m

i
m

i i
x m

+
+

+ +
−

+ += − +1 2
1

1 2 1 2
1 2

1 2 1 22 ( ) ,∆ ρ  
 

     ( )+ − + −
+

+ + − + +
∆2

1 2
1 2 1 2 1 2 1 2 1

1t
h

T T T T
i

i
xx m

i
xx m

i
xz m

i
xz m

ρ
, , , ,  , 

 

  W W W t Fi
m

i
m

i
m

i i
z m

+
+

+ +
−

+ += − +1 2
1

1 2 1 2
1 2

1 2 1 22 ( ) ,∆ ρ  
 

     ( )+ − + −
+

+ + + − +
∆2

1 2
1 2 1 2 1 2 1 2 1

1t
h

T T T T
i

i
zz m

i
zz m

i
xz m

i
xz m

ρ
, , , ,  , 
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Fig. 4.1.3 
Field variables and material parameters entering the displacement-stress finite-difference 
scheme (4.1.1). A dashed line indicates a finite-difference cell i . 
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Assuming medium in an equilibrium, i. e., 
 
 u x z t( , , )= =0 0  , u x z tt ( , , )= =0 0  , 
 w x z t( , , )= =0 0  , w x z tt ( , , )= =0 0  , 
 

we can compute the first time level putting U Wi i+ += =1 2
0

1 2
0 0  and, formally, 

U Wi i+
−

+
−= =1 2

1
1 2
1 0 , in the scheme (4.1.1). We also assume Fi

x
+ =1 2
0 0, and Fi

y
+ =1 2

0 0, . 
 
In a computer code it is reasonable to consider integer values of grid indices. Let 
{ , , , , }, , ,T T T U Wi

xz m
i
xx m

i
zz m

i
m

i
m

+ + + + + +1 2 1 2 1 2 1 2 1 2 1 2  be a finite-difference cell i . Then we 
can rewrite the finite-difference scheme (4.1.1) with indices showing the actual grid position 
by the finite-difference scheme with the finite-difference cell indices. A rule for re-indexing 
is simple: 1. index having an integer value does not change, 2. 1 2  has to be subtracted from 
an index which does not have an integer value. 
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                 (4.1.2) 
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In the scheme we assumed a homogeneous medium inside the finite-difference cell. Scheme 
(4.1.2) is now ready for programming. 
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A displacement-stress finite-difference scheme for the 3D case with integer indices cor-
responding to the finite-difference cells is 
 

U U U t Fi k
m

i k
m

i k
m

i k i k
x m+ −= − +1 1 22 ( ) ,∆ ρ  

 

(+ − −
∆2

1
1t

h
T T

i k
i k
xx m

i k
xx m

ρ
, , + −+T Ti k

xy m
i k
xy m

1
, , )+ −+T Ti k

xz m
i k
xz m

1
, ,  

 
 V V V t Fi k

m
i k
m

i k
m

i k i k
y m+ −= − +1 1 22 ( ) ,∆ ρ  

 

(+ −+
∆2

1
1t

h
T T

i k
i k
xy m

i k
xy m

ρ

, , + − −T Ti k
yy m

i k
yy m, ,

1 )+ −+T Ti k
yz m

i k
yz m

1
, ,  

 
W W W t Fi k

m
i k
m

i k
m

i k i k
z m+ −= − +1 1 22 ( ) ,∆ ρ  

 

(+ −+
∆2

1
1t

h
T T

i k
i k
xz m

i k
xz m

ρ
, , + −+T Ti k

yz m
i k
yz m

1
, , )+ − −T Ti k

zz m
i k
zz m, ,

1  

 
                 (4.1.3) 
 Ti k

xx m, =  
 

  ( )1
2 1h

U Ui k i k
m

i k
m[ ( )λ µ+ −+  

 

(+ −+λ i k i k
m

i k
mV V1 )+ −+W Wi k

m
i k
m

1 ]  

 
 Ti k

yy m, =  
 

  ( )1
1h

U Ui k i k
m

i k
m[ λ + −  

 

  ( )+ + −+( )λ µ2 1i k i k
m

i k
mV V  

 

  ( )+ −+λ i k i k
m

i k
mW W1 ]  

 
 Ti k

zz m, =  
 

  (1
1h

U Ui k i k
m

i k
m[ λ + − )+ −+V Vi k

m
i k
m

1  
 

  ( )+ + −+( ) ]λ µ2 1i k i k
m

i k
mW W  

 



 30

 Ti k
xy m, =  

 

  (1
1h

U Ui k i k
m

i k
mµ − − )+ − −V Vi k

m
i k
m

1  

 
 Ti k

xz m, =  
 

  (1
1h

U Ui k i k
m

i k
mµ − − )+ − −W Wi k

m
i k
m

1  

 
 Ti k

yz m, =  
 

  (1
1h

V Vi k i k
m

i k
mµ − − )+ − −W Wi k

m
i k
m

1  

 

i +1 2

k

k +1 2

V

W

Tyz

Txz

Txy

U

+1 2

i

T

xx
yy
zz

 
 
 Fig. 4.1.4 
 Finite-difference cell corresponding to the finite-difference scheme (4.1.3). 
 
More on the displacement-stress schemes can be found in Luo & Schuster (1990) and Oh-
minato & Chouet (1997). 
 
 
 
4.2 VELOCITY-STRESS  SCHEME 
 ON  A  STAGGERED  GRID 
 
Recall equations (2.2.3) 
 
   ρ τ τut xx x xz z xf= + +, ,  
 

   ρ τ τwt xz x zz z zf= + +, ,  
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   τ λ µ λxx t x z, [ ]= + +2 u w  
 

   τ λ λ µzz t x z, [ ]= + +u w2  
 

   τ µxz t z x, ( )= +u w  
 
As it is clear from the right-hand sides of the equations, the approximation of the first spatial 
derivatives may be the same as in the case of the displacement-stress formulation. The only 
difference comes from using particle velocity instead of displacement. Here we present, 
however, the finite-difference scheme assuming the alternative positions of the stress-tensor 
and particle-velocity components, see Fig. 4.2.1, which is consistent with the scheme pre-
sented recently by Graves (1996). 
 If we approximate time derivatives of the particle velocity at the time level m by a cen-
tral-difference formula applied over the time step ∆t, we have to approximate the time 
derivative of the stress-tensor at the time level m +1 2 . We obtain the following velocity-
stress finite-difference scheme for the P-SV waves: 
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U and W stand for discrete approximations of the x- and z-components of the particle veloc-
ity, i. e., u and w, respectively. 
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Fig. 4.2.1 
Field variables and material parameters entering the velocity-stress finite-difference 
scheme (4.2.1). A dashed line indicates a finite difference cell i . 
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 Scheme (4.2.1) can be rewritten by replacing indices corresponding to the actual grid 
positions with indices corresponding to the finite-difference cells. We can use the same rule 
to determine spatial indices as in the case of the displacement-stress scheme. In order to 
determine the time index we add 1 2  to those indices which are non-integer in the scheme 
(4.2.1). 
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                 (4.2.2) 
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Properties of the velocity-stress scheme and results of the numerical tests can be found in 
the paper by Virieux (1986). 
 
 
 
4.3 DISPLACEMENT  SCHEME 
 ON  A  CONVENTIONAL  GRID 
 
Recall equations (2.2.2): 
 
 ρutt =  
 

 ( [ ] ) ( ) ( ) ( )λ µ µ λ µ+ + + + +2 u u w w fx x z z z x x z x , 
 
 ρw tt =  
 

 ( ) ( [ ] ) ( ) ( )µ λ µ µ λw w u u fx x z z z x x z z+ + + + +2 . 
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We have to find a finite-difference approximation of the mixed and nonmixed second spatial 
derivatives, e. g., 
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( , )
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a x z
x z
xx xΨ
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∂
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∂
∂

 . 

 
First, let us derive an approximation of the nonmixed derivative. Define an auxiliary func-
tion Φ: 
 
 Φ Ψ= a x  , Φ Ψx x xa= ( )  .        (4.3.1) 
 
Approximate Φx  at the point i : 
 

    Φ Φ Φx i i ih
( )= −+ −

1
1 2 1 2  .          (4.3.2) 

 
Find now approximations of Φ i+1 2  and Φ i−1 2 . From equation (4.3.1) we have 
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Ψ
a x=  .           (4.3.3) 

 
Integrate equation (4.3.3) along the grid leg between the points i  and i+1 : 
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Denoting the left- and right-hand side of the equation by L and R, respectively, we can ob-
tain 
 

R i i= −+Ψ Ψ1  , 
 

             L
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In the approximation of the left-hand side we assumed that the mean value is in the position 
xi+1 2  . Define a so-called effective medium parameter 
 

           a h
dx

a x zi
x

x

x

i

i

=














+

∫
−

( , )

1
1

 .         (4.3.4) 
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Then 
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Similarly, 
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Substituting approximations (4.3.5) and (4.3.2) into (4.3.1) we get 
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Analogously we can obtain 
 

        ( ) { ( ) ( ) }a
h

a az z i i
z

i i i
z

i iΨ Ψ Ψ Ψ Ψ= − − −+ − −
1
2 1 1 1 .     (4.3.6b) 

 

where 

           a h
dz

a x zi
z

iz

z

=














+

∫
−

( , )

1
1

 .         (4.3.7) 

 
Let us derive now an approximation of the mixed derivative. We will follow the derivation 
suggested by Zahradník (1995b). Define again an auxiliary function Φ 
 
 Φ Ψ= a x  , Φ Ψz x za= ( )  .        (4.3.8) 
 

Then 

    Φ Φ Φz i i ih
( )= −+ −

1
1 2 1 2  .          (4.3.9) 

 
Find approximations of Φ i +1 2  and Φ i −1 2 . From equation (4.3.8) we have 
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Ψ
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Integrate equation (4.3.10) along the grid leg between the points i  and i +1: 
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Similarly we can obtain 
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Substituting approximations (4.3.11) and (4.3.9) into (4.3.8) we obtain 
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 Fig. 4.3.1 

Illustration of approximation (4.3.12a). Full circles indicate va- 
lues of Ψ entering the finite-difference formula. Two heavy grid 
legs indicate effective media parameters. 
 

Applying the z x→ , x z→ , i → , → i  substitutions in the equation (4.3.12a) we get 
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 Fig. 4.3.2 

Illustration of approximation (4.3.12b). The meaning of symbols 
is the same as in Fig. 4.3.1. 

 
Applying approximations (4.3.6) and (4.3.12) to the nonmixed and mixed spatial derivatives 
in the equations of motion (2.2.2) and applying the same approximation of the second time 
derivative as in the displacement-stress scheme we obtain the following displacement  
finite-difference scheme for the P-SV waves: 
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The theoretical investigation of consistency at the material discontinuities, including the flat 
free surface, (Zahradník, 1995b and Zahradník & Priolo, 1995) and numerical tests (the two 
above papers and Moczo et al., 1997) suggest that the scheme (4.3.13) is one of the most 
accurate finite-difference schemes.  
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5. FOURTH-ORDER  FINITE-DIFFERENCE 
 SCHEMES  FOR  INTERIOR  GRID  POINTS 
 
While in Chapter 4 we only used the second-order approximation of the spatial derivatives, 
here we will make use of more accurate fourth-order approximation. Its approximation er-
ror (local truncation error) is considerably smaller than that of the second-order since it is 
proportional to the h4 . Consequently, the fourth-order finite-difference schemes allow to 
reduce a spatial sampling of the wavelength which is to be propagated without grid disper-
sion. While the second-order schemes require at least 10 samples per wavelength, the 
fourth-order schemes only require 5 samples. 
 
 
 
5.1 FOURTH-ORDER  FINITE-DIFFERENCE  
 APPROXIMATIONS 
 
 
Let us find a fourth-order approximation of the derivative Ψx . Taylor’s expansions for 
Ψ ( )x h+ 2  and Ψ ( )x h− 2  are 
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8
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48

2 3  ,   (5.1.1) 

and 
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8

1
48

2 3  .   (5.1.2) 

 
Subtracting expansion (5.1.2) from (5.1.1) we get 
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In order to remove the ′′′Ψ − term we need an independent approximation of ′Ψ  which 
includes the ′′′Ψ − term. This can be obtained from Taylor’s expansions for, e.g., 
Ψ ( )x h+ 3 2  and Ψ ( )x h− 3 2 , 
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Subtracting expansion (5.1.5) from (5.1.4) we get 
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Multiplying equation (5.1.3) by 9 8 and subtracting equation (5.1.6) multiplied by 1 24  
we obtain 
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Let x xi= .  Then x h xi+ = +
3
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3
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Then the approximation (5.1.7) can be written as 
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Then the approximation (5.1.7) can be written as 
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 Illustration of approximations (5.1.8) and (5.1.9) 
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5.2 DISPLACEMENT-STRESS  SCHEME 
 ON  A  STAGGERED  GRID 
 
 
Approximations (5.1.8) and (5.1.9) can be used to construct a fourth-order finite-difference 
scheme on a staggered grid to solve equations (2.2.1). Keeping a second-order approxima- 
tion of the time derivative we get a fourth-order displacement-stress finite-difference 
scheme for the P-SV waves: 
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Fig. 5.2.1 
Field variables entering the fourth-order displacement-stress finite-difference scheme (5.2.1) 
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It is easy to obtain a fourth-order displacement-stress finite-difference scheme for the 
3D case. Here is a scheme with integer indices corresponding to the finite-difference cells 
(similarly as in schemes 4.1.2 and 4.1.3). 
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5.3 VELOCITY-STRESS  SCHEME 
 ON  A  STAGGERED  GRID 
 
 

We also easily obtain the fourth-order velocity-stress finite-difference scheme for the 
P-SV waves. Again, as in the case of the second-order velocity-stress scheme, the positions 
of the field variables are different from those in the displacement-stress scheme (5.2.1). 
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Fig. 5.3.1 
Field variables entering the fourth-order velocity-stress finite-difference scheme (5.3.1). 
 
 
Properties of the fourth-order scheme for the P-SV waves and results of the numerical tests 
are presented in the paper by Levander (1988). 

Similarly as in the case of the displacement-stress scheme, it is easy to obtain a scheme for 
the 3D case. Graves (1996) presented such a scheme together with a very efficient algorithm 
of the memory optimization. 
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6. FINITE-DIFFERENCE  SCHEMES 
 FOR  INTERIOR  POINTS 
 ON  IRREGULAR  RECTANGULAR  GRIDS 
 
 
Consider a rectangular spatial grid with varying size of grid spacings in both the x- and z-
directions (see Fig. 6.1) with ∆x x xi i i= − −1 and ∆z z zA A A= − −1 . 
 

A −1

A

A +1

ii −1 i +1

∆xi ∆xi+1

∆zA

∆zA+1

x

z

 
 Fig. 6.1 
 Rectangular grid with varying grid spacings 
 
The rectangular grid  with a varying size of the grid spacings was first used by Boore 
(1970) in the 1D case. Mikumo & Miyatake (1987) used such a grid in the 3D case in a 
homogeneous medium. Moczo (1989) and Moczo & Bard (1993) applied the grid to the SH 
case in the laterally inhomogeneous medium.  

The above mentioned schemes were based on the displacement formulation. Since the 
use of such a grid can be useful in the displacement-stress and velocity-stress formulations, 
we will briefly present an example of the displacement-stress scheme. 
 
 
 
6.1 FINITE-DIFFERENCE  APPROXIMATIONS 
 ON  AN  IRREGULAR  GRID 
 
 
Consider for simplicity Taylor’s expansion for Ψ( )x h+ +  and Ψ( )x h− − : 
 

 Ψ Ψ Ψ Ψ Ψ( ) ( ) ( ) ( ) ( )x h x h x h x h x+ = + ′ + ′′ + ′′′ ++ + + +
1
2
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6
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 Ψ Ψ Ψ Ψ Ψ( ) ( ) ( ) ( ) ( )x h x h x h x h x− = − ′ + ′′ − ′′′ +− − − −
1
2

1
6

2 3 " .       (6.1.2) 
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Subtracting expansion (6.1.2) from (6.1.1) we get 
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from which we have an approximation 
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The approximation is only first-order accurate. The leading term of the approximation error 
is proportional to h h+ −− . It is obvious that the smaller the difference in sizes of h+  and 
h− , the better accuracy and the closer to the second-order approximation. 
        There is an approximation of the first derivative that is second-order accurate and over 
distance h h+ −+ , 
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however, it also requires the value in the same position in which the derivative is to be ap-
proximated, which is not the case on the staggered grid. 
       In the case of the staggered grid we need to approximate spatial derivatives, e.g., in the 
x-direction, in two different positions − xi  and xi+1 2 . As it is illustrated in Fig. 6.1.1, 
while xi+1 2  is at the center of the grid spacing ∆xi+1 , xi  is not equally distant from grid 
positions xi−1 2  and xi+1 2 . We will look at the consequences now: 
 
Let x xi= . Then 

 h xi+ +=
1
2 1∆  , h xi− =

1
2
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 h h x xi i+ − ++ = +
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2 1( )∆ ∆  , h h x xi i+ − +− = −

1
2 1( )∆ ∆  , 

 

 Ψ Ψ( )x i=  , Ψ Ψ( )x h i+ =+ +1 2  , Ψ Ψ( )x h i− =− −1 2  , 
 



 50

 

i +1 2

1
2 1∆xi+

1
2 1∆xi+

1
2
∆xi

i −1 2 i i +1
 

 
 

 Fig. 6.1.1 
Two positions on a staggered grid in which spatial derivatives are to be 
approximated 

 
 
and from (6.1.3) we obtain 
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          + +O xi( )∆2
1  . 

 
While Ψx ix( )  is approximated by (6.1.4) with the first-order accuracy (the leading term of 
the approximation error is proportional to ∆ ∆x xi i+ −1 ), Ψx ix( )+1 2  is approximated by 
(6.1.5) with the second-order accuracy (the leading term of the approximation error is pro-
portional to ∆2

1xi+ ). 
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It is clear then that in the displacement-stress and velocity-stress schemes on an irregular 
staggered grid all spatial derivatives are not approximated with the same order of accuracy. 
We can choose one of two possibilities for each of the spatial derivatives: 
 
 2nd-order 1st-order 
 x-derivative at i+1 2  position at i  position 

 1st choice Txz , U  Txx , Tzz , W  
 2nd choice Txx , Tzz , W  Txz , U  
 
 2nd-order 1st-order 
 z-derivative at A+1 2  position at A  position 

 1st choice Txz , W  Txx , Tzz , U  
 2nd choice Txx , Tzz , U  Txz , W  
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6.2 DISPLACEMENT-STRESS  SCHEME 
 ON  AN  IRREGULAR  GRID 
 
 
Let us apply approximations (6.1.4) and (6.1.5) to equations (2.2.1) on the grid shown in 
Fig. 6.2.1. We obtain a displacement-stress finite-difference scheme on the staggered 
grid with varying grid spacings for the P-SV waves: 
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 Fig. 6.2.1 
 Field variables entering the displacement-stress finite-difference scheme  
               (6.2.1). 
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7. FINITE-DIFFERENCE  SCHEMES  FOR  
INTERIOR  POINTS  ON  A  COMBINED  
RECTANGULAR  GRID 

 

In many cases a model of a medium comprises near-surface inhomogeneities with lower 
velocities and a homogeneous bottom part with a higher velocity. If the upper part of the 
model with a minimum velocity, say β , is covered by a grid with a grid spacing h , then, 

according to the sampling criterion, a grid with a larger grid spacing, h h'
'

=
β
β

 , is suffi-

cient for the bottom part of the medium with velocity β ' . 
A grid with a varying size of a grid spacing (see Chapter 6) is one possibility to follow 

the above idea.  Here we present a very simple but efficient approach using a combined 
rectangular grid. 

Consider a combined h h× and 2 2h h× grid as it is shown in Fig. 7.1. We will, further-
more, restrict ourselves to the case of the SH waves and the displacement formulation. As it 
is clear from Fig. 7.1, there are two types of the grid points at the contact of the grids, say 
A and B. We can anticipate that the two types require different finite-difference formulae. 

Assume now that the h h× grid covers the upper inhomogeneous part of the medium 
while the contact of the two grids and the 2 2h h× grid are in the homogeneous medium. 

Recall equation (2.3.2) for the SH waves in an inhomogeneous medium, 
 
ρ µ µv v v ftt x x z z y= + +( ) ( )   

 

and equation (2.4.3) for a homogeneous medium, 
 

           ρ µ µv v v ftt xx zz y= + + , 
 

which can be written as 
 

                                  ρ µv v v ftt xx zz y= + +( ) . 
 

It is easy to replace the above equations by the displacement finite-difference schemes for 
the interior grid points of both h h×  and 2 2h h×  grids. A finite-difference scheme for the 
inhomogeneous medium on the h h×  grid can be obtained using a standard second-order 
approximation (1.1.5) to the second time derivative and using approximations (4.3.6) to 
spatial derivatives. A finite-difference scheme for a homogeneous medium on the 2 2h h×  
grid can be obtained applying approximation (1.1.5) to the second time and spatial deriva-
tives. For the inhomogeneous medium and h h×  grid we obtain 
 

                 [ ]V V V
t

F
t

L V L Vi
m

i
m

i
m

i
i
y m

i
xx zzA A A

A
A

A

+ −= − + + +1 1
2 2

2
∆ ∆
ρ ρ

µ µ, ( , ) ( , )          (7.1) 
 

                [ ]L V
h

V V V Vxx i
x

i
m

i
m

i
x

i
m

i
m( , ) ( ) ( )µ µ µ= − − −+ − −

1
2 1 1 1A A A A A A  

                                                                                       (7.2) 

                [ ]L V
h

V V V Vzz i
z

i
m

i
m

i
z

i
m

i
m( , ) ( ) ( )µ µ µ= − − −+ − −

1
2 1 1 1A A A A A A  
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Fig. 7.1  
Combined rectangular grid. There are two types of the grid points at the contact of the 
h h×  and 2 2h h×  grids  A (open circles) and B (full circles). 
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where µ i

x
A  and µ i

z
A  are defined by equations (4.3.4) and (4.3.7).  

For the homogeneous medium and the 2 2h h×  grid scheme the equation (7.1) can be 
used with the operators 

                 L V
h

V V Vxx i
m

i
m

i
m( , ) ( )µ

µ
= − ++ −4

22 2 2A A A  

and        (7.3) 

                 L V
h

V V Vzz i
m

i
m

i
m( , ) ( )µ

µ
= − ++ −4

22 1 1A A A . 

 
Note different indexing in the operators which is due to the fact that each even grid column 
of the finer grid is cut off at the contact of the two grids. 

It is clear that for the A-type grid point scheme the equation (7.1) can be used with the 
operators 

 

                 L V
h

V V Vxx i
m

i
m

i
m( , ) ( )µ

µ
= − ++ −2 1 12A A A  

and        (7.4) 

                 L V
h

V V Vzz i
m

i
m

i
m( , ) ( )µ

µ
= − ++ −2 1 12A A A . 

 
For the B-type grid point we cannot use operators (7.4) since there is no value in the 

iA +1 position available (see Fig. 7.1). We have two possibilities. One is to approximate 
the missing value by a linear interpolation. This, however, would decrease the order of 
approximation. The other possibility is to find a second-order approximation of the sum of 
the two derivatives, i.e., v vxx zz+ , using four available values at the i − −1 1A , i + −1 1A , 
i − +1 1A  and i + +1 1A  grid points (see Fig. 7.1). Note that we do not mean the sum of two 
approximations given by the equations (7.4). 

From the combination of Taylor’s expansions at the four grid points we can easily ob-
tain the second order approximation 

 

                  ( ) | ( )v v
h

v v v v vxx zz i i i i i i+ = + + + −+ + − + + − − −A A A A A A
1

2
42 1 1 1 1 1 1 1 1  

 

                                         − + + +
h

v v vxxxx xxzz zzzz

2

12
6( ) …  . 

 
Then the corresponding operator L Vxx zz, ( )  is 

                  L  ( V )  
1

2h
 ( V   V   V   V   4 V )xx,zz 2 i 1 1

m
i 1 1
m

i 1 1
m

i 1 1
m

i
m= + + + −+ + − + + − − −A A A A A . 

 
Replacing L V L Vxx zz( , ) ( , )µ µ+  by µL Vxx zz, ( )  in scheme (7.1) we obtain the finite-
difference scheme for the B-type grid point. 

Although we combine the  h h×  and 2 2h h×  grids, the use of a combined grid is not 

restricted to the case when the velocity in the bottom homogeneous medium , β ' , is twice 
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or more larger than the minimum velocity in the inhomogeneous medium β . The com-

bined grid can be used even in the case of  1 2< <β β' / . It is just necessary to apply the 
sampling criterion in the homogeneous basement first in order to determine the grid spac-
ing of the  2 2h h×  grid. 

A numerical application can be found in Moczo et al. (1996) where the above algorithm 
enabled to save up to 75% of grid points. 
 
For a more complex case of modeling the P-SV waves by the velocity-stress finite-
difference scheme on a combined rectangular grid with a varying size of the grid spacings 
see Jastram & Tessmer (1994) and Falk et al. (1996). 
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8. STABILITY  CONDITION  AND  DISPERSION 
 RELATIONS  
 
8.1 STABILITY  CONDITION  AND  DISPERSION 
 RELATIONS  FOR  THE  SECOND-ORDER 
 VELOCITY-STRESS  SCHEME  FOR  
 THE  P-SV  WAVES 
 
Stability of the finite-difference schemes can be examined by the von Neumann method, 
matrix method, discrete perturbation method or energy method. They are explained, e.g., in 
the mathematical textbooks mentioned in Section 1.1. 
 Here we restrict ourselves to one example of application of the von Neumann method. 
The method assumes a harmonic decomposition of the errors at a given time. 
 
Consider the velocity-stress finite-difference scheme (4.2.1) for the P-SV waves. Assume 
errors in U , W , Txx , Tzz  and Txz  and investigate whether these errors grow with time. 
Let the errors at x i h= , z h=  and t m t= ∆  be 
 

 ε ( )U = A E  , ε ( )T C Exx = 1  , 

 ε ( )W = B E  , ε ( )T C Ezz = 2  ,        (8.1.1) 

and  ε ( )T C Exz = 3  
where 
 

   E m t k i h k hx z= − + +exp ( )i i iω ∆    , 
   k kx = cosθ   , 
   k kz = sinθ  , 
 
θ being an angle of the plane wave with respect to the x-axis and k wavenumber. 
 

The errors satisfy the original finite-difference equations. Therefore, replace U by ε ( )U , W 

by ε ( )W , ... in the scheme (4.2.1). Omit a body force term and indexing material parame-
ters. From the first of equations (4.2.1) we obtain 
 

       A m t k i h k hx zexp [ ( ) ( ) ]− + + + +i i iω
1
2

1
2

∆  

    − − − + + +A m t k i h k hx zexp [ ( ) ( ) ]i i iω
1
2

1
2

∆  

  = − + + +
∆

∆
t

h
C m t k i h k hx z

1
11ρ

ω{ exp [ ( ) ]i i i  
 

    − − + +C m t k i h k hx z1 exp [ ]i i iω ∆  
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    + − + + + +C m t k i h k hx z3
1
2

1
2

exp [ ( ) ( ) ]i i iω ∆  

    − − + + + −C m t k i h k hx z3
1
2

1
2

exp [ ( ) ( ) ] }i i iω ∆  . 

 
Dividing the above equation by 
 

   exp [ ( ) ]− + + +i i iωm t k i h k hx z∆
1
2

         (8.1.2) 
 

we obtain 
 

      A texp [ − iω
1
2
∆  ]  

   − +A texp [ iω
1
2
∆  ]  

  =
∆t
h

1
1ρ

{ exp [C  + i k hx
1
2

 ]        (8.1.3) 

   −C1 exp [  − i k hx
1
2

 ]  

   +C3 exp [  + i k hz
1
2

]  

   −C3 exp [  − i k  hz
1
2

] }   
 

and finally 
 

           − = +A
t t

h
C

k h
C

k hx zsin { sin sin }
ω

ρ
∆ ∆
2

1
2 21 3  .       (8.1.4) 

 
In fact, we could realize, say, the central value (8.1.2) for the first of equations (4.2.1) and 
write directly equation (8.1.3). We will do this for the remaining equations. From the second 
of equations (4.2.1) we obtain 
 

      B texp [ − iω
1
2
∆  ]  

   − +B texp [ iω
1
2
∆  ]  

 =
∆t
h

C
1

2ρ
{ exp [   + i k hz

1
2

]  

   −C2 exp [   − i k hz
1
2

]  

   +C3 exp [  + i k hx
1
2

  ]  

   −C3 exp [  − i k hx
1
2

  ] }  
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and 
 

           − = +B
t t

h
C

k h
C

k hz xsin { sin sin }
ω

ρ
∆ ∆
2

1
2 22 3  .       (8.1.5) 

 
 
For the third equation we have 
 

      C t1
1
2

exp [ − iω ∆  ]  

   − +C t1
1
2

exp [ iω ∆  ]  

     =
∆t
h

A{ exp [  + i k hx
1
2

 ]  

   −A exp [  − i k hx
1
2

 ] } ( )λ µ+ 2  

     +
∆t
h

B{ exp [  + i k hz
1
2

]  

   −B exp [  − i k hz
1
2

] } λ  
 

and 

  − = + +C
t t

h
A

k h
B

k hx z
1 2

2
2 2

sin { ( ) sin sin }
ω

λ µ λ
∆ ∆

 .       (8.1.6) 

 
The fourth equation can be written directly according to equation (8.1.6): 
 

  − = + +C
t t

h
A

k h
B

k hx z
2 2 2

2
2

sin { sin ( ) sin }
ω

λ λ µ
∆ ∆

 .       (8.1.7) 

 
Finally, from the fifth of equations (4.2.1) we obtain 
 

      C t3
1
2

exp [ − iω ∆  ]  

   − +C t3
1
2

exp [ iω ∆  ]  

   =
∆t
h

Aµ { exp [   + i k hz
1
2

]  

   −A exp [   − i k hz
1
2

]  

   +B exp [  + i k hx
1
2

  ]  

   −B exp [  − i k hx
1
2

  ] }  
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and 

  − = +C
t t

h
A

k h
B

k hz x
3 2 2 2

sin { sin sin }
ω

µ
∆ ∆

 .        (8.1.8) 

 
Denote, for simplicity, 
 

 
∆

∆
t

h
=  , sin

ω∆t
S

2
=  , sin

k h
Xx

2
=  , sin

k h
Zz

2
=  . 

Then we can write equations (8.1.4) - (8.1.8) as  
 

 − A S  = ∆
1
ρ

  [ C X1  +  C Z3  ]  

 − B S = ∆
1
ρ

  [ C Z2  +  C X3  ]  
 

 −C S1  = +∆ [ ( )λ µ2 A X  +    λ B Z ]  
 
 

 − C S2  = ∆ [  λ A X  + +( )λ µ2 B Z  ]  
 
 

 −C S3  = ∆  µ [ A Z  +  B X  ]  . 
 
Multiplying the first two equations by S, the third one by X, the fourth one by Z, the fifth 
one by X and Z we obtain 
 

 − A S2  = ∆
1
ρ

  [ C X S1  +  C Z S3  ]  

 − B S2  = ∆
1
ρ

  [ C Z S2  +  C X S3  ]  
 

 − C S X1  = +∆ [ ( )λ µ2 2A X  +    λ B X Z  ]  
 
 

 − C S Z2  = ∆ [  λ A X Z  + +( )λ µ2 2B Z  ]  
 
 

 − C S X3  = ∆  µ [ A X Z  +  B X2  ]  
 
 

 − C S Z3  = ∆  µ [ A Z2  +  B X Z ]  . 
 
Eliminating unknown coefficients C1 , C2  and C3 we obtain 
 

       AS A X A Z BX Z2 2 2 21
2= + + + +∆

ρ
λ µ µ λ µ[ ( ) ( ) ]  , 

       BS BZ BX A X Z2 2 2 21
2= + + + +∆

ρ
λ µ µ λ µ[ ( ) ( ) ]  . 
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Substituting P-wave and S-wave velocities, 
 

 
λ µ
ρ

α
+

=
2 2  , 

µ
ρ

β= 2  , 
λ µ
ρ

α β
+

= −2 2  , 
 

we obtain 
       A S A X A Z BX Z BX Z2 2 2 2 2 2 2 2= + + −∆ [ ]α β α β  , 
 

       BS BZ BX A X Z A X Z2 2 2 2 2 2 2 2= + + −∆ [ ]α β α β  , 
 
and 
 A   [ ( ) ]S X Z2 2 2 2 2 2− +∆ α β +  B X Z X Z∆2 2 2[ ]− +α β  = 0 , 

 A X Z X Z∆2 2 2[ ]− +α β   +  B  [ ( ) ]S Z X2 2 2 2 2 2− +∆ α β  = 0 . 
 
Eliminating unknown coefficients A and B we get 
 
  [ ( ) ] [ ( ) ]S X Z S Z X2 2 2 2 2 2 2 2 2 2 2 2− + − +∆ ∆α β α β  

  − − =∆4 2 2 2 2 0X Z [ ]β α  , 
 
  S S Z S X S X S Z4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2− − − −∆ ∆ ∆ ∆α β α β  

  + + + +∆4 4 2 2 2 2 4 2 2 4 4 2 2( )α α β α β βX Z X Z X Z  

  − − + =∆4 2 2 4 2 2 42 0X Z ( )β α β α  , 
 
  S S X Z S X Z4 2 2 2 2 2 2 2 2 2 2− + − +∆ ∆α β( ) ( )  

  + + + =∆ ∆ ∆4 2 2 4 4 2 2 4 4 2 2 2 22 0α β α β α βX Z X Z  , 
 
  S S X Z S X Z4 2 2 2 2 2 2 2 2 2 2− + − +∆ ∆α β( ) ( )  

  + + =∆4 2 2 2 2 2 0α β ( )X Z  
 
and, finally, 
 

[ ( ) ] [ ( ) ]S X Z S X Z2 2 2 2 2 2 2 2 2 2 0− + − + =∆ ∆α β  . 
 
There are two possible solutions of the above equations: 
 

 S X Z2 2 2 2 2= +∆ α ( )  corresponds to P-waves 
and 
 S X Z2 2 2 2 2= +∆ β ( )  corresponds to S-waves. 
 
Recalling definitions of ∆, S, X and Z we can rewrite the two equations as 
 

   sin ( sin sin )2
2

2
2 2 2

2 2 2
ω

α
∆ ∆t t

h
k h k hx z= +  , 
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   sin ( sin sin )2
2

2
2 2 2

2 2 2
ω

β
∆ ∆t t

h
k h k hx z= +  , 

 

from which we have 
 

   sin ( sin sin )
ω

α
∆ ∆t t

h
k h k hx z

2 2 2
2 2 1 2= ± +  ,        (8.1.9) 

   sin ( sin sin )
ω

β
∆ ∆t t

h
k h k hx z

2 2 2
2 2 1 2= ± +  .      (8.1.10) 

 

Let 
∆t
h
α 2 1≤ . Then sin

ω∆t
2

1≤ . Consequently, ω is real and errors (8.1.1) cannot 

grow with time. Similarly, let 
∆t
h
β 2 1≤ . Then sin

ω∆t
2

1≤  which means that ω is real. 

Since α β> , the condition for the P waves has to be taken as the stability condition. There-
fore, the relation 

     ∆t
h

≤
αmax 2

        (8.1.11) 

 
is the stability condition for the velocity-stress scheme (4.2.1), if αmax  is a maximum P-
wave velocity in a medium. Note that in the case of ∆x≠ ∆z (grid spacings in the x- and z- 
directions, respectively) we would get similarly 
 

     ∆

∆ ∆

t

x z

≤

+










1

1 1
2 2

1 2

αmax

 .       (8.1.12) 

 
Both equations (8.1.9) and (8.1.10) can be rewritten (omitting - sign) as 
 

           sin ( sin sin )
ω∆ ∆t t

h
c

k h k hx z
2 2 20

2 2 1 2= +  

 
where c0  is either α or β. Then 
 

      
ω∆ ∆t t

h
c

k h k hx z
2 2 20

2 2 1 2= +






arcsin ( sin sin )  . 

 
Since the phase velocity c is equal to ω k , the grid phase velocity will be 
 

      c
k t

t
h

c
k h k hgrid x z= +







2
2 20

2 2 1 2
∆

∆
arcsin ( sin sin ) . 
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Divide the above equation by c0  and using k = 2π λ  rewrite 
 

    
2 1

0 0 0c k t c t
h

c t h∆ ∆ ∆
= =

λ
π π

λ
 , 

 

       
k h hx

2
= π

λ
θcos  , 

 

       
k h hz

2
= π

λ
θsin  . 

 
Then 
 

c
c

h
c t h

t
h

c
h hgrid

0 0
0

2 2 1 21
= +







∆

∆
π
λ

π
λ

θ π
λ

θarcsin [ sin ( cos ) sin ( sin ) ] . (8.1.13) 

 
We can introduce a stability ratio 

p
t

h
= 2 α

∆
 

 
and write equation (8.1.13) separately for P and S waves: 
 

 
α
α π

λ
π
λ

θ π
λ

θ
grid

p h
p h h

= +








2
2

2 2 1 2arcsin [ sin ( cos ) sin ( sin ) ]  

and 

 
β
β π

α
β
λ β

α
π
λ

θ π
λ

θ
grid

p h
p h h

= +








2
2

2 2 1 2arcsin [ sin ( cos ) sin ( sin ) ]  . 
 

 
The above equations are grid dispersion relations for the velocity-stress finite-difference 
scheme (4.2.1). Note an important fact that the grid dispersion of the S-waves does depend 

on the α β  ratio (i. e., also on Poisson’s ratio ν
α β

α β
=

−

−

2
2 1

2 2

2 2( )
) while the grid dispersion 

of the P-waves does not. 
 The grid dispersion is illustrated in Fig. 8.1.1. 
 
 
 

(8.1.14) 
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Fig. 8.1.1 
Grid dispersion of the P- and S- waves in the velocity-stress finite-difference scheme (4.2.1) 
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8.2 STABILITY CONDITIONS FOR THE FINITE- 
 DIFFERENCE  SCHEMES 
 
Second-Order Schemes 
 
• conventional grid  (displacement formulation) 
 

 SH ∆ t
h

<
1
2 β

 

 

 P-SV, 3D ( )∆ t h< +
−

β α2 2
1
2  

 
• staggered grid  (displacement-stress and velocity-stress formulations) 
 

 SH ∆ t
h

<
1
2 β

 

 

 P-SV ∆ t
h

<
1
2 α

 

 

 3D ∆ t
h

<
1
3 α

 

 
 
Fourth-Order Schemes 
 
• staggered grid  (displacement-stress and velocity-stress formulations) 
 

 P-SV ∆ t
h

<
6

7 2 α
 

 

 3D ∆ t
h

<
6

7 3 α
 

 
 
α – maximum P-wave velocity in a medium 
β – maximum S-wave velocity in a medium 
h – grid spacing;    h x y z= = =∆ ∆ ∆  
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9. APPROXIMATION  OF  TRACTION-FREE  
 SURFACE 
 
 
 
9.1 TRACTION-FREE  CONDITION 
 
 

                                                                                     n

                                                                                                                     z = 0
                                            x
      y

                 z

 
Fig. 9.1.1 
 
 
Consider a horizontal surface at z=0  shown in Fig. 9.1.1. Let n  be a unit normal to the 
surface. Then n n= −( , , )0 0 1 . Furthermore, consider the surface as a traction-free surface, 
i.e., 
 

 T n( ) = 0 . 
Since 
 T ni ji j= τ  
we have 
 τ τ τ31 32 330 0 0= = =, , ,  
or 
 τ τ τzx zy zz= = =0 0 0, ,  . 
 
Consider for simplicity again only the P-SV case. Then 
 
 τ µzx z xu w= +( )  = 0        (9.1.1a) 
 

and 
 

 τ λ µzz x z zu w w= + +( ) 2 = 0        (9.1.1b) 
 

which we can write as  
 
 τzx = 0  :    u wz x= −               or             u wz x= −       (9.1.2a) 
 

and 
 

 τ zz = 0  :   w uz x= −
+
λ

λ µ2
     or            w uz x= −

+
λ

λ µ2
 .     (9.1.2b) 
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9.2 APPROXIMATION  OF THE  FREE  SURFACE  
 IN  THE  VELOCITY-STRESS  FORMULATION 
 
 
Consider the second-order velocity-stress finite-difference scheme (4.2.1). Localize the free 
surface so that Ti

xx
0 , Ti

zz
0  and U i+1 2 0/  are located on the free surface as it is shown in Fig. 

9.2.1. 

          

T
xx
zz

TxzW

U = 0z = 0

z h=
1
2

= 1 2

i i +1 2
 

Fig. 9.2.1 
 
We have to update U W, ,Txx  and Txz , and, at the same time to assure that Tzz =0  and 

Txz =0 on the free surface. 
Recall equations (2.2.3) omitting the body force term: 
 

 ρ τ τut xx x xz z= +, ,                  (a) 
 

 ρ τ τwt xz x zz z= +, ,                  (b) 
 

 τ λ µ λxx t x z, [ ]= + +2 u w                (c) 
 

 τ λ λ µzz t x z, [ ]= + +u w2                (d) 
 

 τ µxz t z x, ( )= +u w                  (e) 
 

There is no problem with the x-derivatives in equations (a - e). What we have to look at is 
approximation of the z-derivatives. 

In equation (c) we can replace wz  by − +λ λ µ/ ( )2 ux  according to equation (9.1.2b) 

and solve for Ti
xx
0 . 

Since τ zz =0  on the free surface, we do not need equation (d). We simply prescribe 

Ti
zz
0 0=  for all time levels. 
In equation (a) we need to find an approximation to τxz z, . We will extend the grid 

above z=0  ( i.e., =0 ) and image τxz  as an odd function with respect to z=0  (Levander, 
1988). Then obviously τxz =0  at z=0 . Then 
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 T Ti
xz

i
xz

+ − += −1 2 1 2 1 2 1 2/ / / /  
 

and 
 

 τxz z z i
xz

h
T, / /| = +=0 1 2 1 2

2
. 

 
There is no problem to approximate equations (b) and (e) since both W  and Txz  are local-
ized half grid spacing below the free surface. 

To make a summary, the scheme to update Txx , Tzz  and U  on the free surface is 
 

 U Ui
m

i
m

i
i
xx m

i
xx m

i
xz mt

h
T T T+

+
+
−

+
+ += + − +1 2 0

1 2
1 2 0

1 2

1 2 0
1 0 0 1 2 1 2

1
2/

/
/

/

/

, ,
/ /
,( )

∆
ρ

 

 

 T T
t

hi
xx m

i
xx m

i
i
m

i
m

0
1

0
0

1 2 0
1 2

1 2 0
1 24

2
, ,

/
/

/
/( )

( )+
+
+

−
+= +

+
+

−
∆ µ λ µ

λ µ
U U  

 

 Ti
zz m
0

1 0, + = . 
 
The equations for updating Wi

m
1 2

1 2
/

/+  and Ti
xz m
+

+
1 2 1 2

1
/ /
,  are the same as those in the scheme 

(4.2.1). 
 

The problem is more complicated in the case of the fourth-order scheme (5.3.1) since 
the grid is longer in both x- and z-directions (see Fig. 5.3.1). 

Now we will consider updating T Txx zz,  and U  on the free surface. As in the previous 

case there is no problem with Txx  and Tzz : we can use equation (9.1.2b) to replace wz  in 

equation (c) to solve for Ti
xx
0 , and, instead of solving equation (d), we simply prescribe 

Ti
zz
0 0= . 

In order to update U , we need two Txz  values above the free surface − Ti
xz
+ −1 2 1 2/ /  and 

Ti
xz
+ −1 2 3 2/ / . As in the previous case we can image τxz  as an odd function with respect to 

z=0 . Then τxz =0  at z=0  and 
 
 T Ti

xz
i
xz

+ − += −1 2 1 2 1 2 1 2/ / / /  , T Ti
xz

i
xz

+ − += −1 2 3 2 1 2 3 2/ / / /  .    (9.2.2) 
 

Look now at updating W  and Txz  at z h= / 2 , i.e., =1 2/ . If we image τ zz  as an odd 
function with respect to z=0 , we have τ zz =0  at z=0 , 
 
 T Ti

zz
i
zz

− = −1 1  
 
and we can solve equation (d) for Wi 1 2/ . 
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In order to solve equation (e) for Ti
xz
+1 2 1 2/ / , we need U i+ −1 2 1/ . We have several possi-

bilities to approximate U i+ −1 2 1/ . Since we image τxz  as an odd function with respect to 
z=0 , 

 
 τ τxz z xz z−

= −
1 2 1 2

 

 

and  
 

   ( ) ( )u w u wz z+ = − +
−

x z x z1 2 1 2
 

 

from which we get 
 
 U U W W W Wi i i i i i+ − + + + − −= + − + −1 2 1 1 2 1 11 2 1 2 1 1 2 1 2/ / / / / / .       (9.2.3) 
 
From equation (9.1.2b) we have 
 

  w uz z x z| |
0 02
= −

+
λ

λ µ
 

 

which gives 
 

 W W U Ui i
i

i i1 2 1 2
0

1 2 0 1 2 02/ / / /( )− = −
+

−− + −
λ

λ µ
 

 

and consequently 
 

 W W U Ui i
i

i i− + −= +
+

−1 2 1 2
0

1 2 0 1 2 02/ / / /( )
λ

λ µ
     (9.2.4a) 

and 

 W W U Ui i
i

i i+ − +
+

+ += +
+

−1 1 2 11 2
1 0

3 2 0 1 2 02/ / / /( )
λ

λ µ
.     (9.2.4b) 

 
 

Substituting Wi −1 2/  and Wi+ −1 1 2/  from equations (9.2.4) into equation (9.2.3) we finally 
obtain 
 
 U U W Wi i i i+ − + += + −1 2 1 1 2 1 11 2 1 22 2/ / / /  
 

   +
+

−
+

+ +
λ

λ µ2 1 0
3 2 0 1 2 0

i
i i( )/ /U U          (9.2.5) 

 

   −
+

−+ −
λ

λ µ2 0
1 2 0 1 2 0

i
i i( )/ /U U . 
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Another possibility is to put simply U = 0  everywhere above the free surface (Robertsson, 
1996). 
 
Now we will consider at updating T Txx zz,  and U at z h= , i.e., =1. 

In order to solve equations (c) and (d) for Ti
xx
1  and Ti

zz
1 , we need Wi −1 2/ . This is given 

by equation (9.2.4a). 
Another possibility is to put W =0 everywhere above the free surface. 

In order to solve equation (a) for U i+1 2 1/  we need Ti
xz
+ −1 2 1 2/ / . This is given by equation 

(9.2.2). 
 

To make a summary, here is the scheme: 
 
 U Ui

m
i
m

+
+

+
−=1 2 0

1 2
1 2 0

1 2  
 

 ( )+ − +
+

+ − +
∆t
h

A T T T
i

i
xx m

i
xx m

i
xz m1

2
1 2 0

2 0 1 0 1 2 3 2ρ
{ , , ,  

 

 ( )+ − ++ +B T T Ti
xx m

i
xx m

i
xz m

1 0 0 1 2 1 22, , , }  

 
 W Wi

m
i
m

1 2
1 2

1 2
1 2+ −=  

 

 ( )+ − + ++ −
∆t
h

A T T T T
i

i
xz m

i
xz m

i
zz m

i
zz m1

1 2
3 2 1 2 3 2 1 2 2 1ρ

{ / /
,

/ /
, , ,  

 

 ( )+ − + −+ −B T T T Ti
xz m

i
xz m

i
zz m

i
zz m

1 2 1 2 1 2 1 2 1 0/ /
,

/ /
, , , }  

 
 T Ti

xx m
i
xx m

0
1

0
, ,+ =  

 

 ( )+
+

+
−+

+
−
+∆t

h
A

i
i
m

i
m{

( )
[

4
2 0

3 2 0
1 2

3 2 0
1 2µ λ µ

λ µ
U U  

  ( )+ −+
+

−
+B i

m
i
mU U1 2 0

1 2
1 2 0

1 2 ] }  

 
 Ti

zz m
0

1 0, + =  
 

 
 T Ti

xz m
i
xz m

+
+

+=1 2 1 2
1

1 2 1 2
, ,  

 

 + −+ +
+

−
+∆t

h
A Wi i

m
i
mµ 1 2 1 2 2 1 2

1 2
11 2

1 2{ [ W  
 

 + − − ++
+

+
+

+
+ +U U W Wi

m
i
m

i
m

i
m

1 2 2
1 2

1 2 1
1 2

11 2
1 2

1 2
1 22 2/ /

/
/

/   
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 −
+

−
+

+
+

+
+λ

λ µ2 1 0
3 2 0

1 2
1 2 0

1 2

i
i
m

i
m( )/

/
/

/U U  

 +
+

−+
+

−
+λ

λ µ2 0
1 2 0

1 2
1 2 0

1 2

i
i
m

i
m( ) ]/

/
/

/U U  

 

 ( )+ − + −+
+

+
+

+
+ +B i

m
i
m

i
m

i
mU U W W1 2 1

1 2
1 2 0

1 2
11 2

1 2
1 2

1 2 }  

 
or 
 
  T Ti

xz m
i
xz m

+
+

+=1 2 1 2
1

1 2 1 2
, ,  

 

 ( )+ + −+ +
+

+
+

−
+∆t

h
Ai i

m
i
m

i
mµ 1 2 1 2 1 2 2

1 2
2 1 2

1 2
11 2

1 2{ /U W W  
 

  ( )+ − + −+
+

+
+

+
+ +B i

m
i
m

i
m

i
mU U W W1 2 1

1 2
1 2 0

1 2
11 2

1 2
1 2

1 2 }  

 
 T Ti

xx m
i
xx m

1
1

1
, ,+ =  

 

 ( )+ + −+
+

−
+∆t

h
Ai i

m
i
m{ ( ) [λ µ2 1 3 2 1

1 2
3 2 1

1 2U U  

 ( )+ −+
+

−
+B i

m
i
mU U1 2 1

1 2
1 2 1

1 2 ]  
 

 ( )+ − −
+

−+ +
+
+

−
+λ

λ
λ µi i

m
i
m

i
i
m

i
mA1 5 2

1 2
1 2

1 2

0
1 2 0

1 2
1 2 0

1 2
2

[ ( )/
/

/
/W W U U  

 

     ( )+ −+ +B i
m

i
mW W3 2

1 2
1 2

1 2 ] 

or 
 

T Ti
xx m

i
xx m

1
1

1
, ,+ =  

 

  ( )+ + −+
+

−
+∆t

h
Ai i

m
i
m{( ) [λ µ2 1 3 2 1

1 2
3 2 1

1 2U U ( )+ −+
+

−
+B i

m
i
mU U1 2 1

1 2
1 2 1

1 2 ]  
 

  + +λ i i
mA1 5 2

1 2[ W  ( )+ −+ +B i
m

i
mW W3 2

1 2
1 2

1 2 ] }  

 
Equations for Ti

zz m
1

1, +  are the same as for Ti
xx m
1

1, +  except that ( )λ µ+2 1i  and λ i 1  are in-
terchanged. 
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U Ui
m

i
m

+
+

+
−=1 2 1

1 2
1 2 1

1 2
/

/
/

/  
 

   ( )+ − + +
+

+ − + +
∆t
h

A T T T T
i

i
xx m

i
xx m

i
xz m

i
xz m1

1 2 1
2 1 11 1 2 5 2 1 2 1 2ρ /

, ,
/ /
,

/ /
,{  

 

  ( )+ − + −+ + +B T T T Ti
xx m

i
xx m

i
xz m

i
xz m

11 1 1 2 3 2 1 2 1 2
, ,

/ /
,

/ /
, }  . 

 

A = −
1

24
,     B =

9
8

. 

 

9.3 APPROXIMATION  OF THE  FREE  SURFACE 
 IN  THE  DISPLACEMENT  FORMULATION 
 
 
In this section we will present the approach suggested by Zahradník (1995b). Numerical 
tests by Zahradník & Priolo (1995) and Moczo et al. (1997) showed that the scheme simu-
lates the flat free surface very accurately.  

It can be shown by theoretical investigation of the consistency of the displacement 
scheme (4.3.13) on the horizontal free surface that application of the so-called vacuum 
formalism ( the interior scheme is applied at the grid points on the surface while µ=0  and 
λ =0 are assumed above the surface ) applied to the scheme leads to violation of the trac-
tion-free condition. A term violating the condition comes from the approximation of the 
( )λw z x  derivative. Therefore, another approximation of the mixed derivatives should be 
found. 

Consider again equations (4.3.8), 
 
 Φ Ψ= a x  , Φ Ψz x za= ( ) .         (9.3.1) 
 
Instead of (4.3.9) we will approximate the Φz  derivative as an arithmetic average of ap-
proximations in two different x-positions (see Fig. 9.3.1) 
 

( ) ( )Φ Φ Φ Φ Φz i i i i ih h/ / / / / / / /= − + −




+ + + − − + − −

1
2

1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2     (9.3.2) 

 
From (9.3.1) we have 

  
Φ

Ψ
a x= .    (9.3.3) 

Integration of equation (9.3.3) 
 

                                          
Φ

Ψ
( , )
( , )

( , )/

/
/

x z
a x z

dz x z dzi

iz

z

x i
z

z
+

+

+

+

+

∫ ∫=1 2

1 2

1

1 2

1
, 
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                          h
                                                                 

−1

          h

                                                                

                                                                 
+1

              i – 1             i              i + 1                
 

 Fig. 9.3.1   
 Illustration of approximation (9.3.2) 

 
 

leads to 
  Φ Ψi i

z
x ia+ + + + +

=1 2 1 2 1 2 1 2 1 2/ / / / /       (9.3.4a) 

where 

 a h
dz

a x zi
z

iz

z

+
+

+
−

=












∫1 2

1 2

1
1

/
/( , )

. 

 

Similarly , we obtain 
 
 Φ Ψi i

z
x ia+ − + − + −

=1 2 1 2 1 2 1 1 2 1 2/ / / / /  ,       (9.3.4b) 
 

 Φ Ψi i
z

x ia− + − − +
=1 2 1 2 1 2 1 2 1 2/ / / / /  ,       (9.3.4c) 

and 
 Φ Ψi i

z
x ia− − − − − −

=1 2 1 2 1 2 1 1 2 1 2/ / / / /  .       (9.3.4d) 

 
Approximate the x-derivative in equation (9.3.4a): 
 

   ( )Ψ Ψ Ψx i i ih+ + + + += −1 2 1 2 1 1 2 1 2
1

/ / / / . 

 
Approximate both values of Ψ  in z +1 2/  positions as arithmetic averages of the Ψ  values 
in z  and z +1  positions: 
 

 ( )Ψ Ψ Ψi i i+ + + + += +1 1 2 1 1 1
1
2/  , 

 

 ( )Ψ Ψ Ψi i i+ += +1 2 1
1
2/  . 
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Then we obtain 
 

 ( )Ψ Ψ Ψ Ψ Ψx i i i i ih+ + + + + += + − −1 2 1 2 1 1 1 1
1

2/ /  .    (9.3.5a) 

 
Similarly, 

 

 ( )Ψ Ψ Ψ Ψ Ψx i i i i ih+ − + + − −= + − −1 2 1 2 1 1 1 1
1

2/ /  ,    (9.3.5b) 

 ( )Ψ Ψ Ψ Ψ Ψx i i i i ih− + + − + −= + − −
1 2 1 2 1 1 1 1

1
2/ /

 ,    (9.3.5c) 

and 

 ( )Ψ Ψ Ψ Ψ Ψx i i i i ih− − − − − −= + − −
1 2 1 2 1 1 1 1

1
2/ /

 .    (9.3.5d) 

 
Substituting approximations (9.3.5), (9.3.4) and (9.3.2) into (9.3.1) we obtain 
 

  ( )a
hx z i

Ψ =
1

4 2 ( )[ a i
z

i i i i+ + + + ++ − −1 2 1 1 1 1Ψ Ψ Ψ Ψ  

 
    ( )− + − −+ − + + − −ai

z
i i i i1 2 1 1 1 1 1/ Ψ Ψ Ψ Ψ  

                 (9.3.6) 
    ( )+ + − −− + − + −ai

z
i i i i1 2 1 1 1 1/ Ψ Ψ Ψ Ψ  

 
    ( )− + − −− − − − − −ai

z
i i i i1 2 1 1 1 1 1Ψ Ψ Ψ Ψ ] . 

 

 

                                                                  −1

                                                                   

                                                                   +1

         i – 1               i                i + 1
 

 
 Fig. 9.3.2 

Illustration of approximation (9.3.6). Vertical lines in positions 
i−1 2/  and i+1 2/  indicate effective material parameters 

 
Localize now the free surface at z z z= = 0 . Apply the so-called vacuum formalism, i.e.,  
put a =0  for z z< . Then we obtain from (9.3.6) 
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  ( )a
hx z i

Ψ =
1

4 2 ( )[ a i
z

i i i i+ + + + ++ − −1 2 1 1 1 1Ψ Ψ Ψ Ψ  

                 (9.3.7) 
    ( )+ + − −− + − + −ai

z
i i i i1 2 1 1 1 1/ ]Ψ Ψ Ψ Ψ  . 

 

                                                                

                                                        +1
             i − 1           i               i + 1  

 
Fig. 9.3.3  
Illustration of approximation (9.3.7). Vertical lines in positions 
i −1 2/  and i +1 2/  indicate effective material parameters 

 
 
Applying now the x z→ , z x→ , i → , → i   substitutions in formula (9.3.6) we obtain 
an approximation 
 

  ( )a
hz x i

Ψ =
1

4 2 ( )[ a i
x

i i i i+ + + + ++ − −1 2 1 1 1 1Ψ Ψ Ψ Ψ  

 

    ( )− + − −− + + − + −ai
x

i i i i1 1 2 1 1 1 1/ Ψ Ψ Ψ Ψ  

                 (9.3.8) 
    ( )+ + − −− + + − −ai

x
i i i i1 2 1 1 1 1/ Ψ Ψ Ψ Ψ  

 
    ( )− + − −− − − − − −ai

z
i i i i1 1 2 1 1 1 1Ψ Ψ Ψ Ψ ]  . 

 
Localizing again the free surface at z z z= = 0 and applying the vacuum formalism we get 
from (9.3.8) 
 

  ( )a
hz x i

Ψ =
1

4 2 ( )[ a i
x

i i i i+ + + + ++ − −1 2 1 1 1 1Ψ Ψ Ψ Ψ  

              (9.3.9) 
 

    ( )− + − −− + + − + −ai
x

i i i i1 1 2 1 1 1 1/ ]Ψ Ψ Ψ Ψ  . 
 

FREE  SURFACE 
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                                                        +1
i − 1 i i + 1  

 
 Fig. 9.3.4  

Illustration of approximation (9.3.9) 
 
To make a summary, the displacement finite-difference scheme for the P-SV waves for 

the grid points on the free surface is the same as scheme (4.3.13) for the interior grid points 
with the following exceptions:  
1.  = 0 , 
2.  only half values of the a i

x  and a i
x
−1  parameters should be considered, 

3.  the L Lzz zx, and Lxz  operators are 

 ( )L a
h

azz i
z

i
m

i
m( , )Ψ Ψ Ψ= −+

1
2 1 , 

 

 ( )L a
h

azx i
x

i
m

i
m

i
m

i
m( , ) { /Ψ Ψ Ψ Ψ Ψ= + − −+ + + + +

1
4 2 1 2 1 1 1 1  

 
 

 ( )− + − −− + + − + −ai
x

i
m

i
m

i
m

i
m

1 1 2 1 1 1 1/ }Ψ Ψ Ψ Ψ  

and               (9.3.10) 

 ( )L a
h

axz i
z

i
m

i
m

i
m

i
m( , ) { /Ψ Ψ Ψ Ψ Ψ= + − −− + − − +

1
4 2 1 2 1 1 1 1  

 

 ( )+ + − −+ + + + +ai
z

i
m

i
m

i
m

i
m

1 2 1 1 1 1/ }Ψ Ψ Ψ Ψ . 
 

While a reasonably accurate and stable modeling of the flat free surface can be achieved by 
several finite-difference techniques, an implementation of the free-surface topography is 
not a trivial problem. This is especially true about the displacement formulation. The more 
complex geometry of the free surface, the lower accuracy and more limitations on the 
physical parameters of the medium in order to keep the free-surface approximation stable. 

Due to the explicit presence of the stress-tensor components in the equations of motion 
the implementation of the traction-free condition is easier in the displacement-stress and 
velocity-stress formulations. The techniques of Pitarka & Irikura (1996), Ohminato & 
Chouet (1997) and Hestholm & Ruud (in press)  are examples. Ohminato & Chouet’s 
(1997) choice of positions of the stress-tensor components in the grid might be better than 
that usually used and assumed in Section 9.2. 

For a concise review of modeling the free-surface topography in the finite-difference  
method see Moczo et al. (1997) and Robertsson (1996).  

The problem of implementing conditions on boundaries of complex geometric shapes is 
an inherent problem of the finite-difference method. Moczo et al. (1997) overcome the 
problem by combining the finite-element and finite-difference methods. 

FREE  SURFACE 
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10. SIMULATION  OF  SEISMIC  SOURCE 
 
 
 
10.1 SIMULATION  OF  A  POINT  SOURCE  
 WITH  ARBITRARY  FOCAL  MECHANISM 
 USING  A  BODY-FORCE  TERM 
 
 
Before we start with the finite-difference approximations of the body-force term in the equa-
tion of motion, we will briefly review basic relations. 

The representation theorem reads 
 

u x t m G dn pq np q( , ) ,= ∗∫∫ Σ
Σ

 

 

where mpq  is the moment-density tensor 
 

           m t c u tpq pqrs r s( , ) ( ) [ ( , ) ] ( )ξ ξ ξ ν ξ=  
 
where ξ  specifies a position on a fault surface Σ , cpqrs  is a tensor of elastic moduli, [ ]u  
is a slip vector and ν  is a fault normal. G np q,  is a derivative of the Green’s tensor. G np q,  is 
physically an equivalent of having a single couple with an arm in the q-direction and forces 
in the p-direction on a fault surface Σ at ξ . m Gpq np q∗ ,  is a displacement at x  due to cou-

ples at ξ  and mpq  is the strength of the (p,q) couple. 
 
In the point-source approximation surface Σ can be considered as a system of couples lo-
cated at a point: 
 

    u x t m d Gn pq np q( , ) ,=










 ∗∫∫ Σ

Σ

 . 

 

The moment tensor Mpq  is defined as  
 

        M m dpq pq= ∫∫ Σ
Σ

 . 

Then 
 

    u x t M Gn pq np q( , ) ,= ∗  
 
where M pq  is the strength of the resulting (p,q) couple at the point. 
 
In the case of a tangential slip ( ν. ; [ ]n u u n= =0 ∆ , see Fig.10.1.1 for explanation) in an 
isotropic medium the moment-density tensor takes a simple form 
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     m u upq p q q p= +µ ν ν( [ ] [ ] )  
or 
     m u n npq p q q p= +µ ν ν∆ ( )  . 
 

Then the moment tensor is 
 

    M u n n dpq p q q p= +∫∫ µ ν ν∆ Σ
Σ

( )  . 

 
Assuming a homogeneous medium in the source region or average µ we get 
 
      M n n u t dpq p q q p= + ∫∫µ ν ν ξ( ) ( , )∆ Σ

Σ

 . 

 

The integral can be approximated: 
 
     ∆ Σ ∆ Σ ∆ ∆

Σ Σ

u t d u t d u t A u s t A( , ) ( ) ( ) ( )ξ = = =∫∫ ∫∫  

 

where s t
u t

u
( )

( )
=

∆
∆

 and ∆ ∆u u t= → ∞( )  . 

 
Then the moment tensor reads 
 
        M A u s t n npq p q q p= +µ ν ν∆ ( ) ( )  . 
 
The scalar seismic moment M0  is defined as 
 
       M A u0 = µ ∆  . 
 

Then for the tangential slip 
 
       M M n n s tpq p q q p= +0 ( ) ( )ν ν  .       (10.1.1) 
 
 

In the coordinate system shown in Fig. 10.1.1 the components of the fault normal vector ν  
and vector n  are: 
 
          nx S S= +cos cos cos sin sinλ δ λΦ Φ  
          ny S S= −cos sin cos sin cosλ δ λΦ Φ  
          nz = − sin sinλ δ  

   (10.1.2) 
          ν δx S= − sin sinΦ  
          ν δy S= sin cosΦ  
          ν δz = − cos  
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 ΦS strike ν  fault normal 

δ dip [ ]u u n= ∆  
λ  rake slip [ ]u  taken as the movement of the hanging  

  wall relative to the foot wall 
 
 Fig. 10.1.1 
 Definition of the fault-orientation parameters and the coordinate system  
 
 
From (10.1.1) and (10.1.2) follows 
 
 M t M s txx S S( ) ( sin cos sin sin sin sin ) ( )= − +0

22 2δ λ δ λΦ Φ  , 

 M t M s txy S S( ) ( sin cos cos sin sin sin ) ( )= +0 2
1
2

2 2δ λ δ λΦ Φ  , 

 M t M s txz S S( ) ( cos cos cos cos sin sin ) ( )= − +0 2δ λ δ λΦ Φ  ,     (10.1.3) 

 M t M s tyy S S( ) ( sin cos sin sin sin cos ) ( )= −0
22 2δ λ δ λΦ Φ  , 

 M t M s tyz S S( ) ( cos cos sin cos sin cos ) ( )= − −0 2δ λ δ λΦ Φ  , 
 M t M s tzz ( ) sin sin ( )= 0 2δ λ  . 
 
Due to the symmetry of the moment tensor 
 
   M M M M M Mxy yx xz zx yz zy= = =, ,  . 
 
We want to simulate a point dislocation source in the finite-difference scheme. This means a 
simulation of a system of the force-couples (p,q) with a strength Mpq  acting at a grid point. 
A body-force term in the equation of motion provides such a possibility. Frankel  (1993) 
proposed such an approach and used it in the displacement formulation on a conventional 
grid. Graves (1996) adapted the approach in the velocity-stress formulation on a staggered 
grid. 
 Consider, e.g., an (y,x) couple acting at a grid point ( i ks s s, , ); see Fig. 10.1.2. 
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 Fig. 10.1.2 
 Illustration of simulation of the (y,x) couple on the conventional grid 
 
Then the corresponding body-force term in the equation of motion, i.e., fy  can be approxi-
mated as 
 

 f
h h

M ty yx ii kk ii kkR R R L L L
( ) ( )= −

1 1
23 δ δ δ δ δ δ  

 
where 2h is the arm length and 1 3h  normalizes the force to the unit volume. 
 
 
Generally, assuming that the body-force couples act at the grid point ik , for a conventional 
(i.e., not staggered) grid we get 
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In the case of a tangential slip M tpq ( )  is given by relation (10.1.1) or (10.1.3). 
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Simulation of the source on a staggered grid is slightly more complicated. This is because 
each displacement (or particle velocity) component is located in different position in the 
grid. Let us illustrate this in the x-z plane in the P-SV case. Assume the body-force couples 
acting at the grid point i+ +1 2 1 2  where Txx and Tzz are located. Consider the x-
component of the body-force term. Since this term is present in the equation for the u com-
ponent we can apply it only in the grid positions where U is located. 
 Force couples having forces in the x-direction contribute to the fx  term. Consider first an 
(x,x) couple. This can be simulated at i +12/  and i+ +1 1 2/  grid points; see Fig. 10.1.3. 
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 Fig. 10.1.3 
 Illustration of simulation of the (x,x) couple on the staggered grid 
 
Consider now an (x,z) couple. We cannot simulate it at grid points i+ +12 1/  and i+12/ , 
(i.e., analogously as in the case of a conventional grid) since U is not located at these grid 
points. We can consider, however, one couple along grid line i+1 and one couple along grid 
line i , i.e., 
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 Fig. 10.1.4 
 Illustration of simulation of the (x,z) couple on the staggered grid 
and 

x

z 

z

x 

i  

−1 2

i +1i +1 2

+1

+1 2

T Txx zz,

U 

i +1 2i  

T Txx zz,

Txz  

U 

W 

+1 2

+ 3 2

i +1



 83

   F F
h h

M t
h

M ti
x

i
x

xz xz+ −= − = =3 2 1 2 3 4
1
2

1 1
2

1
4

( ) ( )  

 
(see Fig. 10.1.4) and take an average of the two couples. 
 
 
Generally, assuming the body-force couples acting at the grid point i k+ + +1 2 1 2 1 2 , for a 

staggered grid with T Txx yy,  and Tzz  located at the grid point i k+ + +1 2 1 2 1 2  , we get 
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Equations (10.1.5) can be rewritten replacing actual-position indices by indices correspond-
ing to the finite-difference cells (see Section 4.1): 
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Equations (10.1.6) with the finite-difference cell indices are ready for programming. 
 
In the case of the source acting at the grid point ik  in the staggered grid with Txx , Tyy  
and Tzz  located at the grid point ik  we would obtain 



 85

 

   F F
h

M ti k
x

i k
x

xx+ −= − =1 2 1 2 4
1

( )  

   F F
h

M ti k
x

i k
x

xy+ + + −= − =1 2 1 1 2 1 4
1

4
( )  

   F F
h

M ti k
x

i k
x

xy− + − − −= − =1 2 1 1 2 1 1 2 4
1

4
( )  

   F F
h

M ti k
x

i k
x

xz+ + + −= − =1 2 1 1 2 1 4
1

4
( )  

   F F
h

M ti k
x

i k
x

xz− + − −= − =1 2 1 1 2 1 4
1

4
( )  

 

   F F
h

M ti k
y

i k
y

yy+ −= − =1 2 1 2 4
1

( )  

   F F
h

M ti k
y

i k
y

yx+ + − += − =1 1 2 1 1 2 4
1

4
( )  

   F F
h

M ti k
y

i k
y

yx+ − − −= − =1 1 2 1 1 2 4
1

4
( )      (10.1.7) 

   F F
h

M ti k
y

i k
y

yz+ + + −= − =1 2 1 1 2 1 4
1

4
( )  

   F F
h

M ti k
y

i k
y

yz− + − −= − =1 2 1 1 2 1 4
1

4
( )  

 

   F F
h

M ti k
z

i k
z

zz+ −= − =1 2 1 2 4
1

( )  

   F F
h

M ti k
z

i k
z

zx+ + − += − =1 1 2 1 1 2 4
1

4
( )  

   F F
h

M ti k
z

i k
z

zx+ − − −= − =1 1 2 1 1 2 4
1

4
( )  

   F F
h

M ti k
z

i k
z

zy+ + − += − =1 1 2 1 1 2 4
1

4
( )  

   F F
h

M ti k
z

i k
z

zy+ − − −= − =1 1 2 1 1 2 4
1

4
( )  

 
For alternative approaches to the implementation of the source see, for example, Yomogida 
& Etgen (1993), Coutant et al. (1995), and Olsen et al. (1995). 
 
 
 
10.2 DECOMPOSITION  OF  THE  WAVEFIELD 
 
Let S  be a displacement due to a source. Then the total displacement U  is 
 

  U S UR= +         (10.2.1) 
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where UR  is a displacement corresponding to the residual (or scattered) wavefield. 
 Consider now rectangles (or squares) a and b on a conventional rectangular grid (see Fig. 
10.2.1). Let us assume the source located inside rectangle b. 
 Using decomposition (10.2.1) we can compute the total wavefield outside rectangle b 
without introducing source term in the finite-difference scheme used inside rectangle b or 
prescribing displacement at the grid points inside rectangle b. UR  inside and on rectangle b 
can be computed by the finite-difference scheme ( a second-order scheme is assumed; a 
fourth-order scheme would require more rectangles). UR  on rectangle a is computed as 
 

         U U SR ( ) ( ) ( )a a a= −  .       (10.2.2) 
 

U  on rectangle b is computed as  
 

         U S UR( ) ( ) ( )b b b= +  .       (10.2.3) 
 

U  outside rectangle b (i. e., starting on rectangle a) is computed by the finite-difference 
scheme. 

Such an indirect wavefield excitation was proposed by Alterman & Karal (1968). It was 
applied later by Vidale & Helmberger (1987) in the fourth-order modeling.  
 
 

             
 

 

        
 

 Fig. 10.2.1 
 Excitation rectangles a and b 
 
 
A special case when only two, the so-called excitation lines are used for a wavefield excita-
tion (e.g., Moczo, 1989) is illustrated in Fig. 10.2.2. 

a b 

UR  

U  

U total wavefield  

U residual wavefieldR
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In this case UR  on line b and below line b is computed by the finite-difference 
scheme. UR  on line a is computed according to equation (10.2.2). U  on line b is computed 
according to equation (10.2.3). U  on line a and above line a is computed by the finite-
difference scheme. 
 

                      
 
 Fig. 10.2.2 
 Excitation lines a and b 
 
 
A third example of an indirect wavefield excitation is a part of the two-step hybrid computa-
tion (Zahradník, 1995a, Zahradník & Moczo, 1996, Moczo et al., 1997) as it is illustrated in 
Fig. 10.2.3. 

In the 1st step, the wavefield is recorded along lines a and b. This wavefield, UK , con-
sists of the wavefield radiated from the source (incident wavefield) and also of that reflected 
from the free surface (this is important). 

In the 2nd step 
− UR  on rectangle b and inside the region bounded by rectangle b, nonreflecting (NB) 

boundaries and free surface (including) is computed by the finite-difference scheme, 
− UR  on rectangle a is computed as 
 

 U U UR K( ) ( ) ( )a a a= −  ,       (10.2.4) 
 

− U  on rectangle b is computed as 
 

        U U UK R( ) ( ) ( )b b b= +  ,       (10.2.5) 
 

− U  on rectangle a, inside the region bounded by a and the free surface (including) is 
computed by the finite-difference scheme. 

 
The use of the discrete-wavenumber method is not necessary - the source radiation and 
background wave propagation can be computed by any suitable method. 
 
For the indirect excitation at two vertical grid lines see Fäh (1992) and Fäh et al. (1993). 

S NB  S NB
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UR  

NB 
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S    - plane of symmetry/antisymmetry 

NB - nonreflecting boundary 
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Fig. 10.2.3 
Scheme of the hybrid discrete-wavenumber – finite-difference method. DW – discrete 
wavenumber method, FD – finite-difference method. 
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11. SIMULATION  OF  NONREFLECTING 
 BOUNDARIES 
 
 
The spatial finite-difference grid is bounded by artificial boundaries. In an ideal case these 
boundaries should be perfectly transparent for any wave impinging on the boundary. Gen-
erally we only can approximate transparency. Many different techniques were developed to 
simulate the so-called absorbing or nonreflecting boundaries. We will briefly mention some 
of them. 
 
 
 
11.1 ARTIFICIAL  DAMPING  ZONE 
 
 
A simple technique to simulate nonreflecting boundary condition was suggested by Cerjan 
et al. (1985). In their approach a useful part of a spatial grid is surrounded by a boundary 
zone A as it is shown in Fig. 11.1.1. The zone is defined by a number of grid lines N and 
the attenuating function A(i). 
 

1 N

A RAL

ABALB

x

z

A RB

 
 Fig. 11.1.1 
 Artificial damping zone A consisting of a strip of N grid lines 
 
 
Displacement values or particle-velocity values corresponding to both the updated and pre-
vious time levels are reduced (multiplied by A(i) ) after each time step. 
 
Cerjan et al. (1985) used function A defined, for example, for the left boundary zone as 
 
 [ ]A i N iL C( ) exp ( ( ) )= − − 2  ; 1≤ ≤i N  , 
 

 A iL ( ) = 1 ;  i N>  . 
 
Requiring that 
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 A AL ( )1 0=  and A NL ( ) .= 10  
 
coefficient C  is determined as 
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Its first derivative at x A w=  is continuous. The function for a discrete argument is 
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  A iL ( ) = 1 ;  i N>  . 
 
Usually N ≥ 20 is necessary and A0  should not be smaller than 0.92. It is recommended to 
properly adjust values of N and A0  for the problem under consideration. 
 In the corner zone, e. g., A LB , the attenuating function is given by a product 
A i AL B( ) ( ) , where  is a discrete argument in the  –z-direction. 
 The artificial damping zone can be combined with some finite-difference scheme that is 
applied at the boundary grid lines ( i = 1 in the case of the left boundary) and approximately 
simulates a nonreflecting boundary. 
 
 
 
11.2  SHOCK  ABSORBER  ZONE 
 
 
Sochacki et al. (1987) suggested a different type of the boundary zone to simulate nonre-
flecting boundaries. It is based on inclusion of a damping term in the equation of motion. 
Consider, for example, the equation for the u component of displacement 
 

u A utt t+ =2
1
ρ

 

 
where A is a damping function and      represents the right-hand side of the equation of mo-
tion. Then we can obtain the finite-difference scheme which can be symbolically written as 
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where ∆ represents the finite-difference approximation of      . 
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 An example for the right-bottom corner zone (shown in Fig. 11.2.1) can be 
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 , 

 
h being a grid spacing. Similarly as in the case of the artificial damping zone, it is neces-
sary to properly adjust parameters a, b and A0  for the problem under consideration. 
 

x0

z0

z

x

b

a

A = 0 A R

A B A RB

 
 

  Fig. 11.2.1 
  Illustration of the shock absorber zone for the right-bottom corner 
 
 
For a different type of  the absorbing boundary zone based on two additional damping 
terms in the equation of motion see Korn & Stöckl (1982). 
 
 
 
11.3  APPROXIMATE ABSORBING BOUNDARY 
 CONDITIONS 
 
 
One possible approach is to apply a paraxial (one-way) wave equation at the artificial grid 
boundary since such an equation only permits energy propagation in a limited range of an-
gles. An example of the first-order paraxial equation can be the equation for the SH-wave 
propagating in the x-direction, 
 

1
0

β
v vt x+ =  . 

 
An example of the second-order approximation is 
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1
2

0
β

β
v v vtt tx zz+ − =  . 

 

Paraxial equations can be replaced by the finite-difference schemes which are then applied 
at the boundary. This approach was first used by Clayton & Engquist (1977) and then by, 
for example, Fuyuki & Matsumoto (1980), Emerman & Stephen (1983) and Stacey (1988). 
 Emerman & Stephen (1983) showed that the Clayton & Engquist’s condition is unstable 
for β α < 0 46. . Stacey (1988) showed stability of his condition for α β < 2 2. . Emerman & 
Stephen (1983) suggested a modification of the Clayton & Engquist (1977) condition 
which is stable for any β α > 0 . 
 Another approach is based on minimizing the coefficient of reflection at the artificial 
boundary such as in Reynolds (1978) and Peng & Toksöz (1994, 1995). 
 Higdon (1991) developed an approximation of the absorbing boundary condition that is 
based on the composition of simple first-order differential operators. Each operator gives 
perfect absorption for a plane wave impinging on the boundary at certain velocity and an-
gle of incidence. An example of the  finite-difference scheme simulating the boundary con-
dition can be obtained by approximating the operator 
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applied to each component of displacement. Here, θP  and α (θS  and β) are angle of inci-
dence of the P-wave and the P-wave velocity (angle of incidence of the S-wave and the S-
wave velocity), respectively. 
 
We will finish with a unified representation of several boundary conditions. Consider, e. g., 
the left boundary. A displacement value U k

m
1

1+  can be updated according to the formula 
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where the coefficients A pq ; p q, { , , }∈ 0 1 2  are given in Tab. 11.3.1. 
 
In the table, ∆t is the time step, h is the grid spacing, c is the velocity and 
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where ν α= ∆t h , α being the P-wave velocity, i ∈{ , }1 2 , and b is a weighting coefficient. 
Parameters a i  are the positive dimensionless constants. 
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Tab. 11.3.1 
Coefficients of the absorbing boundary conditions (11.3.1) 
 
 
The boundary condition developed by Peng & Toksöz (1994, 1995) is represented in the 
form (11.3.1); however, the formulae for the Apq  coefficients are rather lenghty. 
 The boundary condition (11.3.1) can be applied to different components of the dis-
placement or particle velocity with different values of parameters. 
 
An interesting approach to making use of the boundary conditions developed for the P-SV 
case in the 3D modeling was suggested by Chang & McMechan (1989). 
 
Numerical experience with different types of the absorbing boundary conditions indicates 
that there is no best absorbing boundary condition which would be universally (i. e., in all 
wavefield configurations) both sufficiently accurate and stable. A user of the finite-
difference method is recommended to be able to use several different techniques. 
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12.  CONCLUDING  REMARKS 
 
 
The finite-difference method is the most popular and widely used numerical method for 
modeling seismic wave propagation and earthquake ground motion. There are several reasons 
for this. The method is relatively simple. It is applicable to complex media. The finite-
difference scheme is relatively easy to implement in computer codes.  

It is also important that the finite-difference method is considerably simpler than the finite-
element method and mainly it requires less computer time and memory than the finite-
element method. 

The advantages of the finite-difference method with respect to the finite-element method 
are reasons why the finite-difference method has been recently used for the three-dimensional 
simulations of seismic ground motion due to major earthquakes in California and Japan. 

At the same time each user of the finite-difference method should be aware of the major 
problems of the method when applied to complex media (e.g., laterally inhomogeneous media 
with irregular nonplanar interfaces between layers and blocks, and, possibly, also with free-
surface topography). It is not trivial to model nonplanar internal material discontinuities and, 
mainly, free-surface topography in a sufficiently accurate and stable manner. Implementation 
of conditions on boundaries of complex shapes is a general and inherent problem of the finite-
difference method. (Satisfying boundary conditions is much easier for the finite-element 
method.)  

Another important aspect of applying the finite-difference method to realistic problems is a 
limitation imposed by available computer memory and power. Memory optimization 
algorithms and sophisticated programming  are necessary for such applications.  

The existing finite-difference schemes differ from each other by accuracy, stability and 
computational efficiency. There is no best scheme which would be the most accurate, stable 
and efficient in all seismic wave propagation and ground motion problems. A seismologist 
should not only choose a scheme which is the most appropriate for the problem to be solved 
but also check the accuracy of a particular numerical computation. It is important to keep in 
mind that when not properly treated the finite-difference method can give noticeably 
inaccurate results. On the other hand, when properly treated, the finite-difference method is a 
very strong tool in modeling seismic wave propagation and earthquake ground motion. 
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