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SUMMARY 

 
The possibility of applying one explicit finite-difference scheme to all interior grid points (points 

not lying on a grid border) no matter what their positions are with respect to the material 

interface is one of the key factors of the computational efficiency of the finite-difference 

modelling. Smooth or discontinuous heterogeneity of the medium is accounted for only by 

values of the effective grid moduli and densities. Accuracy of modelling thus very much depends 

on how these effective grid parameters are evaluated. We present an orthorhombic representation 

of a heterogeneous medium for the finite-difference modelling. We numerically demonstrate its 

superior accuracy. Compared to the harmonic-averaging representation (Moczo et al. 2002) the 

orthorhombic representation is more accurate mainly in the case of strong surface waves that are 

especially important in local surface sedimentary basins. 

The orthorhombic representation is applicable to modelling seismic wave propagation and 

earthquake motion in isotropic models with material interfaces and smooth heterogeneities using 

velocity-stress, displacement-stress and displacement FD schemes on staggered, partly-

staggered, Lebedev and collocated grids. 
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Sufficiently realistic models are necessary for numerical modelling of seismic wave propagation 

as well as for prediction of earthquake ground motion especially in local surface sedimentary 

structures capable to produce anomalous earthquake motion. The realistic physical model has to 

be sufficiently accurately and efficiently represented by discrete grid models in the (spatial) 

domain numerical methods such as the finite-difference methods. 

Models of the Earth’s interior and surface geological structures have to include layers/blocks 

of different materials. Inside a layer/block, material parameters (P and S wave speeds, density, P 

and S wave quality factors) may change continuously. The material parameters may change 

discontinuously at a contact of two layers/blocks. In local surface sedimentary structures the 

ratio of the S wave speeds in the bedrock and sediments commonly reaches values considerably 

larger than 2, and even 10 is not exceptional. Large velocity contrasts at material interfaces can 

dominantly contribute to forming seismic wave propagation. It is therefore obvious that accuracy 

of representation of the interfaces in the discrete grid model considerably affects the overall 

accuracy of the numerical modelling. 

Recent FD schemes represent a large variety of approaches with considerable differences in 

accuracy and computational efficiency in realistic models with large velocity contrasts and 

complex geometry of material interfaces. This is mainly due to a level of (in)consistency of the 

various discrete representations of the interfaces with the boundary conditions at the interfaces. 

Let us note that the FD schemes also differ in accuracy in models with large P-wave to S-wave 

speed ratio; see Moczo et al. (2010, 2011). 

At the welded material interface the displacement or particle-velocity and traction vectors are 

continuous. Consequently, a discrete representation of a welded material interface in a grid 

should sufficiently well approximate the boundary conditions. 

One possible approach is to apply different FD schemes to different grid points: a FD scheme 

for the smoothly heterogeneous medium to the grid points away of the interface, and specific FD 

schemes to the grid points at and near (this depends on the stencil) the interface. The latter 

schemes have to be obtained by a proper incorporation of the boundary conditions at the 

interface. Such approach has been called homogeneous. Clearly, the schemes are specific for a 

particular geometry of the interface. Whereas feasible for simple interface geometry, the 

application of the homogeneous approach to non-planar interfaces is difficult and therefore has 

been considered impractical. In any case, the approach requires stable and sufficiently accurate 

FD approximation of the boundary conditions which is not a trivial problem. 

In the alternative heterogeneous approach only one FD scheme is used for all interior grid 

points (points not lying on boundaries of a grid) no matter what their positions are with respect to 
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the material interface. The presence of the interface is accounted for only by values of effective 

material parameters assigned to grid positions. Therefore, the heterogeneous approach has been 

commonly applied to incorporate both continuous and discontinuous heterogeneities of medium. 

If a FD scheme should be applicable to any interior grid point, it should approximate 

equation of motion and stress-strain relation (SSR) valid for both the smoothly heterogeneous 

medium and interface. In other words, for finding a FD scheme applicable to the grid points at, 

near and away of the material interface we need SSR for a point at the interface that would a) 

have the same form as SSR for a point in a smooth medium and b) be consistent with the 

interface boundary conditions.  

SSR (Hooke’s law) for a smooth isotropic elastic medium may be written in the matrix form 

   E  (1.1) 

where the stress vector, strain vector and elasticity matrix are, respectively, 

 , , , , , , , , , , ,
T T

xx yy zz xy yz zx xx yy zz xy yz zx                       (1.2) 

 

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

   

   

   







E   (1.3) 

 (The defined quantities do not correspond to Voigt notation. This aspect is not important in the 

article.) Thus we need SSR for a point at an interface which has the same form as Hooke’s law 

(1.1) for the considered stress and strain vectors. Although Backus (1962) and Schoenberg & 

Muir (1989) addressed the problem of the equivalent medium consistent with the interface 

boundary condition, and Muir et al. (1992) explicitly pointed out its relation to the FD schemes, 

apparently this fundamental task had not attracted sufficient attention of developers of FD 

schemes for several decades until the article by Moczo et al. (2002). They suggested a simplified 

approach for the (2,4) staggered-grid schemes: an effective grid elastic modulus at the grid 

position of the stress-tensor component evaluated as a volume integral harmonic average of the 

modulus within a volume of the grid cell centred at the grid position. Numerical tests confirmed 

that the scheme was more accurate than the staggered-grid schemes presented earlier. The 

historical overview can be found in the book by Moczo et al. (2014). 

The SCEC (Southern California Earthquake Center) code comparative exercise (Day et al. 

2003 and also Bielak et al. 2010) as well as the ESG2006 (ESG – Effects of Surface Geology 

2006) international comparative exercise for a typical deep Alpine Grenoble valley, France 
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(Chaljub et al. 2006, Tsuno et al. 2006, Chaljub et al. 2010) clearly demonstrated that it had been 

far from trivial to reach satisfactory level of agreement among numerical predictions by different 

methods and, specifically among predictions by different FD schemes. In the ESG2006 only four 

predictions reached a reasonable level of agreement, the FD predictions based on approach by 

Moczo et al. (2002) among them. See the article by Chaljub et al. (2010) for details. 

The direct impulse for developing a new discrete representation of material interface came 

from the quantitative iterative analysis of numerical predictions in the unprecedented 

international comparative E2VP exercise (E2VP – Euroseistest Verification and Validation 

Project 2008-2012; Chaljub et al. 2015, Maufroy et al. 2015) for the shallow sedimentary 

Mygdonian basin, Greece. The iterative analysis eventually included a set of complex realistic 

models and a set of related canonical models. The stringent canonical models made it possible to 

identify insufficient accuracy in the FD modelling of strong surface waves along horizontal 

interface with large velocity contrast. This is understandable – the harmonic averaging is strictly 

accurate only in 1D problem. In the previous reported modelling studies the approximate discrete 

representation by Moczo et al. (2002) based on volume harmonic averaging proved sufficiently 

accurate. The reason was that the simulated wavefields were not so strongly dominated by 

surface waves propagating along horizontal material interfaces.  

Let us eventually mention the general alternative homogenization approach for effective 

representation of medium heterogeneity developed by Capdeville and his colleagues (e.g., 

Capdeville and Marigo 2007; Capdeville et al. 2013). 

For treating material heterogeneity in the spectral-element, discontinuous Galerkin, and 

pseudospectral methods we refer to the articles by Chaljub et al. (2010, 2015) and relevant 

chapters in the book by Moczo et al. (2014). These references are also relevant for the FD 

method. 

First we explain SSR for a point at the planar material interface parallel to a Cartesian 

coordinate plane. We present an alternative (as compared to Moczo et al. 2002) derivation that 

makes it possible to identify the resulting effective discrete representation in relation to 

continuous and discontinuous field quantities. The derivation provides the necessary basis for the 

new representation. Then we consider shear and normal stress-tensor components in a 

heterogeneous cell. We present and discuss effective representation of a heterogeneous grid cell 

based on orthorhombic averaging. We demonstrate the accuracy of the representation by 

numerical tests. 
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2 THE STRESS-STRAIN RELATION (SSR) FOR A PLANAR 

MATERIAL INTERFACE 

Consider a planar welded interface parallel to a Cartesian coordinate plane. Continuity of 

displacement implies continuity of three strain-tensor components, and continuity of traction 

implies continuity of three stress-tensor components across the interface. Fig. 1 summarizes 

continuous and discontinuous stress- and strain-tensor components for the three Cartesian 

orientations. In the following sections we analyse the shear and normal stresses in terms of 

discontinuous and continuous components. 

 

 

interface perpendicular to the 

x  axis y  axis z  axis 

continuous discontinuous continuous discontinuous continuous discontinuous 

xx  xx  yy  yy  
zz  zz  

xy  xy  yz  yz  zx  zx  

zx  zx  xy  xy  yz  yz  

yy  yy  
zz  zz  xx  xx  

zz  zz  xx  xx  yy  yy  

yz  yz  zx  zx  xy  xy  

Figure 1. Continuous and discontinuous stress- and strain-tensor components for the three 

Cartesian orientations of a material interface. 

 

 

2.1. Shear stress-tensor components at an interface perpendicular to the x  

axis 

Discontinuous shear stress-tensor component. For the two halfspaces (indicated by the   and 

  superscripts) in a welded contact we can write in general 

 
2

2

yz yz

yz yz

  

  

 

 




 (2.1) 

Considering continuity of yz  and an arithmetic average 
x

yz  of the stress-tensor components 

at the interface, 
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    1
2

x

yz yz yz      , (2.2) 

the summation of Eqs. (2.1) leads to SSR 

   2
x x

yz yz    , (2.3) 

with the arithmetic average of the shear moduli 

   1
2

x
     . (2.4) 

Continuous stress-tensor components. For example, for  xy  we may write 

 
2

2

xy xy

xy xy

  

  

 

 




 (2.5) 

or 

 

1
2

1
2

xy xy

xy xy

 


 














 (2.6) 

Considering continuity of xy  and an arithmetic average 
x

xy  at the interface, 

  1
2

x

xy xy xy      (2.7) 

the summation of Eqs. (2.6) leads to SSR 

 2
xHx

xy xy    (2.8) 

with the harmonic average of the shear moduli 

 
2

1 1

Hx


  





 (2.9) 

Analogously we obtain a relation for zx . The relations for the shear stress-tensor components at 

the interface perpendicular to the x axis are then 

 

2

2

2

xHx
xy xy

x x
yz yz

xHx
zx zx

  

  

  







 (2.10) 

Partial summary. SSRs for the shear stress-tensor components at the interface perpendicular to 

the x -axis: 
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• Continuity of yz  and the arithmetic averaging of the discontinuous yz  imply the 

arithmetic averaging of the shear moduli, 
x

 . 

• Continuity of xy  (or zx ) and the arithmetic averaging of the discontinuous xy  (or zx ) 

imply the harmonic averaging of the shear moduli, 
Hx

 . 

• SSRs (2.10) have the same forms as SSRs for a point in a smooth medium and are 

consistent with the interface boundary conditions. 

 

2.2. Normal stress-tensor components at an interface perpendicular to the x  

axis 

SSRs in a smooth medium are: 

 

xx xx yy zz

yy xx yy zz

zz xx yy zz

M

M

M

     

     

     

  

  

  

  (2.11) 

Here 

 2M      (2.12) 

For two halfspaces in contact we may write 

 
xx xx yy zz

xx xx yy zz

M

M

     

     

   

   

  

  
 (2.13) 

 
yy xx yy zz

yy xx yy zz

M

M

     

     

    

    

  

  
 (2.14) 

 
zz xx yy zz

zz xx yy zz

M

M

     

     

    

    

  

  
 (2.15) 

Continuous stress-tensor component. Because the interface is perpendicular to the x  axis, 

relations for xx  are simpler for averaging compared to yy  and zz : they include only one 

discontinuous quantity – xx . Relations (2.13) may be written as 

 

1

1

xx xx yy zz

xx xx yy zz

M M M

M M M

 
   

 
   

 


  

 


  

  

  

 (2.16) 
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Continuity of xx , yy  and zz , and the arithmetic averaging of xx   and xx   lead to 

 
1 x x

x Hx
xx xx yy zzM

M M

 
   


   
 

 (2.17) 

and 

 

x x
xHx Hx Hx

xx xx yy zzM M M
M M

 
       (2.18) 

Discontinuous stress-tensor component. Consider, e.g., yy . It is clear from Eqs. (2.14) that 

before we average yy   and yy  , we have to express xx   and xx   using continuous field 

quantities. Using (2.16) in (2.14) we obtain 

 

yy xx yy zz

yy xx yy zz

M
M M M

M
M M M

  
      

  
      

  
    

  

  
    

  

   
          

   

   
          

   

 (2.19) 

Continuity of xx , yy  and zz , and the arithmetic averaging of  yy   and  yy   give 

 
2 2

x xx
x x x

yy xx yy zzM
M M M

  
    

   
       
   
   

  (2.20) 

Substituting the r.h.s. of Eq. (2.18) for xx  gives the sought SSR 

 

2
2

2
2

x
x Hx

yy xx

x x
x Hx

yy

x x
x Hx

zz

M
M

M M
M M

M
M M


 

 


 
 



   
     

    

   
     

    

  (2.21) 

Analogously we easily obtain 
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2
2

2
2

x
x Hx

zz xx

x x
x Hx

yy

x x
x Hx

zz

M
M

M
M M

M M
M M


 

 
 

 




   
     

    

   
     

    

  (2.22) 

Partial summary. SSRs for the normal stress-tensor components at the interface perpendicular to 

the x -axis: 

• Continuity of xx , yy  and zz , and the arithmetic averaging of the discontinuous xx  

imply two averaged elastic coefficients, 
Hx

M  and 

x
Hx

M
M


. 

• Continuity of yy  and zz , and the averaging of discontinuous yy  and xx  (or zz  and 

xx ) imply 

x
Hx

M
M


 and two more averaged elastic coefficients: 

2
2

x x
x Hx

M
M M

 


 
   

  

 and 

2
2

x x
x Hx

M M
M M

  
   

  

. 

• Considering the averaged elastic coefficients, stress- and strain-tensor components, SSRs 

(2.18),  (2.21) and (2.22) have the same forms as SSRs for a point in a smooth medium and 

are consistent with the interface boundary conditions. 

 

2.3. Elasticity matrices for interfaces perpendicular to the coordinate axes 

Define 

 
2

2

2
2

H

H

H

H

A M

B M
M

C M M
M M

D M
M M






 
 

 
 



 

 






 
    

  

 
    

  

  (2.23) 
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where  , ,x y z  . Then SSRs (2.10), (2.18), (2.21) and (2.22) for a point at the interface 

perpendicular to the x -axis may be concisely written as 

 

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

xx x x
xxxx

x x x x
y yyy

x x xx
zzzz

xHx

xy xy

x x
yz yz

Hx x
zx zx

A B B

B C D

B D C







 

  

  

   
   
   
   
   
   
        
   
   
   
   
   
      

  (2.24) 

For the interface perpendicular to the y -axis it is 

 

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

y y y y
xxxx

yy y y
yyyy

y y yy
zzzz

Hy y

xyxy

Hy y

yzyz

y
y

zxzx

C B D

B A B

D B C







 

 

 

    
    
    
    
    
    
     
    
    
    
    
    
        

  (2.25) 

and for the interface perpendicular to the z -axis 

 

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

z z zz
xx xx

z z z z

yy yy

z z z z
zz zz

z z

xy xy

zHz
yz yz

zHz
zx zx

C D B

D C B

B B A

 

 

 

 

 

 

    
    
    
    
    
    
    
    
    
    
    
    
    

    

  (2.26) 

 

2.4. Elasticity matrix for an interface – interpretation 

Transversely isotropic medium. Any of the matrix relations (2.24), (2.25) and (2.26) has the 

same form as the matrix relation for a point in a smooth medium, see Eq. (1.1), with 9 nonzero 
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elements (considering the symmetry of the matrix). Matrix in any of relations (2.24), (2.25) and 

(2.26) may be considered the elasticity matrix of an averaged medium representing contact of 

two materials and consistent with the boundary conditions at the welded material interface. 

Matrix in Eq. (1.1) has only 2 independent nonzero elements (e.g., 2  and 2  ) because 

it represents an isotropic medium. Matrix for an averaged medium has 5 independent nonzero 

elements, e.g., A , B  , C  , 2
H

  and 2


  considering that 2D C
    . This 

means that the averaged medium is transversely isotropic with the axis of symmetry 

perpendicular to the interface. 

Why is the averaged medium representing contact of two isotropic media at a planar 

interface transversely isotropic? SSRs for the continuous shear stress-tensor components need 

the harmonic average 
H

  whereas the relation for the discontinuous shear stress-tensor 

component needs the arithmetic average 


 . It is then clear that relations for the normal stress-

tensor components at the interface need other independent coefficients – increasing thus the total 

number of coefficients: the continuous normal stress-tensor component needs 2 more 

independent coefficients, and the discontinuous normal stress-tensor components need, in 

addition to the latter 2 coefficients, also the 5th independent coefficient. The transversely 

isotropic medium is understandable: if it cannot be isotropic then there is no reason why it 

should not have the axial symmetry about the axis perpendicular to the interface. 

Meaning of the harmonic averages. Consider, e.g., a planar interface perpendicular to the z -

axis  and a 1D problem with a wave propagating in the direction of the z -axis. Propagation of 

the plane P wave in any of two halfspaces is described by 

    
2

2
, 2 2z zz z

zz zz

u u

z zt


      
  

    
 

 (2.27) 

Propagation of the plane S wave in any of two halfspaces is described by 

 
2

2
, 2x zx x

zx zx

u u

z zt


   
  

  
 

 (2.28) 

if the wave is polarized in the x  direction, and by 

 

2

2
, 2

y zy y
zy zy

u u

z zt


   
  

  
 

 (2.29) 

if the wave is polarized in the y direction. SSRs at the interface are then for the three cases: 

   2
Hz z

zz zz      , (2.30) 
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   2
zHz

zx zx    , (2.31) 

   2
zHz

zy zy    . (2.32) 

These SSRs for the welded interface and the matrix for the averaged transversely isotropic 

medium representing contact of two materials and consistent with the boundary conditions at the 

welded material interface were presented by Moczo et al. (2002) using a matrix formalism. In 

this section we a) presented an alternative derivation which explicitly shows all relations 

between the continuous and discontinuous field quantities on one hand and the effective 

averaged elastic coefficients on the other hand, b) showed matrices (2.24) - (2.26) necessary for 

explanation of the orthorhombic averaging, c) explained structure of the elasticity matrix for the 

averaged transversely isotropic medium. 

2.5. Planar interface in a general orientation 

Assume such an interface in the Cartesian coordinate system x yz . The interface is parallel to 

one of the coordinate planes in some rotated system x y z   . The elasticity matrix in the rotated 

system has 9 non-zero elements from which 5 are independent. If we transform SSR from x y z    

into x yz , the transformed elasticity matrix has 5 independent elements (the transformation does 

not change the physics of the interface) but has all 21 (considering the matrix symmetry) 

elements non-zero. This means that all strain-tensor components are necessary for calculating 

each stress-tensor component at a point of the interface. 

2.6. Nonplanar interface 

A nonplanar smooth surface may be locally approximated by a planar interface tangential to the 

surface at a given point. There are two options: 1) Calculate 21 nonzero elastic coefficients for 

each grid point and store them in memory during the entire FD time-integration. 2) Store only 

2+2 elastic coefficients (2 per medium in contact) and 2 angles (specifying orientation of an 

approximating tangential planar interface) for each grid point and calculate the elasticity matrix 

at each time step at each grid point. It is clear that we face either considerably increased memory 

requirement or considerably increased computing time. 

2.7. A simple computational compromise – harmonic averaging 

Given the situation described, Moczo et al. (2002) suggested the computational compromise: an 

effective grid elastic modulus at a given grid position is evaluated as the volume integral 

harmonic average over a grid cell centred at that grid position. Consequently, an interface 

between two isotropic media is represented by a harmonically averaged isotropic medium. The 
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advantageous aspect of the approach is that the effective grid moduli are directly applicable, e.g., 

to the standard velocity-stress finite-difference scheme – they do not change the structure and 

number of arithmetic operations in the finite-difference scheme. 

2.8. Structure of the equation of motion in relation to a planar interface 

Consider a planar interface between two homogeneous elastic halfspaces perpendicular to the z -

axis. Fig. 2 shows the structure of the equation of motion with respect to the stress-tensor 

components continuous and discontinuous across the interface. The continuous stress-tensor 

components are in blue, the discontinuous ones are in red. The colour frames on the right-hand 

sides of the equations indicate parts relevant for different wavefield configurations. 

 

 

Figure 2. Structure of the equation of motion illustrating relation of the continuous and discontinuous 

stress-tensor components to effective medium averaging. 
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In any of the three simplest 1D problems with waves propagating in the z direction, that is, 

1D P-wave, 1D S-wave polarized in the y direction and 1D S-wave polarized in the x direction 

(indicated by the violet frames), only one continuous stress-tensor component is involved. As 

shown in Section 2.4, the harmonic averaging of elastic moduli is exact in any of the three 

simplest 1D problems. 

The 2D SH problem (green frames) involves one continuous and one discontinuous shear 

stress-tensor components. The harmonic averaging is exact for the continuous component 

whereas it is only approximate for the discontinuous one. 

The 2D P-SV problem (brown frames) involves one continuous shear stress-tensor 

component, one continuous normal stress-tensor component and one discontinuous normal 

stress-tensor component. The harmonic averaging is exact for the continuous shear stress-tensor 

component whereas it is only approximate for the two others. 

In the 3D problem the harmonic averaging is exact for two continuous shear stress-tensor 

components whereas it is only approximate for the four others. 

Stringent numerical tests (Moczo et al. 2002, Chaljub et al. 2015) show that the harmonic 

averaging of moduli for all stress-tensor components is surprisingly accurate except the case 

when the wavefield is dominated by surface wave propagating along the contrast interface. The 

analysis of the stringent tests that involve dominant surface waves propagating in the horizontal 

direction along the strong-contrast interface (within the verification phase of the E2VP project, 

Chaljub et al. 2015) led us to improve the way of representing the material interface by an 

averaged medium. We present the new method in the following sections. 

 

3 STRESS-STRAIN RELATION FOR A JOINT POINT OF 

EIGHT CUBES – SEQUENTIAL AVERAGING 

Consider a joint grid point of 8 grid cells. In a simple representation of a heterogeneous 

medium material of each cell is homogeneous while different from materials of the other cells. It 

is important to find an effective material grid parameter representing heterogeneity of the 

medium around that grid point. There is, however, a more important reason for considering the 

canonical situation of a joint point of eight cubes. Consider nonplanar interfaces inside a grid 

cell. Then we can think of dividing the cell into homogeneous subcells and approximating the 

nonplanar interfaces by a staircase interfaces separating homogeneous subcells.  

 

3.1. Shear stress-tensor components 
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Consider a configuration in Fig. 3: 8 homogeneous elastic infinitely large cubes in contact. The 

cubes may differ from each other by values of moduli. With reference to Eq. (2.8) let us write 

SSRs for xy  at each of 8 planar interfaces perpendicular to the horizontal Cartesian directions: 

 

,12 ,34,12 ,3412 34

y,13 y,24,13 ,2413 24

2 , 2

2 , 2

x xHx Hx
xy xy xy xy

Hy Hy
xy xy xy xy

     

     

 

 

 (3.1) 

and 

 

,56 ,78,56 ,7856 78

y,57 y,68,57 ,6857 68

2 , 2

2 , 2

x xHx Hx
xy xy xy xy

Hy Hy
xy xy xy xy

     

     

 

 

  (3.2) 

Here the superscripts indicate the interface – for example, 12 indicates the interface between 

cubes 1 and 2. Considering averaging along joint contact lines of the four upper and lower cubes 

(the four horizontal contact lines in Fig. 3), respectively, and continuity of xy  in any horizontal 

direction (Fig. 1), we define xy   and xy  : 

 

12 34 13 24

56 78 57 68

xy xy xy xy xy

xy xy xy xy xy

    

    





   

   
 (3.3) 

Then averaging of moduli and strains in relations (3.1) and (3.2), respectively, leads to 

 

,,

,,

2

2

xyHxy
xy xy

xyHxy
xy xy

  

  









 (3.4) 

where 

 

1

,

,12 ,34 ,13 ,24

1

,

,56 ,78 ,57 ,68

1 1 1 1
4

1 1 1 1
4

Hxy

Hx Hx Hy Hy

Hxy

Hx Hx Hy Hy


   


   









 
    
  

 
    
  

 (3.5) 

and 

 

, ,12 ,34 y,13 y,24
1
4

, ,56 ,78 y,57 y,68
1
4

xy x x

xy xy xy xy xy

xy x x

xy xy xy xy xy

    

    





     
 

     
 

  (3.6) 
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Figure 3. Illustration of interfaces separating 8 infinitely large cubes in contact. Each cube is assumed 

elastic and homogeneous. In general, the cubes differ from each other by values of elastic moduli and 

density. 

 

 

Considering averaging at a joint point of eight cubes and continuity of xy  in the z direction, we 

define  

 
, ,xy xy xy

xy xy xy  
 

   (3.7) 

Defining also 

  1
2

z

xy xy xy       (3.8) 

and 

  , ,1
2

z
Hxy Hxy Hxy

  
 

    (3.9) 

we finally obtain from (3.4) SSR for the joint point of eight cubes: 

1 2 

3 4 

5 6 

7 8 

8 isotropic homogeneous materials in 
contact 

x 
y 

z 
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 2
zz xyHxy

xy xy    (3.10) 

We have obtained this relation by averaging first in the horizontal directions x  and y , and then 

averaging in the z direction. We may try also the opposite way: averaging first in the z direction 

and then in the horizontal directions. 

  With reference to Eq. (2.3), consider therefore, instead of Eqs. (3.1) and (3.2), the 

following relations for the four interfaces perpendicular to the z  axis: 

 

z,15 z,26,15 ,2615 26

z,37 z,48,37 ,4837 48

2 , 2

2 , 2

z z
xy xy xy xy

z z
xy xy xy xy

     

     

 

 

 (3.11) 

Consider now interfaces perpendicular to the x  and y  axes. Because xy  is continuous in both 

x  and y  directions, we may define 

 
z z,15 z,26 z,37 z,48

xy xy xy xy xy          (3.12) 

Then averaging of moduli and strains in relations (3.11) in the x  and y directions, respectively, 

leads to 

 

 

 

1

z 15 26

,15 ,26

1

z 37 48

,37 ,48

1 1 1
4

2

1 1 1
4

2

xy xy xyz z

xy xy xyz z

  
 

  
 





 
   
  

 
   
  

 (3.13) 

and 

 

 

 

1

z 15 37

,15 ,37

1

z 26 48

,26 ,48

1 1 1
4

2

1 1 1
4

2

xy xy xyz z

xy xy xyz z

  
 

  
 





 
   
  

 
   
  

 (3.14) 

Summation of the four relations (3.13) and (3.14) eventually leads to 

 2
Hxyz xyz

xy xy     (3.15) 

where 
Hxy

z
  denotes the harmonic average of the four harmonic averages in relations 

(3.13) and (3.14), and 
xy

xy  denotes the arithmetic average of the four arithmetic averages of 

strain in relations (3.13) and (3.14). 
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It is obvious from comparison of relations (3.10) and (3.15) that the order of averaging leads 

to relations with differently averaged moduli. At the same time, we immediately see two 

common features of both averages, 
z

Hxy  and 
Hxy

z
 : 1. continuity of xy  in the x  

and y  directions implies the harmonic averaging in both directions, 2. discontinuity of xy  in 

the z  direction implies the arithmetic averaging in that direction. Both obtained SSRs are just 

different approximations and it is difficult to say which one is better. We may use, however, an 

additional criterion to choose one of them. Consider, e.g., one of cubes representing a liquid or 

vacuum. Then the corresponding harmonic average 
Hxy

  would give a zero average value for 

the four cubes. This would be not the case with the arithmetic averaging applied first. 

Consequently we choose relation (3.15). In summary, all SSRs are 

 

2

2

2

Hxyz xyz
xy xy

Hyzx yzx
yz yz

Hzx
y zxy

zx zx

  

  

  







 (3.16) 

Important property of the averaged moduli. Consider a 3D grid cell and evaluation of the 

average moduli over the volume of the cell. Assume, e.g., that the grid cell contains only one 

interface perpendicular to the x  axis. Then relations (3.16) reduce to 

 

2

2

2

xHx
xy xy

x x
yz yz

xHx
zx zx

  

  

  







  (3.17) 

that is to SSRs for the transversely isotropic medium – see Eq. (2.24). Analogously, relations 

(3.16) reduce to relations for the transversely isotropic medium with the axis of symmetry 

parallel with the y  or z  axis for an interface perpendicular to the y  or z  axis, respectively. 

 

3.2. Normal Stress-tensor components 

Formal averaging of the normal stress-tensor components at the joint point of 8 homogeneous 

cubes (Fig. 3) is considerably more complicated and rather lengthy. Therefore we just outline 

essential aspects. 

We may start, e.g., with SSRs (2.24) at the interfaces perpendicular to the x axis and 

average them first at the interfaces perpendicular to the y axis. It is the simplest to start with SSR 
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for yy , that is,  , ,
x x

yy xx yy zz    . Because only yy  from the four field quantities in the 

relation is discontinuous across the interface perpendicular to the y axis, the averaging can be 

achieved by averaging the relation , ,
xx

yy xx zz yy    
 
 

. The result of the averaging is 

, ,
y xx

yy xx zz yy    
 
 

 from which we obtain the sought SSR for 
x

yy  at the interface 

perpendicular to the y axis: , ,
x yx

yy xx yy zz    
 
 

. 

We may continue with xx . In SSR for xx  at the interface perpendicular to the x -axis, 

 , ,
x

xx xx yy zz    , two quantities are discontinuous across the interface perpendicular to the 

y axis: xx  and yy . Therefore, before we average xx  at the interface, we must express yy  

from SSR  , ,
x x

yy xx yy zz     at the interface perpendicular to the x -axis. We obtain 

, ,
xx

xx xx zz yy    
 
 

. Because , ,
xx

xx zz yy    are continuous across the interface 

perpendicular to the y -axis, we may average xx . The result of averaging is 

, ,
xy x

xx xx zz yy    
 
 

. In this relation we express 
x

yy  from relation for yy  at the 

interface perpendicular to the y -axis, , ,
x yx

yy xx yy zz    
 
 

, and eventually obtain SSR 

at the interface perpendicular to the y axis: , ,
yy x

xx xx yy zz    
 
 

. 

Analogously we could continue with zz . Having SSRs for the normal stress-tensor 

components averaged across the interfaces perpendicular to the x  and y -axes, we could then 

continue with averaging across the interface perpendicular to the z  axis. 

It is obvious, however, that we could start the averaging procedure from SSRs (2.25) for the 

interfaces perpendicular to the y -axis, continue with averaging across the interfaces 

perpendicular to the z  axis and finish with averaging across the interfaces perpendicular to the 

x  axis. Eventually and alternatively, the order of averaging might be z x y  .  

The problem, indicated already by averaging the shear stress-tensor components, is that the 

three different sequences of averaging (that is, x y z  , y z x   and z x y  ) give 

three different averaged moduli in SSRs for the joint point of 8 cubes. This is not acceptable 

because the averaged medium should not depend on the order of averaging. The three different 
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results are consequence of the fact that such averaging is not rigorous and justified. It is just 

approximate. 

 

4 DECISION ON AVERAGING IN THE CELL VOLUME: THE 

ORTHORHOMBIC MEDIUM 

It is obvious that we are facing two problems: 1. We do not want to have 21 nonzero coefficients 

in the elasticity matrix (see Sections 2.5 and 2.6). That would considerably decrease 

computational efficiency. 2. The sequential averaging (Sections 3.1 and 3.2) is not applicable. In 

this situation we have to decide how to average medium in order to obtain sufficiently accurate 

and computationally efficient representation of a material interface. 

It is reasonable to impose two requirements in this decision-making: 

1st. Keeping the number of nonzero coefficients in the elasticity matrix the same as for the 

isotropic or transversely isotropic media, that is, 9 (considering the matrix symmetry). This 

means that the averaged medium would neither change the structure of calculating stress-tensor 

components nor increase the number of arithmetic operations. 

2nd. If a grid cell contains a planar interface (between two homogeneous materials) perpendicular 

to the   axis, then the averaged medium in the cell is the transversely isotropic medium with 

axis of symmetry parallel to the   axis. 

Consequently, the elasticity matrix should have the following general form: 

 

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

x xy zx

xy y yz

zx yz z

xy

yz

zx

 

 

 







 
 

 
 
 
 
 
 
 
  

  (4.1) 

As we explained in Section 3.1 we can take Eq. (3.16) for the shear stress-tensor components: 

 

Hxy
z

xy

Hyz
x

yz

Hzx
y

zx

 

 

 







  (4.2) 
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Figure 4. Coefficients for the normal stress-tensor components in the transversely isotropic media 

representing the planar interfaces perpendicular to the coordinate axes. Colours help to distinguish 

different averaged moduli. 
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With the normal stress-tensor components it is more complicated. For finding a solution, it is 

instructive and helpful to see the coefficients for transversely isotropic media representing the 

planar interfaces perpendicular to the coordinate axes at once. We show them in Fig. 4. 

According to the 2nd requirement, e.g., x  has to give 
Hx

M  or 

2
2

y y
Hy

M M
M M

  
   

  

 or 

2
2

z z
Hz

M M
M M

  
   

  

 if the grid cell contains 

interface perpendicular to the x  or y  or z -axis, respectively. Analogous requirements apply to 

the other   and   coefficients. All these requirements are met by the following averages: 

 

2
2

2
2

2
2

Hx
yz yz

Hyz
x

Hy
zx zx

Hzx
y

Hz
xy xy

Hxy
z

M M
M M

M M
M M

M M
M M

 

 

 

 
     

  

 
     

  

 
     

  

  (4.3) 

and 

 

2
2

2
2

2
2

Hxy
z z
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xy

xy
z z
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z z
Hz

M M
M M

M
M M

M M
M M

 


 


 

 
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 

 
   

 

 
   
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  (4.4) 

 

2
2

2
2

2
2
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Hx
yz
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x x

Hx

x x
Hx

M M
M M

M
M M

M M
M M

 


 


 

 
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 

 
   

 
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  (4.5) 
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2
2

2
2

2
2

Hzx
y y

Hy
zx

zx
y y

Hy

y y
Hy

M M
M M

M
M M

M M
M M

 


 
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  (4.6) 

Each average applies to a volume of the grid cell h h h   centred at a position of the stress-

tensor component. We see that the 9 coefficients are independent. This means that the averaged 

medium has an orthorhombic anisotropy with three axes of symmetry that are identical with 

coordinate axes. 

 

5 NUMERICAL VERIFICATION 

Because the developed discrete representation is approximate it is necessary to test it numerically 

by comparing the finite-difference (FD) seismograms with seismograms obtained using 

independent verified methods. Whereas for a 1D model it is possible to use the very accurate 

semianalytical discrete-wavenumber method (DWM), for 2D and 3D models we can only use an 

approximate but sufficiently accurate numerical method. We have chosen the spectral-element 

method (SEM). Tests for 1D and 2D models were performed and published – we will just briefly 

mention the substantial aspects. In this article we present 3D tests. 

5.1. 1D models 

Moczo et al. (2014) and Chaljub et al. (2015) presented numerical tests for a set of canonical 1D 

models. One model, denoted as Can2, consists of three horizontal homogeneous elastic isotropic 

layers over halfspace. The model represents the vertical profile beneath the TST seismic station 

in the Mygdonian basin near Thessaloniki in Greece. A 3D wavefield is generated by a single 

vertical force at the free surface and a point double-couple (DC) source in the halfspace – in 

order to include both intensive surface and body waves. The simulations are performed for 

frequencies up to 4 Hz. The other model, Can3, is a modification of Can2: there are vertical 

constant gradients of material parameters in the layers. The reference solutions are obtained 

using two DWN codes - Axitra (Bouchon 1981, Coutant 1989) for the DC source and the code 

developed by Hisada (1994, 1995) for the surface force. The FD seismograms are obtained for 

four alternative representations: LOC – local (point) values of the elastic moduli and density, 

ARI – volume arithmetic averages of moduli and volume arithmetic averages of density 
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evaluated using numerical integration over a grid cell centred at the grid position of the modulus 

or density, HAR – volume harmonic averages of moduli and volume arithmetic averages of 

density, and ORT – volume effective coefficients corresponding to the orthorhombic averaged 

medium. The level of agreement between the FD and DWN seismograms in phase and amplitude 

is quantified using the time-frequency phase and envelope goodness-of-fit (GOF) criteria 

(Kristekova et al. 2009). The orthorhombic representation yields the best results. 

5.2. 2D model 

Testing the orthorhombic representation in a 2D model is much more complicated. Moczo et al. 

(2014) and Chaljub et al. (2015) used a 2D model representing a simplified NS profile of the 

Mygdonian basin going through the TST seismic station and 3D wavefield due the point DC 

source in the halfspace. They compared the HAR and ORT FD seismograms with seismograms 

simulated by the Florent De Martin’s SEM code efispec (De Martin 2011). Accuracy of the SEM 

solution is strongly determined by discretization of the wedge-type Northern margin of the basin. 

Florent De Martin developed an extremely fine SEM mesh following all material interfaces 

(though obviously relative, the minimum size of the element is only 0.5 m in simulation up to 4 

Hz and minimum S-wave speed of 200 m/s). Consequently, the SEM simulation was 

computationally extremely demanding. It provided, however, the best feasible reference solution 

for testing the orthorhombic discretization. The ORT representation yields FD seismograms that 

are in excellent agreement with the SEM reference seismograms. The HAR representation yields 

FD seismograms that are in excellent agreement with the SEM seismograms except at receivers 

where the motion is dominated by surface waves propagating along the horizontal interfaces. 

5.3. 3D model 

The approach applied in testing the orthorhombic representation in 2D was not feasible in 3D 

due to extreme computational time and memory requirements. In order to obtain a sufficiently 

accurate reference SEM seismograms, we developed a special model. In the available realistic 

3D model of the Mygdonian basin we modified geometry of material interfaces so that the 

element faces can exactly follow interfaces. This means that the SEM simulation exactly 

accounts for the geometry of material interfaces and consequently the SEM seismograms are 

adequately accurate. Fig. 5 illustrates the SEM mesh. Contact of elements with different colours 

is a material interface. There are 5 interfaces in the figure showing a detail of the basin edge. 

 



 

 25 

 

Figure 5. Illustrative detail of the reference SEM model. Different colours represent different 

homogeneous materials. Element faces exactly follow interfaces. This specific feature makes it possible 

for SEM to produce sufficiently accurate seismograms. Exactly the same model is considered in the FD 

simulation. 

 

The original model of the Mygdonian basin is shown in Fig. 6. The upper left panel shows 

margins of the sedimentary basin at the flat free surface, four horizontal profiles of receivers at 

the free surface and position of the vertical profile of receivers in the central part of the basin. 

The FD and SEM seismograms are compared along the receiver profiles. 
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Figure 6. Geometry of the original 3D model of the Mygdonian basin. Upper left panel: margins of the 

sedimentary basin at the flat free surface, four horizontal profiles of receivers at the free surface and 

position of the vertical profile of receivers (v) in the central part of the basin. Upper right: interface 

between the uppermost and middle sedimentary layers. Lower left: interface between the middle and 

bottom sedimentary layers. Lower right: interface between the bottom sedimentary layer and bedrock.  

 

Material parameters of the model are shown in Fig. 7. 

  

Layer 
SV  PV    

(m/s) (m/s) (kg/m3) 

1 200 1500 2100 

2 350 1800 2200 

3 650 2500 2200 

Bedrock 2600 4500 2600 

Figure 7. Material parameters of the 3D model of the Mygdonian basin. 

   



 

 27 

The wavefield is generated by a DC point source located at a depth of 5 km. The source time 

function is shown in Fig. 8. The slip-rate time function is defined as a low-pass filtered gaussian 

pulse. The slip is obtained by integration of the slip rate. 

 

Figure 8. The source time function. Left: slip, centre: slip rate, right: Fourier amplitude spectrum of the 

slip rate. 

 

The reference SEM seismograms were computed using the SPECFEM3D code developed by 

Komatitsch and Tromp (e.g., Komatitsch and Tromp 1999, Tromp et al. 2008, Peter et al. 2011). 

The FDM seismograms were computed using the FDSim3D code (Kristek & Moczo 2014, 

Moczo et al. 2014). Figs. 9 and 10 summarize the SEM and FDM computational parameters. 

 

computational domain 16.14 km x 29.31 km x 7.86 km 

number of elements 1 751 040 

polynomial degree N=4 (5 GLL points per direction) 

number of points 

(each counted once) 
115 605 072 

  vertical horizontal 

(upper) fine mesh 

element size 2.5-7.5 m 50 m 

average grid spacing 0.62-1.87 m 12.5 m 

minimum grid spacing 0.43-1.30 m 8.63 m 

(lower) coarse mesh 

element size 860 m 200 m 

average grid spacing 215 m 50 m 

minimum grid spacing 148.50 m 34.53 m 

time step 0.0001 s   

time window 30 s   

note: minimum grid spacing = 0.691 % of average gridsize for N=4 

Figure 9. Computational parameters of the SEM simulation. GLL means Gauss-Lobatto-Legendre. 
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  FDM 10 m FDM 7 m 

fine 

grid 

size 
1585 x 1475 x 

59 
2113 x 2113 x 84 

grid spacing 10 m 7 m 

PML zone 55 grid planes 55 grid planes 

coarse 

grid 

size 145 x 135 x 140 193 x 193 x 200 

grid spacing 110 m 77 m 

PML zone 5 grid planes 5 grid planes 

time step 0.001 s 0.0007 s 

time window 30 s 30 s 

Figure 10. Computational parameters of the FDM simulations with the 10-m and 7-m grid spacings.  

 

 

We calculated the ORT FD seismograms using two spatially discontinuous grids. The size of the 

fine-grid spacing is 10 m in the first grid and 7 m in the second grid. As in the 1D and 2D 

models, it is reasonable to compare the ORT FD seismograms not only with the reference SEM 

seismograms but also with HAR FD seismograms. The HAR seismograms were also calculated 

using the two discontinuous grids. Fig. 11 shows the envelope and phase GOFs (goodness-of-fit) 

between the reference SEM seismograms and FDM seismograms along the western, central and 

eastern receiver profiles. Each curve represents GOF between the SEM and respective FD 

seismograms. GOFs are calculated for the entire 30-s window in the frequency range [0.1, 5] Hz 

from the arithmetic average of the single-valued misfits evaluated separately for each component 

(Kristekova et al. 2009). Fig. 12 shows the envelope and phase GOFs for the middle and vertical 

receiver profiles. Recall that GOF=10 means the perfect agreement. 

Overall for a given discrete representation (ORT or HAR) the GOF values for the 7-m grid 

spacing are larger than the GOF values for the 10-m grid spacing. This means that, for a given 

discrete representation, the FD seismograms for the smaller size of the grid spacing are closer to 

the SEM seismograms compared to the FD seismograms for the larger size of the grid spacing. 

This is what one expects. 

The more important is comparison of the two discrete representations. Overall for a given 

spatial grid the phase GOF values for the ORT discrete representation are significantly larger 

than the phase GOF values for the HAR representation. In other words, the ORT FD 

seismograms are significantly closer in phase to the SEM seismograms than the HAR FD 
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seismograms are. The improvement in terms of the envelope GOFs due to the ORT 

representation compared to the HAR representation is considerable although not as significant as 

in the phase GOFs. 

It is also interesting and important to compare the HAR 7-m FD seismograms with the ORT 

10-m FD seismograms. Despite the larger grid spacing the ORT 10-m FD seismograms are 

significantly more accurate in phase than the HAR 7-m FD seismograms. They are comparably-

to-slightly-more accurate in envelope. 

Fig. 13 shows seismograms for receiver 166 at the middle profile. The phase GOF values 

between the four FD seismograms and the reference SEM seismogram at this receiver range 

approximately from 3.5 to 9. Although we look at just one receiver, the relatively large range of 

the GOF values makes it possible to reasonably illustrate differences in seismograms 

corresponding to different GOF values. 
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Figure 11. The envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and 

FDM seismograms along the western, central and eastern receiver profiles. The FDM seismograms were 

obtained using the orthorhombic (ORT) and harmonic (HAR) averaging for the 10-m and 7-m grid 

spacings.  
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Figure 12. The envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and 

FDM seismograms along the middle profile and vertical profile. The FDM seismograms were obtained 

using the orthorhombic (ORT) and harmonic (HAR) averaging for the 10-m and 7-m grid spacings. 

 

 

Figure 13. Comparison of the four FD seismograms with the reference SEM seismogram for receiver 166 

at the middle profile.  
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6 ACCURACY AND EFFICIENCY OF THE ORTHORHOMBIC 

REPRESENTATION AND FINITE-DIFFERENCE 

MODELLING 

 

Recall Fig. 5 illustrating an important aspect of the SEM modelling. It is natural to cover the 

spatial computational domain with elements of different shapes and sizes. Consequently, it is 

possible for SEM to follow geometry of a material interface piece-wise by element faces. This is 

significant for accuracy of the SEM modelling but, at the same time, can considerably increase 

the number of elements e.g. in the case of a wedge of a sedimentary layer. In fact, this aspect led 

to the computationally very much demanding 2D model developed by Florent De Martin 

(Section 5.2) as well as to the necessity to adjust geometry of material interfaces in the reference 

3D model of the Mygdonian basin for verification in this study. Obviously, the smaller size of an 

element, the smaller size of the time step and, consequently, the larger number of time levels to 

be computed. 

The FD modelling is computationally most efficient on the uniform grid and in the 

heterogeneous formulation. The latter means that one FD scheme is applied to all grid points 

except those forming a border of the grid. The use of one scheme everywhere means that both 

smooth and discontinuous heterogeneity has to be accounted for by effective values of moduli 

and density at respective grid points. An effective grid modulus is evaluated numerically as a 

volume orthorhombic average in a grid cell centred at the grid position of the corresponding 

stress-tensor component. An effective density is evaluated numerically as a volume arithmetic 

average in a grid cell centred at the grid position of the corresponding particle-velocity 

component. The geometry as well as material properties on both sides of the interface are 

accounted for by the effective grid moduli and densities. In other words, in a chosen spatial grid, 

geometry of an interface may be arbitrary. For a given frequency range, change of interface 

geometry neither requires a new grid, nor changed computational demands. This is the 

significant advantage of the FD modelling. We illustrate this advantage in Fig. 14. 

Note that the size of the FD grid cell should not be directly compared with the size of the 

SEM element. A SEM element for a given polynomial degree includes certain number of the 

GLL integration points per direction. For example, in the reference SEM calculation the 

polynomial degree is 4 and thus the number of GLL points per direction is 5. Therefore, for 

computational efficiency it is reasonable to compare the total number of the FD grid points with 

the total number of the GLL points. Usually, in the case of local surface sedimentary structures 

with flat free surface, the application of a FD discontinuous spatial grid and effective grid moduli 

is computationally more efficient than the application of SEM for a given frequency range and 
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level of accuracy. The SEM computational requirements should be decreased if the orthorhombic 

representation is applied and interfaces are not followed by element faces. 

 

 

FD grid 10 m 

 
FD grid 7 m 

 
 

Figure 14. Illustration of the FD grid and material interfaces – a detail of one vertical grid plane crossing 

the sediment layers in the Mygdonian basin model. Assuming a proper evaluation of the effective grid 

moduli and densities at grid points there is no need for the grid to be conformable with interfaces. 

 

 

7 CONCLUSIONS 

 

We presented derivation of the stress-strain relation for a point at a planar interface between two 

homogeneous halfspaces. The derivation is an alternative to the matrix derivation by Moczo et 

al. (2002). Contrary to that the presented derivation makes it possible to interpret the obtained 

average elastic moduli with respect to continuous and discontinuous stress- and strain-tensor 

components. 

We showed that the approach applicable to the planar interface is not applicable to the joint 

point of 8 homogeneous infinitely large cubes. The average moduli depend on the sequence of 

averaging (that is, x y z  , y z x   and z x y  ).  This is not acceptable because the 

averaged medium should not depend on the order of averaging. 

We have developed a new orthorhombic representation of material heterogeneity. 

Heterogeneity of the medium in a finite-difference (FD) cell is represented by an averaged 

medium with an orthorhombic anisotropy with three axes of symmetry that are identical with the 

coordinate axes. An effective grid modulus is evaluated numerically as a volume orthorhombic 

average in a grid cell centred at the grid position of the corresponding stress-tensor component. 
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We numerically tested the orthorhombic representation for a complex 3D model of the 

Mygdonian sedimentary basin. We compared the FD seismograms with seismograms calculated 

using the spectral element method (SEM). For achieving sufficient accuracy of the reference 

SEM solution, we modified geometry of material interfaces so that the element faces exactly 

follow interfaces. For quantitative comparison of the FD and SEM seismograms we evaluated 

goodness-of-fit in envelope and phase. 

The performed numerical tests show that the orthorhombic representation is more accurate 

than that developed by Moczo et al. (2002). As demonstrated by tests for 1D and 2D models, the 

orthorhombic representation is more accurate mainly for strong surface waves propagating along 

horizontal material interfaces. 

The orthorhombic representation is applicable to modelling seismic wave propagation and 

earthquake motion in isotropic models with material interfaces and smooth heterogeneities using 

velocity-stress, displacement-stress and displacement FD schemes on staggered, partly-

staggered, Lebedev and collocated grids. 
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