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S U M M A R Y
The accuracy and efficiency of numerical simulations of seismic wave propagation and earth-
quake ground motion in realistic models strongly depend on discrete grid representation of
the material heterogeneity and attenuation. We present a generalization of the orthorhom-
bic representation of the elastic medium to the viscoelastic medium to make it possible to
account for a realistic attenuation in a heterogeneous viscoelastic medium with material in-
terfaces. An interface is represented by an averaged orthorhombic medium with rheology of
the Generalized Maxwell body (GMB-EK, equivalent to the Generalized Zener body). The
representation is important for the possibility of applying one explicit finite-difference scheme
to all interior grid points (points not lying on a grid border) no matter what their positions
are with respect to the material interface. This is one of the key factors of the computational
efficiency of the finite-difference modelling. Smooth or discontinuous heterogeneity of the
medium is accounted for only by values of the effective (i.e. representing reasonably averaged
medium) grid moduli and densities. Accuracy of modelling thus very much depends on how
the medium heterogeneity is represented/averaged. We numerically demonstrate accuracy of
the developed orthorhombic representation. The orthorhombic representation neither changes
the structure of calculating stress-tensor components nor increases the number of arithmetic
operations compared to a smooth weakly heterogeneous viscoelastic medium. It is applicable
to the velocity–stress, displacement–stress and displacement FD schemes on staggered, partly
staggered, Lebedev and collocated grids. We also present an optimal procedure for a joint
determination of the relaxation frequencies and anelastic coefficients.

Key words: Numerical approximations and analysis; Computational seismology; Earthquake
ground motions; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

The realistic physical model of a medium has to be sufficiently ac-
curately and efficiently represented by a discrete grid model in the
numerical modelling of seismic wave propagation and earthquake
ground motion by the (spatial) domain numerical methods such as
the finite-difference (FD) method. The possibility of applying one
explicit FD scheme to all interior grid points (points not lying on a
grid border), no matter what their positions are with respect to the
material interface or strong material heterogeneity, is one of the key
factors of the computational efficiency of the FD modelling. Smooth
or discontinuous heterogeneity of the medium is accounted for only
by values of the effective grid moduli and densities. Consequently,
accuracy of the FD modelling very much depends on how these
effective grid parameters are evaluated. With a proper discrete

representation of material heterogeneity the most advanced FD
schemes can be more efficient in case of local surface sedimen-
tary structures than the spectral-element (SEM) and discontinuous-
Galerkin methods (see, e.g. Chaljub et al. 2010, 2015; Maufroy
et al. 2015).

Kristek et al. (2017) presented an orthorhombic representation of
an elastic heterogeneous medium. They numerically demonstrated
its superior accuracy. Compared to the harmonic-averaging repre-
sentation (Moczo et al. 2002) the orthorhombic representation is
more accurate mainly in the case of strong surface waves that are
especially important in local surface sedimentary basins. The repre-
sentation is capable of subcell resolution and ‘sensing’ an arbitrary
shape and position of the interface in the grid.
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A similar approach with a remarkable accuracy and subcell res-
olution has been developed also for the poroelastic media (Moczo
et al. 2018).

The orthorhombic representation is applicable to modelling seis-
mic wave propagation and earthquake motion in elastic media
with material interfaces and smooth heterogeneities using velocity–
stress, displacement–stress and displacement FD schemes on stag-
gered, partly staggered, Lebedev and collocated grids.

In this paper, we present a generalization of the orthorhombic
representation of the elastic medium to the viscoelastic medium to
make it possible to account for a realistic attenuation.

There has been a significant development of methodology of
incorporating realistic attenuation in the time-domain numerical
methods since the pioneering contributions by Liu et al. (1976),
Day & Minster (1984), Emmerich & Korn (1987) and Carcione
et al. (1988). The most recent reviews of this development are pro-
vided, for example in articles by Petersson & Sjögreen (2012) and
Blanc et al. (2016), and books by Moczo et al. (2014) and Car-
cione (2015). Therefore, we will not repeat the historical overview
here. However, given the topic of this article, we regretfully can-
not avoid mentioning that these reviews (except the one by Moczo
et al.) omit material-independent memory variables. Day (1998)
introduced a coarse graining (i.e. coarse spatial sampling) of the
memory variables to reduce computer memory requirements. Kris-
tek & Moczo (2003) demonstrated that it is necessary to intro-
duce material-independent memory variables if the coarse graining
should be sufficiently accurate in case of a strong material het-
erogeneity or interface. Another aspect important for this article
is the equivalence of two alternative rheologies—the generalized
Maxwell body as defined by Emmerich & Korn (1987) and the
generalized Zener body—shown by Moczo & Kristek (2005). (This
equivalence is missing in the recent edition of a comprehensive
Carcione’s book.)

In this paper, we first briefly overview the stress-strain relations
for 1-D problem: a smooth heterogeneous elastic medium, smooth
heterogeneous viscoelastic medium, averaged elastic medium and
averaged viscoelastic medium. The brief overview explains the
essence of generalizations from the elasticity to viscoelasticity and
from the smooth heterogeneity to averaged medium (representing
both continuous and discontinuous heterogeneity). Then we briefly
recall the orthorhombic representation of the heterogeneous elastic
medium. We continue with generalization of the representation to
the viscoelastic medium. Further we present an optimal procedure
for a joint determination of the anelastic coefficients and relaxation
frequencies. Eventually we demonstrate the accuracy of the new
representation using numerical tests.

2 B R I E F OV E RV I E W O F T H E
S T R E S S – S T R A I N R E L AT I O N S F O R A
1 - D P RO B L E M

Before we present the discrete representation for the viscoelas-
tic medium in 3-D, we briefly summarize the logic of generaliza-
tions from the elastic medium to the viscoelastic one, and from
the smoothly heterogeneous medium to the averaged medium—as
symbolically illustrated by Fig. 1. Though simple in 1-D, the sum-
mary given in Sections 2.1 and 2.2 is important for understanding
the stress–strain relation for an averaged viscoelastic medium in a
3-D problem.

Let σ and ε be stress and strain, respectively, t time, ω frequency,
M modulus, MU unrelaxed modulus, M(t) and M(ω) viscoelastic

Figure 1. Scheme of generalizations: from a smoothly heterogeneous
medium to an averaged medium, from an elastic medium to a viscoelas-
tic medium.

modulus as a function of time and frequency, respectively, ζl and Y M
l

anelastic functions (memory variables) and anelastic coefficients,
respectively, ωl lth relaxation frequency and QM (ω) quality factor.
GMB-EK refers to the generalized Maxwell body in definition by
Emmerich and Korn (1987), and GZB refers to the generalized
Zener body (see, e.g. Moczo et al. 2014 for the basic theory and
equivalence of GMB-EK and GZB).

2.1 Smooth heterogeneous medium

Elastic medium

The time-domain stress–strain relation with the elastic modulus M
is

σ (t) = Mε (t) (2.1)

and the corresponding frequency-domain relation is

σ (ω) = Mε (ω) . (2.2)

In relation to viscoelasticity, the real, frequency and time inde-
pendent elastic modulus may be also called the unrelaxed modulus,
M = MU , although there is no stress relaxation in the (perfectly)
elastic medium.

Viscoelastic medium

The simple time-domain stress–strain relation (2.1) is generalized
to the convolutional relation

σ (t) = M (t) ∗ ε (t) (2.3)

in order to account for the memory effect, and thus frequency-
domain stress–strain relation (2.2) is generalized to

σ (ω) = M (ω) ε (ω) (2.4)

in which a complex-valued frequency-dependent modulus appears.
If we assume a rheology of the GMB-EK/GZB body, the vis-

coelastic modulus may be written as

M (ω) = MU

[
1 −

∑ n

l = 1
Y M

l

ω l

ω l + i ω

]
(2.5)

and the unrelaxed (elastic) response is quantified by the unrelaxed
modulus MU

MU = lim
ω→∞

M (ω) . (2.6)
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lω 1,M Q
lY

2,M Q
lY

log-spaced 

0.100 -0.0193 0.0135 

0.464 0.1453 0.0090 

2.154 -0.0404 0.0090 

10.000 0.8706 0.0141 

m
inim

ization 

0.100 0.0276 0.0147 

0.624 0.0559 0.0101 

3.210 0.1171 0.0105 

26.037 0.7861 0.0185 

Figure 2. Test 1: Comparison of the relaxation frequencies ωl and anelastic
coefficients Y M

l determined using the log-spaced approach and system of
eqs (2.8) with those obtained by the minimization approach explained in
Section 5.

The anelastic coefficient Y M
l is defined as

Y M
l = Ml

MU
, (2.7)

where Ml is the elastic modulus of the lth Maxwell body in GMB-
EK (see, e.g. Moczo et al. 2014). The anelastic coefficients may be
determined from

1

QM (ω)
≡ ImM (ω)

ReM (ω)
=

∑ n
l = 1 Y M

l

ω l ω

ω 2
l + ω 2

1 − ∑ n
l = 1 Y M

l

ω 2
l

ω 2
l + ω 2

(2.8)

if we know QM (ω). Considering, for example, QM values at fre-
quencies ω̃k , a system of eq. (2.8), one equation for each QM (ω̃k), is
obtained. The system can be solved for the anelastic coefficients, for
example using the least-square method if the number of frequencies
ω̃k is larger than the number of frequencies ωl .

We may note that relation (2.8) simplifies if Q >> 1 and the
attenuation mechanisms may be split into a part which could be the
same over the model (time/frequency dependence) and an attenua-
tion coefficient (spatial dependence). See the article by Yang et al.
(2016).

Because M(ω) may be expressed in the form of a rational func-
tion of ω, it is possible to replace the convolutional relation (2.3)
by a simpler form of the stress–strain relation with memory vari-
ables plus a system of additional ordinary differential equations
for anelastic functions (Day & Minster 1984). For the material-
independent anelastic functions (Kristek & Moczo 2003) we have

σ (t) = MU ε (t) +
n∑

l=1

Y M
l MU ζl (t) (2.9)

∂

∂ t
ζl (t) + ωlζl (t) = ωlε (t) , l = 1, ..., n, (2.10)

where n is the number of the relaxation frequencies. Summation
convention does not apply to index l in eq. (2.10).

2.2 Averaged medium

Elastic medium

Consider, in general, both smooth and discontinuous heterogeneities
of the elastic medium. It is then reasonable to assume some spatial
averaging of the elastic modulus—for example, for an eventual
discrete grid representation of the heterogeneity. Then modulus
M = MU in relations (2.1) and (2.2) is replaced by a spatially
averaged modulus M̄ = M̄U .

Viscoelastic medium

Analogously, moduli M(t) and M(ω) are replaced by spatially-
averaged moduli M̄(t) and M̄(ω) in relations (2.3) and (2.4), re-
spectively. If we assume that the spatially averaged viscoelastic
medium can be described using the GMB-EK/GZB rheology, the
averaged viscoelastic modulus may be written as

M̄ (ω) = M̄U

[
1 −

∑ n

l = 1
Y M̄

l

ω l

ω l + i ω

]
, (2.11)

where the anelastic coefficients Y M̄
l and averaged unrelaxed modu-

lus M̄U replace the anelastic coefficients Y M
l and unrelaxed modulus

MU , respectively, in relation (2.9). The question is how to determine
Y M̄

l and M̄U for the averaged medium. The coefficients may be de-
termined from

1

QM̄ (ω)
≡ ImM̄ (ω)

ReM̄ (ω)
(2.12)

similarly as in the case of the smooth heterogeneous medium, see
eq. (2.8); we will return to this determination in Sections 4 and 5.
Relation M̄U = lim

ω→∞
M̄(ω) has an important implication: because

the averaging of M(ω) gives in the limit the averaged M̄U , we may
obtain M̄U by averaging applied to MU .

The two remaining questions are: the spatial averaging itself and
determination of the relaxation frequencies ωl . These questions
will be addressed in the section on the orthorhombic viscoelastic
medium.

3 T H E S PAT I A L AV E R A G I N G O F T H E
E L A S T I C M E D I U M F O R A 3 - D
P RO B L E M : T H E O RT H O R H O M B I C
R E P R E S E N TAT I O N

The discrete representation developed by Kristek and Moczo
(Moczo et al. 2014; Kristek et al. 2017) has two important proper-
ties: (1) The number of non-zero coefficients in the elasticity matrix
is the same as for the isotropic or transversely isotropic media, that
is, 9 (considering the matrix symmetry). Consequently, the averaged
medium neither changes the structure of calculating stress-tensor
components nor increases the number of arithmetic operations. (2)
If a grid cell contains a planar interface (between two homogeneous
materials) perpendicular to the ξ -axis, then the averaged medium
in the cell is the transversely isotropic medium with an axis of
symmetry parallel to the ξ -axis.

Though the representation is, obviously, approximate, it is effi-
cient and sufficiently accurate (see Moczo et al. 2014; Chaljub et al.
2015; Maufroy et al. 2015; Kristek et al. 2017). Because the repre-
sentation for the elastic medium makes a part of the representation
for the viscoelastic medium presented in this article [a consequence
of relation (2.6) valid also in 3-D], we show it here in the concise

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2021/5374520 by U

niverzita Kom
enskeho user on 23 April 2019



2024 J. Kristek et al.

Figure 3. Test 1–red lines: exact Q1(ω) = 1 and Q2(ω) = 100, black lines: Q1(ω) and Q2(ω) approximations corresponding to the log-spaced relaxation
frequencies and anelastic coefficients obtained using system of eqs (2.7), blue lines: Q1(ω) and Q2(ω)approximations corresponding to the relaxation
frequencies and anelastic coefficients obtained by the minimization approach.

lω 1,M Q
lY

2,M Q
lY

log-spaced 

0.100 -0.0194 0.0133

0.464 0.1453 0.0095

2.154 -0.0404 0.0092

10.000 0.8706 0.0101

m
inim

ization 

0.105 0.0305 0.0150

0.716 0.0578 0.0111

3.447 0.1146 0.0088

27.055 0.7848 0.0132

Figure 4. Test 2: Comparison of the relaxation frequencies ωl and anelastic
coefficients Y M

l determined using the log-spaced approach and system of
eqs (2.8) with those obtained by the minimization approach explained in
Section 5.

form. The stress–strain relation for the averaged medium may be
written as

�σ = Ē �ε (3.1)

where the overline indicates the averaged medium, the stress and
strain vectors are

�σ ≡ [
σxx , σyy, σzz, σxy, σyz, σzx

]T
,

�ε ≡ [
εxx , εyy, εzz, εxy, εyz, εzx

]T
(3.2)

and the elasticity matrix is

Ē =

⎡
⎢⎢⎢⎢⎢⎢⎣

�x λxy λzx 0 0 0
λxy �y λyz 0 0 0
λzx λyz �z 0 0 0
0 0 0 2μxy 0 0
0 0 0 0 2μyz 0
0 0 0 0 0 2μzx

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.3)

For simplicity we omit the overline in the matrix elements. The
relation may be also written as

σi j =
∑

p

{ ∑
q

2μi j εpq δi pδ jq

(
1 − δi j

)

+ [
�i δi p + λi p

(
1 − δi p

)]
εpp δi j

}
. (3.4)

The averaged moduli are determined as follows:

μxy = 〈〈μ〉z〉H xy (3.5)

�x =
〈〈

λ + 2μ − λ2

λ + 2μ

〉yz

+
[〈

λ

λ + 2μ

〉yz]2

〈λ + 2μ〉H yz

〉H x

(3.6)

λxy =
〈〈

λ + 2μ − λ2

λ + 2μ

〉z

+
[〈

λ

λ + 2μ

〉z]2

〈λ + 2μ〉H z

〉H xy

×
〈 〈

λ − λ2

λ + 2μ

〉z

+
[〈

λ

λ + 2μ

〉z]2

〈λ + 2μ〉H z

〈
λ + 2μ − λ2

λ + 2μ

〉z

+
[〈

λ

λ + 2μ

〉z]2

〈λ + 2μ〉H z

〉xy

.

(3.7)

Here, for example 〈μ〉z means an arithmetic average of μ in the
z-direction within the grid cell centred at a grid position at which
the average has to be evaluated. 〈λ + 2μ〉H z means a harmonic
average of λ + 2μ in the z-direction within the grid cell centred
at a grid position at which the average has to be evaluated. The
doubled superscript, for example xy, means an average over the
xy−cross-section of the grid cell centred at a grid position at which
the average has to be evaluated.

The averaged moduli {μyz, μzx }, {�y, �z} and {λyz, λzx } are
obtained from eqs (3.5)–(3.7), respectively, using replacements x →
y, y → z, z → x . The averaging applies to a volume of the grid
cell h × h × h centred at a position of the relevant stress-tensor
component.
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Figure 5. Test 2–red lines: exact Q1(ω) and Q2(ω), black lines: Q1(ω) and Q2(ω) approximations corresponding to the log-spaced relaxation frequencies and
anelastic coefficients obtained using system of eqs (2.7), blue lines: Q1(ω) and Q2(ω)approximations corresponding to the relaxation frequencies and anelastic
coefficients obtained by the minimization approach.

Figure 6. A vertical cross-section of a 3-D problem configuration. The model of medium consists of a horizontal soft layer in a homogeneous half-space. Both
point double-couple source and receiver are inside the layer. vx , vz—particle-velocity components, σzx , σxx , σyy , σzz—stress-tensor components.

Because nine elements of the elasticity matrix (3.3) are indepen-
dent, the averaged medium has an orthorhombic anisotropy with
three axes of symmetry that are identical with coordinate axes.

4 O RT H O R H O M B I C R E P R E S E N TAT I O N
F O R T H E V I S C O E L A S T I C M E D I U M

4.1 Stress–strain relation

Analogously to the GMB-EK/GZB time-domain stress–strain rela-
tion for 1-D, given by eqs (2.9) and (2.10), the stress–strain relation
for 3-D may be written as

�σ = Ē �ε −
n∑

l=1

Ā �ζ (4.1)

with stress vector �σ , strain vector �ε and matrix of averaged unrelaxed
moduli Ē given by eqs (3.2) and (3.3), respectively, and

�ζ ≡ [
ζ xx

l , ζ
yy

l , ζ zz
l , ζ

xy
l , ζ

yz
l , ζ zx

l

]T
(4.2)

Ā=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y �x
l �x Y

λxy
l λxy Y λzx

l λzx 0 0 0

Y
λxy
l λxy Y

�y
l �y Y

λyz
l λyz 0 0 0

Y λzx
l λzx Y

λyz
l λyz Y �z

l �z 0 0 0
0 0 0 2Y

μxy
l μxy 0 0

0 0 0 0 2Y
μyz
l μyz 0

0 0 0 0 0 2Y μzx
l μzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.3)

The overline indicates the averaged medium. Again, however,
for simplicity we will omit the overline in the matrix elements. An
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Figure 7. Comparison of the FD seismograms based on the developed discrete representation and DWN seismograms taken as reference for the three layer
thicknesses in the model shown in Fig. 6.

alternative form of relation (4.1) is

σi j =
∑

p

{∑
q

2μi j εpq δi p δ jq

(
1 − δi j

)

+ [
�iδi p + λi p

(
1 − δi p

)]
εppδi j

}

−
n∑

l=1

∑
p

{∑
q

2Y
μi j
l μi jζ

pq
l δi pδ jq

(
1 − δi j

)

+
[
Y �i

l �iδi p + Y
λi p
l λi p

(
1 − δi p

)]
ζ

pp
l δi j

}
. (4.4)

The anelastic functions obey ordinary differential equations

∂

∂ t
ζ

i j
l (t) + ωlζ

i j
l (t) = ωlεi j (t) , l = 1, ..., n, (4.5)

where n is the number of relaxation frequencies. Summation con-
vention does not apply to index l in eq. (4.5).

It is obvious that for calculating stress-tensor components in the
orthorhombic viscoelastic medium we need to know/determine the
unrelaxed moduli μi j , �i and λi j , anelastic coefficients Y

μi j
l , Y

�i j
l

and Y
λi j
l , and relaxation frequencies ωl . The unrelaxed moduli of

the averaged orthorhombic medium are determined by averaging
unrelaxed moduli according to eqs (3.5)–(3.7). The anelastic coeffi-
cients and relaxation frequencies may be determined jointly in one
procedure based on relations between the quality factors and the
anelastic coefficients.

4.2 Relations for the anelastic coefficients for the averaged
medium

In practice, we know from measurements or we simply estimate
quality factors for the P and S waves—QS(ω) and Q P (ω). Assume
that we know the unrelaxed moduli μ = μU and λ + 2μ = λU +
2μU at any point of the medium. (If we do not know them directly,
we can determine them from the phase velocities at some reference
frequencies—see Moczo et al. 2014). Then, at any point of the
medium,

μ (ω) = μ

[
1 −

∑ n

l = 1
Y μ

l

ω l

ω l + i ω

]
(4.6)

with the anelastic coefficients Y μ

l determined from, see eq. (2.8),

1

QS (ω)
=

∑ n
l = 1 Y μ

l

ω l ω

ω 2
l + ω 2

1 − ∑ n
l = 1 Y μ

l

ω 2
l

ω 2
l + ω 2

, (4.7)

Having μ(ω), μxy(ω) may be determined according to eq. (3.5)
as

μxy (ω) = 〈〈μ (ω)〉z
〉H xy

, (4.8)

where the averaging applies to a volume of the grid cell h × h ×
h centred at a position of the relevant stress-tensor component.
Complex values of μxy(ω) are evaluated at a set of reasonably chosen
frequencies within the frequency range of interest. The choice of
the frequencies will be addressed in Section 5. Consequently, the
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Figure 8. Geometry of the original 3-D model of the Mygdonian basin. Upper left-hand panel: margins of the sedimentary basin at the flat free surface, four
horizontal profiles of receivers at the free surface, position of the vertical profile of receivers (v) in the central part of the basin and positions of three selected
receivers. Upper right-hand panel: interface between the uppermost and middle sedimentary layers. Lower left-hand panel: interface between the middle and
bottom sedimentary layers. Lower right-hand panel: interface between the bottom sedimentary layer and bedrock. (Modified from Kristek et al. 2017).

Figure 9. Illustrative detail of the reference SEM model. Different colours represent different homogeneous materials. Element faces exactly follow interfaces.
This specific feature makes it possible for SEM to produce sufficiently accurate seismograms. Exactly the same model is considered in the FD simulation.
(According to Kristek et al. 2017).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2021/5374520 by U

niverzita Kom
enskeho user on 23 April 2019



2028 J. Kristek et al.

Layer 
SV PV ρ SQ Qκ

(m/s) (m/s) (kg/m3)   

1 200 1500 2100 20 ∞

2 350 1800 2200 35 ∞

3 650 2500 2200 65 ∞

Bedrock 2600 4500 2600 260 ∞

Figure 10. Material parameters of the modified 3-D model of the Mygdo-
nian basin.

anelastic coefficients Y
μxy
l may be determined from

1

Qμxy (ω)
≡ Reμxy (ω)

Imμxy (ω)
=

∑ n
l = 1 Y

μxy
l

ω l ω

ω 2
l + ω 2

1 − ∑ n
l = 1 Y

μxy
l

ω 2
l

ω 2
l + ω 2

. (4.9)

An analogous procedure applies to μyz(ω) and μzx (ω).
Similarly, at any point of the medium,

[λ + 2μ] (ω) = (λ + 2μ)

[
1 −

∑ n

l = 1
Y λ+2μ

l

ω l

ω l + i ω

]
(4.10)

with Y λ+2μ

l determined from

1

Q P (ω)
=

∑ n
l = 1 Y λ+2μ

l

ω l ω

ω 2
l + ω 2

1 − ∑ n
l = 1 Y λ+2μ

l

ω 2
l

ω 2
l + ω 2

. (4.11)

Having Y μ

l and Y λ+2μ

l , we obtain Y λ
l as

Y λ
l = α2Y λ+2μ

l − 2β2Y μ

l

α2 − 2β2
. (4.12)

Consequently we may determine λ(ω):

λ (ω) = λ

[
1 −

∑ n

l = 1
Y λ

l

ω l

ω l + i ω

]
. (4.13)

Having [λ + 2μ](ω) and λ(ω) at any point of the medium, we are
ready to evaluate �x (ω) according to eq. (3.6) and Y �x

l from

1

Q�x (ω)
≡ Re�x (ω)

Im�x (ω)
=

∑ n
l = 1 Y �x

l

ω l ω

ω 2
l + ω 2

1 − ∑ n
l = 1 Y �x

l

ω 2
l

ω 2
l + ω 2

. (4.14)

We obtain Y
�y
l and Y �z

l analogously.
Following Carcione & Cavallini (1995) we calculate the anelastic

coefficients Y
λxy
l , Y

λyz
l and Y λzx

l as

Y
λi j
l = �x Y �x

l + �yY
�y
l + �zY

�z
l

3λi j

−2
μxyY

μxy
l + μyzY

μyz
l + μzx Y μzx

l

3λi j
.

(4.15)

5 O P T I M A L P RO C E D U R E F O R A J O I N T
D E T E R M I NAT I O N O F T H E A N E L A S T I C
C O E F F I C I E N T S A N D R E L A X AT I O N
F R E Q U E N C I E S

Several approaches to determine relaxation frequencies and anelas-
tic coefficients have been developed and published after the pio-
neering articles by Emmerich & Korn (1987) and Carcione et al.
(1988): for example Robertsson et al. (1994); Robertsson (1996);
Graves & Day (2003); Asvadurov et al. (2004); Liu & Archuleta
(2006); van Driel & Nissen-Meyer (2014); Withers et al. (2015) and
Blanc et al. (2016).

Here we present an approach in which we find such relaxation
frequencies that are optimal for the whole computational domain,
that is, for the whole range of the quality factor values in the model.

Recall relation (2.8):

1

QM (ω)
=

∑n
l=1 Y M

l

ωlω

ω2
l + ω2

1 − ∑n
l=1 Y M

l

ω2
l

ω2
l + ω2

. (5.1)

The relation may be rearranged as

∑ n

l = 1

ωl ω + ω 2
l Q−1

M (ω)

ω 2
l + ω 2

Y M
l = Q−1

M (ω) (5.2)

and

1 −
∑ n

l = 1

ωl ω QM (ω) + ω 2
l

ω 2
l + ω 2

Y M
l = 0. (5.3)

We want to find the relaxation frequencies ω l and anelastic coeffi-
cients Y M

l satisfying relation (5.3) in the frequency range of interest
[ωmin, ωmax]. For a reasonably sampled frequency range we may
consider an objective function

F
(
ω l , Y M

l

) = 1

Nω − 1

×
√√√√ ω max∑

ω=ω min

(
1 −

∑ n

l = 1

ωlωQ (ω) + ω 2
l

ω 2
l + ω 2

∣∣ Y M
l

∣∣)2

, (5.4)

where Nω is the number of the log-spaced frequencies. Note that
this objective function is close to that used by Blanc et al. (2016).
We use the absolute values of the anelastic coefficients because we
look for positive coefficients. We can minimize the function using
the Nelder-Mead minimization method. The minimization method
could yield the anelastic coefficients and relaxation frequencies
for a given spatial position. However, in order to avoid keeping
in memory possibly different relaxation frequencies for each grid
point, it is computationally significantly more efficient to have the
same relaxation frequencies for the whole computational domain.
Therefore, we modify the objective function. Instead of the one
defined by eq. (5.4), we introduce the objective function as

F
(
ωl , Y M,Q1

l , Y M,Q2
l

)
= 1

Nω − 1

×
√√√√ ωmax∑

ω=ωmin

(
1 −

n∑
l=1

ωlωQ1 (ω) + ω2
l

ω2
l + ω2

∣∣∣Y M,Q1
l

∣∣∣
)2

+ 1

Nω − 1

√√√√ ωmax∑
ω=ωmin

(
1 −

n∑
l=1

ωlωQ2 (ω) + ω2
l

ω2
l + ω2

∣∣∣Y M,Q2
l

∣∣∣
)2

,

(5.5)
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Figure 11. The source time function. Left-hand panel: slip, centre: slip rate, right:-hand panel Fourier amplitude spectrum of the slip rate.

computational domain 16.14 km x 29.31 km x 7.86 km 

 040 157 1 stnemele fo rebmun

polynomial degree N=4 (5 GLL points per direction) 

number of points 
(each counted once) 

115 605 072 

 latnoziroh lacitrev  

(upper) fine mesh 

element size 2.5-7.5 m 50 m 

average grid spacing 0.62-1.87 m 12.5 m 

minimum grid spacing 0.43-1.30 m 8.63 m 

(lower) coarse mesh 

element size 860 m 200 m 

average grid spacing 215 m 50 m 

minimum grid spacing 148.50 m 34.53 m 

time step 0.0001 s   

time window 30 s   

note: minimum grid spacing = 0.691 % of average gridsize for N=4 

Figure 12. Computational parameters of the SEM simulation. GLL means Gauss–Lobatto–Legendre.

where Q1(ω) and Q2(ω) are the most differing Q(ω) laws in
the model. Application of the Nelder-Mead minimization to the
objective function (5.5) yields the relaxation frequencies and
anelastic coefficients, that is, ωl , Y M, Q 1

l , Y M, Q 2
l ; l = 1, ..., n.

Using the determined relaxation frequencies we could use the
Nelder-Mead minimization for finding anelastic coefficients for
other Q(ω) laws in the model of the medium. We checked,
however, that we would obtain anelastic coefficients very close
to those that we could obtain more efficiently using the deter-
mined relaxation frequencies by the least-square method applied
to system of eq. (2.8). Therefore we apply the latter simpler
approach.

The combination of the Nelder-Mead minimization with the ob-
jective function (5.5) provides a sufficiently robust and efficient
method for determining the relaxation frequencies and anelastic
coefficients. In the next section we present numerical tests illus-
trating the approach and that it is sufficient to use only two (most

differing) Q(ω) laws in the model of the medium in order to well
represent the whole model.

6 N U M E R I C A L V E R I F I C AT I O N

6.1 Test of the optimal minimization

Test 1

Assume that two most differing Q(ω) laws in the model of a
medium (one, e.g. in surface sediments, the other in an under-
lying rock) are Q1(ω) = 1 and Q2(ω) = 100, respectively. Obvi-
ously, the Q assumed in sediments is extremely low but it can
be considered as a stringent value for the testing purposes. Let
[ωmin = 0.1H z, ωmax = 10.0H z] be the frequency range in which
we want to sufficiently accurately approximate both Q(ω) laws.
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fine 
grid 

size 
1585 x 1475 x 
59 

grid spacing 10 m 

PML zone 55 grid planes 

coarse 
grid 

size 145 x 135 x 140 

grid spacing 110 m 

PML zone 5 grid planes 

time step 0.001 s 

time window 30 s 

Figure 13. Computational parameters of the FDM simulation.

In the approach suggested by Emmerich & Korn (1987) and
applied then by many, the frequency range is sampled by log-
spaced relaxation frequencies. Kristek & Moczo (2003) suggested
four frequencies in their coarse spatial distribution of the material-
independent anelastic functions. Following this approach, we may
consider ωl ∈ {0.1, 0.464, 2.154, 10.0}. For determining anelas-
tic coefficients Y M, Q1

l , Y M, Q2
l ; l = 1, ..., 4 we may sample both

Q(ω) laws at, for example the seven log-spaced frequencies ω̃k ∈
{0.1, 0.2154, 0.464, 0.99966, 2.154, 4.641, 10.0} in the consid-
ered frequency range of interest. Then we can determine the
anelastic coefficients separately for each of the two considered
Q(ω) laws using the least-square method applied to system of
eqs (2.8).

Alternatively, we may determine the relaxation frequencies and
anelastic coefficients using the method explained in Section 5.

Fig. 2 compares the relaxation frequencies and anelastic coeffi-
cients determined by the two alternative approaches. In the approach
explained in Section 5 we used 5000 frequencies to sample Q(ω)
laws in the frequency range of interest. We may notice that the
standard log-spaced approach yields two negative anelastic coeffi-
cients for the Q1(ω) = 1 law whereas our minimization approach
yields only positive values. Fig. 3 shows the exact Q1(ω) = 1 and
Q2(ω) = 100(red lines), Q1(ω) and Q2(ω) approximations corre-
sponding to the log-spaced relaxation frequencies and anelastic
coefficients obtained using system of eqs (2.8) (black lines), and
Q1(ω) and Q2(ω) approximations corresponding to the relaxation
frequencies and anelastic coefficients obtained using the minimiza-
tion approach (blue lines).

Test 2

In this test two most differing Q(ω) laws in the model of a medium
are Q1(ω) = 1, and Q2(ω) = 100 ; ω ∈ [0, 1]H z, Q2(ω) =
100 ω0.1 ; ω ∈ [1,∞]H z, respectively. As in Test 1 we determine
the relaxation frequencies and anelastic coefficients using both ap-
proaches. The results are compared in Figs 4 and 5. Fig. 4 compares
the relaxation frequencies and anelastic coefficients. We may no-
tice that the standard log-spaced approach yields the same anelastic
coefficients for the Q1(ω) = 1 as in Test 1. The minimization ap-
proach yields for the same Q1(ω) = 1 a little bit different anelas-
tic coefficients compared to those determined in Test 1. This is

because the coefficients also depend on the Q2(ω) law which dif-
fers from that in Test 1. Fig. 5 shows the exact Q1(ω) and Q2(ω)
laws (red lines), Q1(ω) and Q2(ω) approximations corresponding
to the log-spaced relaxation frequencies and anelastic coefficients
obtained using system of eqs (2.8) (black lines), and Q1(ω) and
Q2(ω) approximations corresponding to the relaxation frequencies
and anelastic coefficients obtained using the minimization approach
(blue lines).

In both Test1 and Test 2 the approximations of Q(ω) laws ob-
tained with the proposed optimization approach are better than those
obtained using the log-spaced relaxation frequencies and anelastic
coefficients determined by system of eqs (2.8).

6.2 Attenuation of intensive waves in a soft layer

Fig. 6 shows a vertical cross-section of a 3-D problem configura-
tion. The model of medium is made of a horizontal soft layer in a
homogeneous half-space. Both layer and half-space are character-
ized by P-wave and S-wave speeds and densities corresponding to
unrelaxed elastic moduli as well as frequency-independent quality
factors for P and S waves. Note the large contrasts of the speeds
and quality factors in the layer and half-space. We consider three
variants of the configuration differing from each other by the po-
sition of the lower layer-half-space interface and thus also by the
layer thickness. The lower layer-half-space interface of the 400-m-
thick layer goes through grid positions of the z-component of the
particle velocity and zx-component of the stress tensor. The lower
layer-half-space interface of the 450-m-thick layer goes through
grid positions of the component of the particle velocity and normal
components of the stress tensor. Finally, the lower layer-half-space
interface of the 452-m-thick layer is located just in the middle po-
sition, that is, one quarter of the grid spacing beneath the grid
plane going through the z-component of the particle velocity and
zx-component of the stress tensor. We choose the three variants in
order to demonstrate the subcell resolution of the developed dis-
crete representation of heterogeneity of the viscoelastic medium. A
point double-couple source as well as a receiver are located inside
the soft layer. Their positions inside the layer together with large
contrasts of the P- and S-wave speeds and quality factors imply
relatively intensive waves propagating inside the layer. At the same
time, relatively low values of the quality factors in the layer imply
considerable attenuation of the waves. Altogether we have a con-
figuration for a stringent test of accuracy of the developed discrete
representation.

Fig. 7 compares seismograms (x-component of the particle ve-
locity) calculated using the finite-difference (FD) and discrete-
wavenumber (DWN) methods. In the FD velocity–stress staggered-
grid scheme 4th-order accurate in space, 2nd-order accurate in time,
effective grid elastic and viscoelastic material parameters are deter-
mined according to the discrete representation explained in Sections
3–5. The very accurate DWN simulations, taken here as reference
solution, are performed using computer code Axitra (Coutant 1989)
based on theory by Bouchon (1981). The lower panel compares the
FD and DWN seismograms for the three models with different layer
thickness (due to different grid positions of the lower layer–half-
space interface). For this comparison we assumed perfectly elastic
medium. The upper panel compares the FD and DWN seismo-
grams analogously but for the viscoelastic medium. We can see
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Figure 14. The single-valued envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and FDM seismograms along the western,
central and eastern receiver profiles.

very good level of agreement between the FD and DWN seismo-
grams confirming accuracy and also subcell resolution of the devel-
oped discrete representation of interface between two viscoelastic
media.

6.3 Example for the Mygdonian basin model

For the numerical testing of the orthorhombic representation in the
perfectly elastic media Kristek et al. (2017) developed a special
modification of the available realistic 3-D model of the Mygdonian
basin near Thessaloniki, Greece. The original model of the Mygdo-
nian basin is shown in Fig. 8. The geometry of material interfaces
was modified so that the element faces exactly follow interfaces.
This means that the SEM can exactly account for the geometry of
material interfaces. Fig. 9 illustrates the SEM mesh. Contact of el-
ements with different colours is a material interface; there are five
interfaces in the figure showing a detail of the basin edge. For such
a specially modified model the SEM seismograms are adequately
accurate and may be considered a reference solution for testing the
FD simulation based on the orthorhombic representation. Thus, ex-
actly the same model was considered in the FD simulation. Kristek
et al. (2017) show very good level of agreement between the SEM
and FD solutions.

For the numerical testing of the orthorhombic representation in
the viscoelastic media we use the same specially modified elastic
model. We just make the model viscoelastic by defining frequency-
independent Q factors. QS factors are simply defined as QS =
VS/10 and quality factors for the bulk modulus Qκ are assumed
infinite in each layer and bedrock. Material parameters of the model
are shown in Fig. 10. The wavefield is generated by a point double-
couple source located at a depth of 5 km. The source time function

is shown in Fig. 11. The slip-rate time function is defined as a low-
pass filtered Gaussian pulse. The slip is obtained by integrating the
slip-rate function.

The reference SEM seismograms are computed using the
SPECFEM3D code developed by Komatitsch and Tromp (e.g. Ko-
matitsch and Tromp 1999; Tromp et al. 2008; Peter et al. 2011). The
FD seismograms are computed using the FDSim3D code (Kristek
& Moczo 2014; Moczo et al. 2014). Figs 12 and 13 summarize the
SEM and FD computational parameters.

We calculated the FD seismograms using a spatially discontin-
uous grid (Kristek et al. 2010). Fig. 14 shows the single-valued
envelope and phase GOFs (goodness-of-fit) between the reference
SEM seismograms and FD seismograms along the western, central
and eastern receiver profiles. GOFs are calculated for the entire
30-s window in the frequency range [0.1, 5] Hz from the arithmetic
average of the single-valued misfits evaluated separately for each
component (Kristekova et al. 2009). Recall that GOF larger than 8
means an excellent fit and GOF = 10 means the perfect agreement.
Fig. 15 shows the single-valued envelope and phase GOFs for the
middle and vertical receiver profiles. It is clear from Figs 14 and 15
that except relatively small number of receivers the fit between the
SEM and FD seismograms is excellent.

Fig. 16 compares the SEM and FD seismograms at receivers
134, 166 and 188. In addition to seismograms themselves the figure
also shows the time–frequency envelope and phase GOFs between
the reference SEM and FD seismograms. Seismograms for each
receiver position are absolutely scaled with respect to the maximum
amplitude from all components (EW component for receiver 134
and 166, NS component for receiver 188). The GOFs, however,
are evaluated individually for each component. This is why GOFs
for the vertical component at receiver position 188 are larger than
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Figure 15. The single-valued envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and FDM seismograms along the middle
profile and vertical profile.

GOFs for the NS or EW components despite their smaller relative
importance. We can see that the level of agreement between the
reference SEM and FD seismograms is consistent with the level of
agreement quantified by the single-valued GOFs shown in Figs 14
and 15. We may particularly point out the very good agreement
between the SEM and FD seismograms in later times.

7 C O N C LU S I O N S

We have developed a new orthorhombic representation of a hetero-
geneous viscoelastic medium with interfaces. Heterogeneity of the
medium in a FD cell is represented by an averaged medium with an
orthorhombic anisotropy with three axes of symmetry that are iden-
tical with the coordinate axes. The representation is a generalization
of the orthorhombic representation of the heterogeneous elastic
medium with interfaces (Kristek et al. 2017). Effective material
grid parameters are evaluated numerically as volume orthorhom-
bic averages in the grid cells centred at the grid positions of the
corresponding stress-tensor components.

We have also found an optimal procedure for a joint determina-
tion of the anelastic coefficients and relaxation frequencies for an
arbitrary Q(ω) law.

We numerically verified both the optimal procedure and or-
thorhombic representation. For the latter we used two stringent
model-wavefield configurations: 3-D wavefields in a soft internal
layer in a half-space and a complex model of the Mygdonian sedi-
mentary basin.

For the layer model we compared FD seismograms with seismo-
grams calculated using the DWN method. The FD seismograms are
in excellent agreement with the DWN seismograms.

The 3-D model of the Mygdonian basin was specially designed.
In the original model, geometry of the material interfaces was mod-
ified so that the element faces exactly follow interfaces. This made
it possible to achieve sufficient accuracy with the SEM. The SE
seismograms can be thus considered as reference. The FD seismo-
grams were obtained using a discontinuous grid consisting of the
fine and coarse uniform grids for the same geometry of interfaces
as in the SE model. For quantitative comparison of the FD and SE
seismograms we evaluated goodness-of-fit in envelope and phase
at several hundreds receivers. The FD and SE seismograms are in
excellent fit for a vast majority of receivers. At several receivers the
fit is very good.

Both verification tests demonstrated a very good accuracy and
subcell resolution of the developed representation.
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Figure 16. Comparison of the FD seismograms with the reference SEM seismograms for receivers 134, 166 and 188.

The orthorhombic representation neither changes the structure
of calculating stress-tensor components nor increases the number

of arithmetic operations compared to a smooth weakly heteroge-
neous viscoelastic medium. The orthorhombic representation is ap-
plicable to modelling seismic wave propagation and earthquake
motion in isotropic models with material interfaces and smooth
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heterogeneities using velocity–stress, displacement–stress and dis-
placement FD schemes on staggered, partly staggered, Lebedev and
collocated grids.
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(in French), Université Joseph Fourier, Grenoble.

Day, S.M., 1998. Efficient simulation of constant Q using coarse-grained
memory variables, Bull. seism. Soc. Am., 88(4), 1051–1062.

Day, S.M. & Minster, J.B., 1984. Numerical simulation of wavefields using
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