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S U M M A R Y
We present a new methodology of the finite-difference (FD) modelling of seismic wave
propagation in a strongly heterogeneous medium composed of poroelastic (P) and (strictly)
elastic (E) parts. The medium can include P/P, P/E and E/E material interfaces of arbitrary
shapes. The poroelastic part can be with (i) zero resistive friction, (ii) non-zero constant resistive
friction or (iii) JKD model of the frequency-dependent permeability and resistive friction. Our
FD scheme is capable of subcell resolution: a material interface can have an arbitrary position
in the spatial grid. The scheme keeps computational efficiency of the scheme for a smoothly and
weakly heterogeneous medium (medium without material interfaces). Numerical tests against
independent analytical, semi-analytical and spectral-element methods prove the efficiency and
accuracy of our FD modelling. In numerical examples, we indicate effect of the P/E interfaces
for the poroelastic medium with a constant resistive friction and medium with the JKD model
of the frequency-dependent permeability and resistive friction. We address the 2-D P-SV
problem. The approach can be readily extended to the 3-D problem.

Key words: Permeability and porosity; Numerical approximations and analysis; Computa-
tional seismology; Earthquake ground motions; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Real surface or near-surface Earth structures are complex due to their rheological and geometrical properties. They consist of viscoelastic
sediments, porous rocks and fluids, often in complex geometrical configurations. Consequently, wave propagation coupling in structures with
acoustic/poroelastic, elastic/poroelastic and solid/fluid interfaces has been intensively investigated in the exploration/reservoir geophysics
and ocean acoustics.

Laterally fully or partially bounded sediments in surface sedimentary basins and valleys are well known for their potential to cause
anomalous earthquake ground motion. Such anomalous motion is often responsible for largest damage in earthquakes.

Earthquake ground motion in surface sedimentary structures can be significantly affected by geometry of the sediment/basement
interface, velocity and impedance contrast at the interface, and rheology of sediments (e.g. Kristek et al. 2018; Moczo et al. 2018). Effects
of water- and air-saturated sediments in surface sedimentary basins and valleys on earthquake ground motion in the earthquake engineering
frequency range (approximately 0–25 Hz) has not been sufficiently investigated yet. Géli et al. (1987) investigated seismic wave propagation
in a very permeable water-saturated horizontal surface layer over an elastic half-space. Wuttke et al. (2017) investigated motion in surface
canyon and elastic inclusion in the poroelastic half-space.
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Figure 1. Model of a surface sedimentary basin with an elastic bedrock, water-saturated sediments and surficial thin layer of sediments with air in the pores.

Investigations of effects of poroelasticity on earthquake ground motion in geometrically realistic configurations require sufficiently
accurate and computationally efficient numerical methods. Obviously, it would be desirable to have a numerical scheme capable of modelling
seismic waves in realistic models consisting of viscoelastic solids, poroviscoelastic rocks and fluids.

1.1 Our goal

Due to relative mathematical and algorithmic complexity, it is reasonable to develop first a finite-difference (FD) scheme capable to simulate
seismic waves in strongly heterogeneous models consisting of the poroelastic and elastic parts and thus including poroelastic/elastic (P/E)
interfaces. Once the methodology for the model consisting of the poroelastic and elastic parts is developed, its generalization to a model
consisting of poroviscoelastic parts and viscoelastic parts should be more feasible in the follow-up paper. Moreover, it is necessary to have
the poroelastic/elastic modelling developed for testing and for comparison with the poroviscoelastic/viscoelastic modelling.

Often in the published papers, an elastic part is modelled as a poroelastic part: poroelastic parameters are tuned so that the poroelastic
medium effectively behaves as the elastic medium. However, this approach has its limitations: it is not always possible to replace an elastic
medium by a suitable poroelastic one.

This means that it is reasonable to develop a scheme for a poroelastic medium that can be used also for the model of medium consisting
of both the poroelastic parts and strictly elastic parts. This is methodologically an obvious aspect and goal. It will be good to have such a
scheme available for simulating seismic waves in models for which the use of one poroelastic schemes is computationally efficient.

If a major part of the model is elastic and the poroelastic part is relatively small, then the computationally more demanding poroelastic
scheme applied to the whole model will be less computationally efficient than, for example, application of the elastic scheme to the elastic part
and the poroelastic scheme to the poroelastic part. The use of one scheme or combination of two schemes should be considered specifically
for each model and possibly spatial grid (uniform, discontinuous and adaptive).

Our goal here is to develop methodology and an FD scheme with the sub-cell resolution capability in the strongly heterogeneous medium
consisting of the poroelastic and elastic parts. An illustrative example is shown in Fig. 1. We address the 2-D P-SV problem. The approach
can be readily extended to the 3-D problem.

1.2 Previous investigations

Moczo et al. (2019) presented a relatively detailed overview of the FD modelling of seismic wave propagation in the poroeleastic medium.
Therefore, here we just briefly comment contributions relevant to the specific topic of this paper and recent important contributions which
were not mentioned in the above paper.

The problem of the poroelastic/elastic interface and the relation between poroelastic and elastic behaviours was addressed by many
authors. Boundary conditions between two poroelastic media, elastic and poroelastic media, and liquid and poroelastic media were found
by Deresiewicz & Skalak (1963) who investigated conditions for ensuring uniqueness of solution within framework of Biot’s (1956) theory.
Alternative independent methodological approaches were used by Lovera (1987) and de la Cruz & Spanos (1989) who derived boundary
conditions at the three types of interface.

Géli et al. (1987) investigated seismic wave propagation and amplification of earthquake ground motion in a very permeable water-
saturated horizontal surface layer over an elastic half-space.

Tomar & Arora (2006) studied reflection and transmission of incident waves at a plane surface between an unsaturated porous half-space
and an elastic solid half-space.
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Coupling between the elastic and poroelastic media was addressed by Morency & Tromp (2008) in their spectral-element (SE) approach.
They accommodated first-order interfaces using domain decomposition. Morency et al. (2011) investigated seismic wavefield in a model of
a brine-saturated aquifer (poroelastic) sandwiched between elastic layers.

Guan & Hu (2011) developed a 2-D velocity-stress-pressure FD scheme on a staggered grid for simulating elastic waves in medium
consisting of elastic, fluid and poroelastic parts. A constant resistive friction is assumed in the poroelastic medium. The scheme is based on
modified Biot’s equations used to describe wave propagation in the elastic, fluid and poroelastic media, and parameter averaging at material
interfaces located along contacts of homogeneous grid cells.

Chen et al. (2012) investigated propagation of plane P waves at an interface between elastic solid and unsaturated poroelastic medium
using analytical method. Lähivaara et al. (2014, 2015) investigated possibility to replace a poroelastic aquifer by a highly approximate
elastic model. Ward et al. (2017, 2020) developed a high-order discontinuous Galerkin method for modelling wave propagation in coupled
poroelastic–elastic media in 2-D and 3-D cases, respectively. They derived an upwind numerical flux as an exact solution for the Riemann
problem including the poroelastic–elastic interface. Zhang et al. (2019) developed an arbitrary high-order discontinuous Galerkin method
to simulate the wave propagation in coupled elastic–poroelastic media, which achieves the same order accuracy in time and space domains
simultaneously. The interfaces between the two media are explicitly tackled by the Godunov numerical flux.

New recent contributions to the numerical modelling of seismic waves in poroelastic media include the following papers. Sun et al.
(2019) developed 2-D poroelastic wave modelling with a topographic free surface by the curvilinear grid FD collocated-grid method. Ou &
Wang (2019) used the FDTD (FD time-domain) modelling to investigate Stoneley wave reflection from a porous formation in the borehole.
He et al. (2020) derived boundary conditions at the elastic–poroelastic interface inside the perfectly matched layer (PML) in the unsplit
formulation. They also presented a weak form of the PML formulations for the coupled poroelastic problems. Zhang (2020) developed an
analysis of stability of high-order FD staggered-grid scheme for 3-D wave propagation in the poroelastic medium and obtained explicit
condition for the time step. Considering equations for 3-D wave propagation in the elastic medium as the limit case of those for the poroelastic
medium, Zhang easily obtained explicit stability conditions also for the scheme for the elastic medium. He et al. (2021) developed a Runge–
Kutta discontinuous Galerkin (RKDG) method for solving wave equations in isotropic and anisotropic poroelastic media at low frequencies.
Alkhimenkov et al. (2021a) developed a comprehensive von Neumann stability analysis for a class of FD schemes for Biot’s equations for a
poroelastic medium. Alkhimenkov et al. (2021b) developed a multi-GPU solver for the anisotropic elastodynamic Biot’s equations in 1-D,
2-D and 3-D. They implemented a simple approach to circumvent the stiffness of Biot’s equations by using an implicit scheme for Darcy’s flux
while keeping explicit updates in the iteration loop. Tohti et al. (2021) presented the staggered-grid FD microseismic forward modelling in
orthorhombic poroelastic medium for an isotropic, double-couple and compensated linear vector dipole sources. Cheng et al. (2021) extended
the Biot’s squirt model to the orthorhombic anisotropy, introduced rheology of the generalized Zener body in the solid matrix and simulated
seismic wavefields using the staggered-grid FD scheme.

1.3 FD modelling with subcell resolution capability

Moczo et al. (2019) and Gregor et al. (2021) developed a discrete representation of a strongly heterogeneous poroelastic medium, that
is medium with material interfaces, and the corresponding FD scheme. The averaging was developed for the velocity–stress–pressure
staggered-grid scheme with the second-order accuracy in time and fourth-order accuracy in space.

Their scheme has several important features. It can simulate seismic waves in a strongly heterogeneous poroelastic medium with zero
resistive friction or non-zero constant resistive friction or JKD model of the frequency-dependent permeability and resistive friction. The
scheme has the subcell resolution capability. Due to the decision on compromise between accuracy and computational efficiency, the scheme
keeps computational efficiency of the scheme for a smoothly and weakly heterogeneous medium (medium without material interfaces).

The second property allows for an arbitrary shape and position of an interface in a uniform spatial grid. The third property means that
the number of operations for updating stress, fluid pressure, solid particle velocities and relative fluid particle velocities is the same as in the
case of a smoothly and weakly heterogeneous medium; the only difference is that it is necessary to evaluate averaged grid material parameters
once before the FD simulation itself.

The developed methodology builds up on methodologies by Moczo et al. (2002, 2014, 2019), Kristek & Moczo (2003), Kristek et al.
(2017, 2019) and proves capabilities of the FD modelling of seismic wave propagation in strongly heterogeneous media.

1.4 Structure of this paper

In this paper, we address the following topics:

(i) transforming equations for the poroelastic medium to equations for the elastic medium,
(ii) averaging of the poroelastic and elastic media,
(iii) updating seismic wavefield using one FD scheme for the poroelastic medium,
(iv) numerical verification of the FD scheme against independent analytical (A), semi-analytical (SA) and SE methods to prove efficiency

and accuracy of our FD modelling.
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2 E Q UAT I O N S F O R A H E T E RO G E N E O U S P O RO E L A S T I C M E D I U M

2.1 Equations for a smoothly heterogeneous medium

Consider a smoothly heterogeneous isotropic poroelastic medium with resistive friction that may be zero, non-zero constant (frequency
independent, Biot’s model) or frequency dependent (JKD model—after Johnson, Koplik & Dashen 1987). These three types of resistive
friction were presented in detail in our previous papers by Moczo et al. (2019) and Gregor et al. (2021).

The constitutive relations and equations of motion for the 2-D P-SV problem in the velocity–stress–pressure formulation may be written
as (Moczo et al. 2019; Gregor et al. 2021)

∂

∂ t

⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ = SS

∂

∂ t

⎡
⎢⎢⎢⎣

εxx

εzz

εxz

εw

⎤
⎥⎥⎥⎦ (1)

and

∂

∂ t

⎡
⎢⎢⎢⎣

vx

−qx

vz

−qz

⎤
⎥⎥⎥⎦ = RS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ σx x

∂ x
+ ∂ σx z

∂ z
∂ p

∂x
Px

∂ σz z

∂ z
+ ∂ σx z

∂ x
∂ p

∂z
Pz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The matrices SS and RS have the following forms:

SS ≡

⎡
⎢⎢⎢⎣

� + α2 M λm + α2 M 0 αM

λm + α2 M � + α2 M 0 αM

0 0 2μ 0
αM αM 0 M

⎤
⎥⎥⎥⎦ (3)

RS ≡ 1

mρ − ρ2
f

⎡
⎢⎢⎢⎣

m ρ f ρ f B 0 0 0
ρ f ρ ρ B 0 0 0

0 0 0 m ρ f ρ f B

0 0 0 ρ f ρ ρB

⎤
⎥⎥⎥⎦ (4)

In case of the JKD frequency-dependent resistive friction, there are additional equations for diffusive memory variables ψ i
n ; i ∈

{x, z} , n = 1, ..., N , appearing in the formal wavefield variables Px and Pz . Denoting

ψ i ≡ [
ψ i

1, ψ i
2, ..., ψ

i
N−1, ψ i

N

]T
(5)

the additional equations for the diffusive memory variables may be written as

∂

∂ t
ψ i = − (DS + �S)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ σi j

∂ x j
∂ p

∂ xi

Pi

qi

ψ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The matrices DS and �S have the following forms:

DS ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ f ρ ρB 0 0 0 · · · 0 0
ρ f ρ ρB 0 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...
...

ρ f ρ ρB 0 0 · · · 0 0 0
ρ f ρ ρB 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/228/1/551/6363690 by U

niverzita Kom
enskeho user on 11 O

ctober 2021



FD scheme for seismic waves in combined elastic–poroelastic media 555

Figure 2. Wavefield variables of the poroelastic medium.

and

�S ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 − 
 θ1 + 
 0 · · · 0 0
0 0 0 − 
 0 θ2 + 
 0 · · · 0
...

...
...

...
...

...
. . .

...
...

0 0 0 − 
 0 · · · 0 θN−1 + 
 0
0 0 0 − 
 0 0 · · · 0 θN + 


⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

The wavefield variables and material parameters, together with basic relations, are listed in Figs 2 and 3, respectively.

2.2 Boundary conditions at a material interface

Consider an interface between two poroelastic materials indicated by the + and −superscripts, respectively. The boundary conditions at the
interface may be written as

σ+
i j n j = σ−

i j n j

p+ = p−

u+
i = u−

i

w+
i ni = w−

i ni (9)

where ni is the unit normal to the interface. The Einstein’s summation convention for repeating indices is assumed.
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Figure 3. Material parameters of the poroelastic medium.
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2.3 Equations for the averaging representation of the strongly heterogeneous medium

Moczo et al. (2019) and Gregor et al. (2021) developed the discrete representation (averaging) of a strongly heterogeneous poroelastic medium
(with zero or non-zero constant or frequency-dependent resistive friction) that can include material interfaces. The averaging is based on
approximation of the boundary conditions (9) at the material interface. In case of a planar interface (parallel to a Cartesian coordinate plane)
between two homogeneous media, the averaging of the material parameters is exact. Otherwise, the averaging is approximate.

The crucial aspect of the discrete material representation is that the numbers of non-zero elements in matrices for the averaged medium
are the same as those in the matrices for the smoothly heterogeneous medium. This means that the number of algebraic operations for updating
wavefield variables is the same as in the smoothly heterogeneous medium.

The other important aspect is that the averaging was developed for the velocity–stress–pressure staggered-grid scheme with the second-
order accuracy in time and fourth-order accuracy in space.

The corresponding FD scheme has a subcell resolution capability.
The equations for the averaged poroelastic medium are summarized in Appendix A.

3 T R A N S F O R M I N G E Q UAT I O N S F O R T H E P O RO E L A S T I C M E D I U M T O E Q UAT I O N S
F O R T H E E L A S T I C M E D I U M

First, we will briefly summarize how to ‘transform’ the smooth poroelastic medium into the strictly elastic medium using limit values of the
poroelastic material parameters. Then, we will develop the corresponding ‘transformation’ for the averaged poroelastic medium because we
will need such ‘transformation’ for developing relations for the averaged medium consisting of the poroelastic and elastic parts.

3.1 Smoothly heterogeneous medium

Bourbié et al. (1987) presented limit values of the poroelastic material parameters for which the (two-component) poroelastic medium becomes
a strictly (single-component) elastic medium. As it will be obvious from the following considerations, Bourbié et al. (1987) reasonably
considered the constitutive relations in the form in which the pore pressure is explicitly present in the relations for the stress components.
Also, they considered equations of motion in which both particle velocities are explicitly present. Correspondingly, the constitutive relations
and equations of motion may be written as

∂ σi j

∂ t
= λm

∂ εkk

∂ t
δi j + 2μ

∂ εi j

∂ t
− α

∂ p

∂ t
δi j

∂ p

∂ t
= −α M

∂ εkk

∂ t
− M

∂ εw

∂ t
(10)

ρ
∂ vi

∂ t
= ∂ σi j

∂ x j
− ρ f

∂ qi

∂ t

ρ f
∂ qi

∂ t
= − 1

m

(
ρ f

∂ p

∂ xi
+ ρ2

f

∂ vi

∂ t
+ ρ f B Pi

)
(11)

Consider zero coefficient of the effective stress α and zero porosity φ:

α = φ = 0 (12)

Then

(i) Relation α = 0 implies equality of the bulk moduli of the solid, drained solid matrix and undrained poroelastic medium:

Ks = K m = Ku (13)

(ii) Relations Ks = Km and φ = 0 together imply an infinite value of the coupling modulus between solid and fluid:

M → ∞ (14)

(iii) As porosity φ → 0, the total fluid volume becomes too small and loses capability to flow through the medium. The loss of capability
of the fluid to flow can be also due to tortuosity T → ∞. Thus, in addition to φ → 0 we may also consider

T → ∞ (15)

[We may note the relation between φ and T found by Berryman (1980) for the solid matrix: T = 1 + r (1/φ − 1), where, e.g. r = 1/2
for spherical grains.]

Guan & Hu (2011) noted equality of the total, solid and fluid densities,

ρ = ρs = ρ f (16)
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and equality of the bulk moduli of the solid, drained solid matrix, undrained poroelastic medium medium and fluid

Ks = Km = Ku = K f (17)

In order to ‘transform’ the poroelastic medium into the strictly elastic medium, it is necessary (and enough) to apply the first equality
in eq. (16) in addition to relations (12)–(15). In the following, we apply relations (12)–(16) to eqs (10) and (11).

Due to the zero coefficient of the effective stress, α = 0, the pore pressure p is eliminated from the constitutive equations for the
stress components. This is consistent with the fact that there is no need to calculate the pore pressure p in the elastic medium. Thus, eq. (10)
reduce to

∂ σi j

∂ t
= λm

∂ εkk

∂ t
δi j + 2μ

∂ εi j

∂ t
(18)

Due to the zero porosity, φ = 0, the inverse value of the mass coupling coefficient m becomes zero:

1

m

∣∣∣∣
φ=0

= φ

T ρ f

∣∣∣∣
φ=0

= 0 (19)

Considering relations (19) and assuming that the formal parameter B does not reach an infinite value, the right-hand side of the second
of eq. (11) vanishes:

ρ f
∂ qi

∂ t
= 0 (20)

Recall that parameter B serves to account for the resistive friction in the Biot’s or JKD models. The parameter has no meaning for the
elastic medium but given the infinite value of the mass coupling coefficient m, it is enough to formally assume that its value is limited.

If we assume zero initial condition for the fluid particle velocity qi in eq. (20), equations of motion (11) reduce to

ρ
∂ vi

∂ t
= ∂ σi j

∂ x j
(21)

We conclude that setting the zero coefficient of the effective stress, α = 0, in eqs (10) and the zero inverse value of the mass coupling
coefficient, 1/m = 0, in eq. (11) leads to eqs (18) and (21), that is equations for the elastic medium.

Because we are ‘transforming ’ the poroelastic medium which is also described by the diffusive memory variables, we have to look also
at the system of equations for the diffusive memory variables (6). If we apply relation (19) for the mass coupling coefficient m to the system
of equations (6) and consider 
 = 0 due to φ = 0, the system reduces to

∂ ψ i
n

∂ t
= −θn ψ i

n ; i ∈ {x, z} , n = 1, . . . , N (22)

It follows from eq. (22) and the initial boundary conditions that the diffusive memory variables are equal to zero all the time. Consequently,
the system of equations for the diffusive memory variables can be disregarded.

Eventually, we have to ‘transform’ also the boundary conditions (9). They easily reduce to the boundary conditions at a material interface
between two elastic materials:

σ+
i j n j = σ−

i j n j

u+
i = u−

i (23)

The meaning of the superscripts and n j is the same as in relations (9).

3.2 Averaged medium

The constitutive relations for the averaged poroelastic medium for 2-D P-SV problem, eqs (A1) and (A3), may be written, consistently with
the constitutive relations in system (10), as

∂

∂ t

⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

X X X Z 0 0 X P
X Z Z Z 0 0 Z P
0 0 2〈μ〉H xz 0 0

X P

�

Z P

�
0

1

�
0

⎤
⎥⎥⎥⎥⎦

∂

∂ t

⎡
⎢⎢⎢⎢⎢⎣

εxx

εzz

εxz

εw

−p

⎤
⎥⎥⎥⎥⎥⎦ (24)

The main point with this form of the constitutive relation is that the averaged parameter � appears just in the relation for the fluid pore
pressure which is not defined in the elastic medium and thus not evaluated. The averaged material parameters X X , Z Z and X Z , formally
unchanged, are evaluated for λE and �E representing the elastic medium. Parameters X P and Z P are equal to zero for the zero coefficient of
effective stress, α = 0. Thus, they eliminate the pore pressure p from relations for the stress components. Since there is no need to calculate
the pore pressure p in the elastic medium, the relation for the pore pressure p may be disregarded. Consequently, the constitutive relations
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(24) for the averaged poroelastic medium reduce to

∂

∂ t

⎡
⎢⎣σxx

σzz

σxz

⎤
⎥⎦ =

⎡
⎢⎣X X X Z 0

X Z Z Z 0
0 0 2〈μ〉H xz

⎤
⎥⎦ ∂

∂ t

⎡
⎢⎣εxx

εzz

εxz

⎤
⎥⎦ (25)

that is, to the constitutive relations for the averaged elastic medium (Moczo et al. 2014; Kristek et al. 2017).
Consider now the equations of motion (A2) for the averaged medium. Relation (16) implies for the auxiliary averaged material parameters

F ξ , Rξ and Pξ appearing in matrices RA and DA (see their definitions in Appendix A), the following equalities: F ξ 	= 0, Rξ 	= 0 and Pξ = 1.
Relation (19) implies for the auxiliary averaged material parameters Gξ , H ξ and Qξ appearing in matrices RA and DAthe following equalities:
Gξ = 0, H ξ = 0 and Qξ = 0. Recall again that we assume that the formal parameter B does not reach an infinite value in the elastic medium.
Eventually, the auxiliary averaged material parameter Sξ appearing in matrix RA attains value Sξ = 1. Consequently, matrix RA in equations
of motion (A2) reduces to

RA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈F x 〉z

〈Sx 〉z 0 0 0 0 0

0 0 0 0 0 0

0 0 0
〈Fz〉x

〈Sz〉x 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where

〈F x 〉z

〈Sx 〉z = 1

〈〈ρs〉x 〉z ,
〈Fz〉x

〈Sz〉x = 1

〈〈ρs〉z〉x (27)

Due to eq. (26), the equations of motion (A2) are reduced to the equations for the averaged elastic medium (Moczo et al. 2014; Kristek
et al. 2017):⎡
⎢⎣

∂ vx

∂ t
∂ vz

∂ t

⎤
⎥⎦ =

⎡
⎢⎣

1

〈〈ρs〉x 〉z 0

0
1

〈〈ρs〉z〉x

⎤
⎥⎦

⎡
⎢⎣

∂ σx x

∂ x
+ ∂ σx z

∂ z
∂ σz z

∂ z
+ ∂ σx z

∂ x

⎤
⎥⎦ (28)

Consider now the system of equations for the diffusive memory variables (6) for the averaged poroelastic medium. Using relation (19)
for the mass coupling coefficient m in the system, the system reduces to

∂ ψ i
n

∂ t
= −θn ψ i

n ; i ∈ {x, z} , n = 1, . . . , N (29)

where 
 = 0 due to φ = 0. Due to the zero initial conditions the diffusive memory variables are equal to zero all the time. Consequently, the
system of equations for the diffusive memory variables can be disregarded which is correct for the strictly elastic medium.

Let us note that the obtained systems of eqs (25) and (28) correspond to the orthorhombic averaging (Moczo et al. 2014; Kristek et al.
2017) for the strongly heterogeneous medium with material interfaces. The orthorhombic averaging of the strongly heterogeneous elastic
medium is based on approximation of the boundary conditions (23) at the material interface. In case of a planar interface (parallel to a
Cartesian coordinate plane) between two homogeneous media, the averaging of the material parameters is exact.

4 T H E U N I F Y I N G E Q UAT I O N F O R T H E AV E R A G E D P O RO E L A S T I C M E D I U M

Gregor et al. (2021) presented the unifying matrix-form equation for the averaged poroelastic medium. The unifying form is suitable concise
form for the so-called partitioning into the non-stiff and stiff systems.

Recall that in the case of the poroelastic medium with non-zero constant resistive friction (Biot’s model) or frequency-dependent resistive
friction, the equations of motion include the so-called viscous dissipation terms. In the equations for the solid particle-velocity components
vx and vz they are (〈H x 〉z/〈Sx 〉z)Px and (〈H z〉x/〈Sz〉x )Pz , respectively. In the equations for the fluid particle-velocity components qx and qz

they are (〈Px 〉z〈H x 〉z/〈Sx 〉z) Px and (〈Pz〉x 〈H z〉x/〈Sz〉x ) Pz .
The presence of the dissipation terms in the equations of motion implies that the equations behave as a stiff system in the so-called

low-frequency regime (the frequency range of the computed wavefield is well below the Biot’s characteristic frequency). According to Iserles
(2009), a differential equation is stiff if its numerical solution by some method requires a significant reduction of the step size to avoid
instability. A very small time step is due to a relatively very small wavelength of the diffusive slow P wave and large velocity of the fast P
wave. The problem can be circumvented by using the partition method suggested by Carcione & Quiroga-Goode (1995).

Due to the difference in the forms of the incorporated constitutive relations for the averaged poroelastic medium, explained above, here
we need a unifying equation different from that presented by Gregor et al. (2021).
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560 D. Gregor et al.

4.1 Unifying equation

We can incorporate constitutive relations (24), eqs (A8)–(A11), equations of motion (A2), eqs (A4) and (A12), additional equations for
diffusive memory variables (A5), and eqs (A6), (A7) and (A13) for the averaged poroelastic medium in the unifying matrix-form equation

Tpq
∂ 
Q p

∂ t
+ X pq

∂ 
Q p

∂ x
+ Z pq

∂ 
Q p

∂ z
= −Spq 
Q p (30)

where vector 
Q p


Q p ≡ (
vx , qx , ψ

x
1 , . . . , ψ x

N , vz, qz, ψ
z
1 , . . . , ψ

z
N , σxx , σxz, σzz, p

)T
(31)

has p = 2 N + 8 elements (N = 3 being sufficient, Blanc 2013). Relatively cumbersome matrices Tpq , X pq , Z pq and Spq are shown in
Appendix B.

As mentioned above, the unified equation (30) is different from the analogous equation (57) in Gregor et al. (2021). They used relation
(A1) with matrix (A3). Here, we incorporated relation in form (24). The difference is in the presence of the pore pressure on the right-hand
side of eq. (24) and corresponding modification of the matrix. The pore pressure is not explicitly present in relation (A1) and matrix (A3)
has only four columns. Note that both forms are fully equivalent for the averaged poroelastic medium. The reason for using form (24) in this
paper is the intended incorporation of the poroelastic and strictly elastic parts of the medium. This will be well seen later.

Here, we present partitioning applied to our system (30).

4.2 Partitioning of the unifying equation into the stiff and non-stiff systems

Moczo et al. (2019) applied the partitioning in the FD modelling of seismic waves in the averaged poroelastic medium with constant
resistive friction. Gregor et al. (2021) applied the partitioning to the unifying equation for the averaged poroelastic medium with a constant
resistive friction or with the JKD frequency-dependent resistive friction and its diffusive approximation. Here, we apply the partitioning to
the unified equation (30).

Term Spq 
Q p in eq. (30) includes the viscous dissipation term. Recall that the presence of the dissipation term implies that eq. (30) behaves
as a stiff system in the so-called low-frequency regime. System (30) may be partitioned into the non-stiff and stiff systems, respectively:

Tpq
∂ 
Q p

∂ t
+ X pq

∂ 
Q p

∂ x
+ Z pq

∂ 
Q p

∂ z
= 0 (32)

and

Tpq
∂ 
Q p

∂ t
= −Sp q 
Q p (33)

The point is that the stiff system can be solved analytically and, consequently, does not require a numerical integration. The analytical
solution of the stiff system is then used in the non-stiff system. Denoting

i 
Q ≡ (
vi , qi , ψ

i
)T

; i ∈ {x, z} (34)

and using definition (B11, Appendix B), the stiff system (33) may be written as

Tpq
∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x 
Q
z 
Q
σxx

σxz

σzz

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝S x

N+2, N+2 0 N+2, N+2 0 N+2, 4

0 N+2, N+2 S z
N+2, N+2 0 N+2, 4

04, N+2 04, N+2 04, 4

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x 
Q
z 
Q
σxx

σxz

σzz

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(35)

Because S x
N+2, N+2 and S z

N+2, N+2 do not depend on time, system (35) can be solved analytically for x 
Q and z 
Q:

i 
Q∗∣∣∣m+1/2
≡

⎛
⎜⎜⎝

v∗
i

∣∣m+1/2

q∗
i

∣∣ m+1/2

ψ i∗∣∣m+1/2

⎞
⎟⎟⎠ = exp

(−Si
N+2,N+2 �

)
i 
Q

∣∣∣m−1/2
; i ∈ {x, z} (36)

Here, ‘∗’ indicates an analytical solution of (35) and the vertical bar ‘|’ is used to indicate the time level. The matrix exponentials
exp (− Si

N+2,N+2�) ; i ∈ {x, z}, can be computed by, for example, the ‘ExpoRkit’ Fortran package (Hansen 2018) based on the scaling and
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FD scheme for seismic waves in combined elastic–poroelastic media 561

squaring algorithm with the Padé approximation. The resulting matrix for exp (− Si
N+2,N+2�) is

exp
(−Si

N+2, N+2 �
) ≈ S̃i

N+2, N+2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s̃vi
vi

s̃qi
vi

s̃
ψ i

1
vi · · · s̃

ψ i
N

vi

s̃vi
qi

s̃qi
qi

s̃
ψ x

1
qi · · · s̃

ψ x
N

qi

s̃vi

ψ i
1

s̃qi

ψ i
1

s̃
ψ i

1

ψ i
1

· · · s̃
ψ i

N

ψ i
1

...
...

... · · ·
...

s̃vi

ψ i
N

s̃qi

ψ i
N

s̃
ψ i

1

ψ i
N

· · · s̃
ψ i

N

ψ i
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; i ∈ {x, z} (37)

Using x 
Q and z 
Q in eqs (36), and S̃ x and S̃ z in eq. (37), we obtain

i 
Q∗∣∣∣m+1/2
= S̃i

N+2,N+2
i 
Q

∣∣∣m−1/2
; i ∈ {x, z} (38)

Variables i 
Q∗|m+1/2; i ∈ {x, z} enter the non-stiff explicit scheme for eq. (32).
Whereas simplification of matrices X pq , Z pq and Tpq in case of transforming poroelastic medium into elastic medium is obvious—based

on Section 3.2, simplification of matrix S̃i
N+2,N+2 requires explanation. The explanation is given in Appendix C.

5 AV E R A G I N G O F T H E P O RO E L A S T I C A N D E L A S T I C M E D I A

We want our model of the medium to consist of poroelastic and (strictly) elastic parts. At the same time, we want to use only one FD scheme
for simulating wavefield in the entire model. Therefore, we need to develop an averaging representation of the strongly heterogeneous medium
consisting of the poroelastic and elastic parts. A discrete representation of the averaged medium must properly represent poroelastic and
elastic behaviours of the corresponding original poroelastic and elastic parts, respectively, as well as their interaction.

5.1 Material parameters

The poroelastic and elastic parts will be indicated by superscripts P and E , respectively. An interface between the P and E media will be
called a P/E interface. We assume that the P/E interface may have an arbitrary geometric shape and position in a uniform FD grid.

Obviously, we have to determine averaged material parameters in matrices Tpq , X pq , Z pq and Spq appearing in the matrix-form equation
(30). Let h be a grid spacing of a uniform rectangular grid. Consider an h × h area centred at a grid position of a wavefield variable, that is,
the area of averaging. We need to consider three possible situations with respect to the wavefield variable:

(i) fully poroelastic—the entire averaging area is inside the P medium,
(ii) fully elastic—the entire averaging area is inside the E medium,
(iii) mixed—the averaging area is crossed by one or more P/E interfaces.

Material parameters of the poroelastic medium (λP , μP , �P , αP , M P and ρP
f , ρP , m P , B P ) are obviously all non-zero and finite

except parameter B P which is equal to zero in case of the medium with zero resistive friction.
Recall considerations in Section 3.1 on obtaining equations of the elastic medium from the equations for the poroelastic medium

by adjusting values of several poroelastic parameters. Parameters λE , μE , �E , ρE are always non-zero. For the elastic medium, we will
formally consider the coefficient of effective stress αE = 0, mass coupling coefficient m E → ∞ and the coupling modulus between solid and
fluid M E → ∞. We assume that the formal parameter B E does not reach an infinite value.

5.2 Boundary conditions

Recall that our averaging of the poroelastic medium, matrices (A3) and (A4), is based on approximation of the boundary conditions (9) at the
interface between two poroelastic media. Also recall that the averaging of the elastic medium, matrices in relations (25) and (28), is based
on approximation of the boundary conditions (23) at the interface between two elastic media. To include P/E interfaces, we need averaging
based on the corresponding boundary conditions (Lovera 1987):

σ P
i j n j = σ E

i j n j

−pP = σ E
i j ni n j

u P
i = uE

i

wP
i ni = 0 (39)
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562 D. Gregor et al.

Figure 4. Summary of the averaged material parameters. Symbol ‘:=’ means assigning the value. Parameters at the grid position of vz , qz , ψ z
1 , . . . , ψ z

N are
determined analogously.
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FD scheme for seismic waves in combined elastic–poroelastic media 563

Figure 5. Upper panel: source (star)-receiver (P1 and P2) configuration in the model of two half-spaces. The numbers mean values in m. The upper poroelastic
half-space is in a horizontal planar contact with the lower perfectly elastic half-space. Middle panel: amplitude spectrum of the source signal. Bottom panel:
log–log spectrum of the source signal. The amplitude falls from its maximum by two orders at frequency of 41.45 Hz.

5.3 Averaging of material parameters in the constitutive relations

The averaging methodology developed by Moczo et al. (2019) for the strongly heterogeneous poroelastic medium can be also applied in the
case of the strongly heterogeneous medium composed of the poroelastic and elastic parts.

5.3.1 Shear stress-tensor component at a planar interface perpendicular to the xaxis

For the two half-spaces (indicated by the P and E superscripts) in a contact we may write in general

σxz = 2μE εE
xz, σxz = 2μP εP

xz (40)

or

1

μE
σxz = 2 εE

xz,
1

μP
σxz = 2 εP

xz (41)

Considering continuity of σxz and an arithmetic average 〈εxz〉x at the interface,

〈εxz〉x ≡ 1
2

(
εE

xz + εP
xz

)
(42)

the summation of eq. (41) leads to relation

σxz = 2 〈μ〉H x 〈εxz〉x (43)
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564 D. Gregor et al.

Figure 6. Material parameters in the upper poroelastic and lower elastic half-spaces shown in Fig. 5.

Figure 7. Parameters used for the FD and SE simulations. In the SE simulation, Lagrange polynomials of degree 4 are used, leading to 5 GLL integration
points irregularly spaced in both directions x and z, and 25 GLL points in one element. In the SE simulation, a regular grid and Stacey absorbing boundary
condition on all sides are used.
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FD scheme for seismic waves in combined elastic–poroelastic media 565

Figure 8. The vx and vz seismograms at receivers P1 (upper panel) and P2 (lower panel) in the model of the poroelastic half-space in the planar horizontal
contact with the perfectly elastic half-space calculated by the A, SE and FD methods. TFEM and TFPM show the time–frequency representations of the
envelope and phase misfits, respectively, between the FD and A seismograms and between the FD and SE seismograms.
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566 D. Gregor et al.

Figure 9. Upper panel: source (vertical arrow)-receiver (R1 and R2) configuration in the model of two layers over a half-space. The numbers mean values in
m. Middle panel: amplitude spectrum of the Ricker signal. Bottom panel: log–log spectrum of the Ricker signal. The amplitude falls from its maximum by two
orders at frequency of 105.588 Hz.

with the harmonic average of the shear moduli

〈μ〉H x ≡ 2
1

μE
+ 1

μP

(44)

Thus, continuity of σzx and the arithmetic averaging of the discontinuous εzx imply the harmonic averaging of the shear moduli, 〈μ〉H x ,
in the stress–strain relation at the interface. Relation (43) has the same form as the relation for a point in a smooth medium and is consistent
with the interface boundary conditions. Relation (43) is the same as in the case of the interface between two elastic media.

5.3.2 Normal stress-tensor components at a planar interface perpendicular to the x axis

For two half-spaces in contact we may write

σxx = �E εE
xx + λEεzz

σxx = �P εP
xx + λPεzz − αP pP (45)
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FD scheme for seismic waves in combined elastic–poroelastic media 567

Figure 10. Material parameters in the 3P-B and 3P-JKD models of the poroelastic layers over a poroelastic half-space.

Figure 11. Material parameters in the lower layer and half-space in the P-B-EE and P-JKD-EE models of the poroelastic layer over an elastic layer and
half-space. Material parameters of the upper layer are the same as those for the upper layer in Fig. 10
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568 D. Gregor et al.

Figure 12. Parameters used for the FD simulations.

Figure 13. The vx and vz seismograms at receiver R1 in the model of the poroelastic layer over the elastic layer and half-space. P-B-EE and P-JKD-EE denote
models with Biot’s constant resistive friction and JKD frequency-dependent resistive friction in the upper poroelastic layer, respectively. FD seismograms are
compared with seismograms calculated by the SA method.
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FD scheme for seismic waves in combined elastic–poroelastic media 569

Figure 14. The same as in Fig. 13, but for receiver R2.

Relations (45) may be written as

εE
xx = 1

�E
σxx − λE

�E
εzz

εP
xx = 1

�P
σxx − λP

�P
εzz + αP

�P
pP (46)

Continuity of σxx , εzz and p, and the arithmetic averaging of εE
xx and εP

xx lead to

〈εxx 〉x = (〈�〉H x
)−1

σxx −
〈

λ

�

〉x

εzz +
〈 α

�

〉x
pP (47)

and we obtain for the stress component

σxx = 〈�〉H x 〈εxx 〉x +
〈

λ

�

〉x

〈�〉H xεzz −
〈 α

�

〉x
〈�〉H x pP (48)
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570 D. Gregor et al.

Figure 15. The FD vx and vz seismograms at receiver R1 in the model of the poroelastic layer over the elastic layer and half-space P-B-EE compared with
those for the model of two poroelastic layers over the poroelastic half-space 3P-B. Biot’s constant resistive friction in the poroelastic media assumed.

For σzz , we may write

σ E
zz = λE εE

xx + �Eεzz

σ P
zz = λP εP

xx + �Pεzz − αP pP (49)

Before averaging σ E
zz and σ P

zz we have to express εE
xx and εP

xx using continuous field quantities. Using eq. (46) in eq. (49) we obtain

σ E
zz = λE

�E
σxx +

(
�E − λEλE

�E

)
εzz

σ P
zz = λP

�P
σxx +

(
�P − λPλP

�P

)
εzz −

(
αP − αPλP

�P

)
pP (50)

Continuity of σxx , εzz and the arithmetic averaging of σ E
zz and σ P

zz lead to

〈σzz〉x =
〈

λ

�

〉x

σxx +
〈
� − λ2

�

〉x

εzz −
〈
α − α λ

�

〉x

pP (51)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/228/1/551/6363690 by U

niverzita Kom
enskeho user on 11 O

ctober 2021



FD scheme for seismic waves in combined elastic–poroelastic media 571

Figure 16. The same as in Fig. 15, but for receiver R2.

Substituting the right-hand side of eq. (48) for σxx gives the final relation for σzz :

〈σzz〉x =
〈

λ

�

〉x

〈�〉H x 〈εxx 〉x

+
[〈

� − λ2

�

〉x

+
(〈

λ

�

〉x )2

〈�〉H x

]
εzz

−
(〈

α − λ α

�

〉x

+
〈 α

�

〉x
〈

λ

�

〉x

〈�〉H x

)
pP (52)

5.3.3 Fluid pore pressure at a planar interface perpendicular to the x-axis

Recall the boundary condition:

− pP = σ E
xx (53)
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572 D. Gregor et al.

Figure 17. The FD vx and vz seismograms at receiver R1 in the model of the poroelastic layer over the elastic layer and half-space P-JKD-EE compared
with those for the model of two poroelastic layers over the poroelastic half-space 3P-JKD. JKD frequency-dependent resistive friction in the poroelastic media
assumed.

For two half-spaces in contact we may write

σ E
xx = �E εE

xx + λEεzz

pP = −αP M PεP
xx − αP M Pεzz − M PεP

w (54)

The boundary condition (53) and notation p = pP = −σ E
xx imply

p = −�E εE
xx − λEεzz

p = −αP M PεP
xx − αP M Pεzz − M PεP

w (55)

Using eq. (46) for expressing εE
xx and εP

xx in terms of the continuous field variables we obtain

p = −σxx

(
1 + M P αPαP

�P

)
p = −αP M P 1

�P
σxx − αP M P

(
1 − λP

�P

)
εzz − M PεP

w (56)

The first equation is just the boundary condition. The second of the equations may be written as

εP
w = − αP

�P
σxx −

(
αP − αPλP

�P

)
εzz −

(
1

M P
+ αPαP

�P

)
p (57)
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FD scheme for seismic waves in combined elastic–poroelastic media 573

Figure 18. The same as in Fig. 17, but for receiver R2.

Figure 19. Geometry of the sediment–bedrock interface in the simplified model of the sedimentary basin. Sediments are water-saturated up to the free surface.
Black triangles indicate positions the selected receivers. Star indicates position of the source. The horizontal-to-vertical scale is 1:2, values along the horizontal
and vertical axes are in m. Material parameters are shown in Fig. 20.
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574 D. Gregor et al.

Figure 20. The deepest part of the sediment–bedrock interface in the simplified model of the sedimentary basin (shown in Fig. 19) in the uniform spatial FD
grid. The sediment–bedrock interface does not follow grid lines.

Application of averaging gives

〈εw〉x = −
〈 α

�

〉x
σxx −

〈
α − α λ

�

〉x

εzz −
〈

1

M
+ α α

�

〉x

p (58)

Substitution of σxx by the right-hand side of eq. (48) and rearrangement leads eventually to

p = − 1〈
1

M
+ α2

�

〉x

−
(〈 α

�

〉x )2

〈�〉H x

×
[〈 α

�

〉x
〈�〉H x 〈εxx 〉x

+
(〈

α − α λ

�

〉x

+
〈 α

�

〉x
〈

λ

�

〉x

〈�〉H x

)
εzz

+ 〈εw〉x ] (59)

Analogously, we could derive the averaging formulae also for a planar interface perpendicular to the z-axis. Then, we can proceed using
the same considerations that we presented in the paper by Moczo et al. (2019). Eventually, the averaging procedure leads formally to the same
averaging formulae as in the case of the poroelastic medium—matrix (A3) in this paper.

5.3.4 Notes on the evaluation of the averaged parameters

We need to look at the averaged parameters in case when they include averaging over the elastic part(s). That is, over parts with parameters
αE = 0, m E → ∞ and M E → ∞.

Before we continue, let us note that the averaged material parameters are calculated in a grid-model-preparation computer code producing
a grid-model file. The file contains all averaged grid material parameters appearing in matrices Tpq , X pq , Z pq and Spq . The matrices then
enter an FD scheme in another computer code for computing wavefield.

Look first at the averaged parameters X X , Z Z , X Z , X P and Z P appearing in the constitutive relations (24) and consequently also
in matrices Tpq , X pq , Z pq and Spq in the unified matrix-form equation (30) that incorporates relations (24). We can immediately see that
evaluation of X X , Z Z , X Z , X P and Z P poses no problem—no matter what the composition of the grid cell is.

Parameter � appearing in the denominator in matrices X pq and Z pq , is non-zero,� 	= 0, if the grid cell is fully poroelastic or mixed. In
case of a fully elastic grid cell, �E = 0 due to 1/M E = 0 and αE = 0. This, however, does not pose a problem because there is no need to
calculate pore pressure p in the elastic medium.
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Figure 21. Material parameters and limit values of velocities of the fast P, slow P and S waves. The model of the sedimentary basin is shown in Fig. 19.

5.4 Averaging of material parameters in the equations of motion and additional equations

Similarly as in the case of the constitutive law, the averaging procedure according to Moczo et al. (2019) leads formally to the same averaging
formulae as in the case of the poroelastic medium—matrix (A4) in this paper.

As in the previous subsection, we need to look at the averaged parameters in the equations of motion (A2), (A4) and (A12), and in
the additional equations for the diffusive memory variables (A5)–(A7), in case when they include averaging over the elastic part(s) with
parameters αE = 0, m E → ∞ and M E → ∞.
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Figure 22. The source time function, its normalized amplitude log–log Fourier spectrum and Biot’s characteristic frequency in the poroelastic sediments. The
model is shown in Fig. 19.

Figure 23. Parameters used for the FD and SE simulations. In the SE simulation on the unstructured grid, Lagrange polynomials of degree 4 are used, leading
to five GLL integration points irregularly spaced in both directions x and z, and 25 GLL points in one element.

For any type of material in an averaging area, parameters F ξ , Pξ and Rξ are non-zero. Parameters Gξ , H ξ and Qξ are non-zero in
the fully poroelastic averaging area. They are all zero in the fully elastic or mixed averaging area due to m E → ∞. Parameters Gξ and
H ξ always appear in the nominator in the arithmetic averaging in the complementary axis direction. Parameter Qξ appears in the arithmetic
averaging in the complementary axis direction in evaluation of parameters 〈Sx 〉z and 〈Sz〉x which are in the denominator in matrices X pq ,
Z pq and Spq . However, 〈Sx 〉z and 〈Sz〉x are always nonzero due to non-zero parameters Px and Pz .

Given the above consideration, it will be reasonable to describe the medium by 1/m with the mass coupling coefficient m being either
m P or m E .

5.5 Classification of material parameters

The above considerations on averaged material parameters appearing in the constitutive relations, equation of motions and additional equations
for the diffusive memory variables are summarized in Fig. 4 that shows which averaged parameters are non-zero, zero or set equal to zero in
three possible cases for an averaging area: fully elastic, fully poroelastic and mixed.

The main important conclusion of this section is: the averaging of the strongly poroelastic medium is applicable also to a medium
composed of the poroelastic and strictly elastic parts.

The purely poroelastic medium could be specified by the following spatially dependent material parameters:

λ, μ, �, α, M, ρ f , ρ, m, b, 
 (60)

Values of the above parameters are used for evaluating the averaged parameters appearing in matrices SA, RA, DA and �A, and then,
consequently, in matrices Tpq , X pq , Z pq , and Spq .
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Figure 24. Comparison of the FD and SE seismograms at three selected receivers at the free surface of the poroelastic sedimentary basin embedded in the
elastic bedrock. Receivers vz 1 and vx 1 are at [148.0,0.0] and [147.6, −0.4], respectively. Distances between neighbouring receivers are 200 m.
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Considering the infinite values of M and m in the elastic parts, the medium composed of the poroelastic and elastic parts may be specified
by the following spatially dependent material parameters:

λ, μ, �, α, 1
/

M, ρ f , ρ, 1
/

m, b,
 (61)

In the latter list of the input material parameters, α = 0, 1/M = 0, 1/m = 0, ρ f = ρ, b = 0 and 
 = 0 are used for the elastic parts.

6 U P DAT I N G WAV E F I E L D U S I N G A F I N I T E - D I F F E R E N C E S C H E M E

As explained above, the averaged parameters account for presence of the poroelastic and elastic parts by approximating boundary con-
ditions at the P/P , P/E and E/Ematerial interfaces. The interfaces can have an arbitrary shape and position in the grid. The av-
eraged material parameters also account for smooth heterogeneity inside layers or block. As said before, the averaged material pa-
rameters at the appropriate grid positions are calculated in the grid-model-preparation computer code. The output file of the code be-
comes an input for the code realizing calculation of wavefield using the FD scheme. The wavefield is described by wavefield variables
{ V X, V Z , Q X, Q Z , T X X, T Z Z , T X Z , F P, ψ x

l , ψ z
l } ; l = 1, ..., N . We will use symbol � to refer to any of the wavefield vari-

ables. The FD scheme is given in Appendix D. The grid cell is shown in Fig. A1.

6.1 Medium consisting of the JKD poroelastic and elastic parts

Here, we consider the use of one FD scheme (formally for the poroelastic medium) for the medium consisting of the poroelastic and strictly
elastic parts. We assume the JKD frequency-dependent resistive friction in the poroelastic parts. The JKD resistive friction is easily formally
reduced to the Biot’s model of the constant resistive friction or zero resistive friction. This means that the scheme makes it possible to consider
a model of medium in which there are poroelastic parts with JKD resistive friction and parts with zero or constant resistive friction.

Let us emphasize again that the use of the scheme formally for the poroelastic medium does not mean that the elastic parts are poroelastic
with effectively elastic behaviour. The elastic parts of the model are in our approach strictly elastic.

An FD scheme for updating a field variable needs values of field variables and effective (averaged) material parameters at a set of
neighbouring gridpoints. This set is called a grid stencil.

In what follows we show that the FD scheme for the poroelastic medium can be used for the medium consisting of the poroelastic and
strictly elastic parts without additional logical branching (i.e. without using IF conditions).

Grid stencil fully in the poroelastic medium
This is the standard situation for the FD scheme, all field variables and material parameters are available.
Grid stencil fully in the elastic medium
Neither this situation poses a problem. The FD scheme can be used without any additional logical branching (using IF conditions). This

is because at the corresponding gridpoints averaged material parameters X P/�, Z P/�, 1/� are set equal to zero, and

〈Gx 〉z, 〈Gz〉x , 〈Gx/Rx 〉z, 〈Gz/Rz〉x and s̃ vx
qx

, s̃
ψ x

n
qx , s̃ vx

ψ x
n
, s̃ qx

ψ x
n
, s̃

ψ x
l

ψ x
n
, s̃ vz

qz , s̃
ψ z

n
qz , s̃ vz

ψ z
n
, s̃ qz

ψ z
n
, s̃

ψ z
l

ψ z
n

are evaluated as zero in the grid-
model-preparation code. As a consequence, at the corresponding gridpoint, fluid pore pressure F P , particle velocities Q X, Q Z , diffusive
memory variables ψ x

n , ψ z
n , and auxiliary field variables Q X∗, Q Z∗, ψ x∗

n , ψ z∗
n are all evaluated as zero.

Gridpoint of the updated field variable �1 in the poroelastic medium, stencil requiring value of field variable �2 at a gridpoint in the
elastic medium

The updating of the particle velocities V X, V Z , Q X, Q Z and diffusive memory variables ψ x
n , ψ z

n may formally require value of the
fluid pore pressure F P in the elastic medium. That is formally zero. The updating of fluid pore pressure F P requires values of the particle
velocities Q X, Q Z in the elastic medium. These are formally zero.

Gridpoint of the updated variable �1 in the elastic medium, stencil requiring value of variable �2 at a gridpoint in the poroelastic
medium

The updating of all wavefield variables in the elastic medium has all variables located in the poroelastic medium available.
Gridpoint of the updated variable �1 at the interface between the poroelastic and elastic media.
Depending on which particle-velocity component and corresponding diffusive memory variable are located at the gridpoint

at the interface, either averaged material parameters 〈Gx 〉z, 〈Gx/Rx 〉z, s̃ vx
qx

, s̃
ψ x

n
qx , s̃ vx

ψ x
n
, s̃ qx

ψ x
n
, s̃

ψ x
l

ψ x
n

or averaged material parameters

〈Gz〉x , 〈Gz/Rz〉x , s̃ vz
qz , s̃

ψ z
n

qz , s̃ vz

ψ z
n
, s̃ qz

ψ z
n
, s̃

ψ z
l

ψ z
n

are zero, and, as a consequence, either wavefield variables Q X, Q X∗, ψ x
n , ψ x∗

n or wavefield
variables Q Z , Q Z∗, ψ z

n , ψ z∗
n are zero, respectively.

6.2 Medium consisting of the poroelastic parts with zero or constant resistive friction and elastic parts

Here, we consider the use of one poroelastic FD scheme if all poroelastic parts have only zero or constant resistive friction. In this case,
there are no diffusive memory variables ψ x

n , ψ z
n and auxiliary field variables ψ x∗

n , ψ z∗
n . Therefore, it is computationally considerably more

efficient to use an alternative computer code based on the FD scheme for the poroelastic medium without diffusive memory variables and
auxiliary variables. Such scheme was presented by Moczo et al. (2019).
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7 N U M E R I C A L T E S T S

We present numerical tests of our discrete representation of the strongly heterogeneous medium composed of poroelastic and elastic parts as
well as our FD scheme based on the representation. In tests against the analytical and semi-analytical solutions we must consider canonical
models, while a more complex geometry is tested against the independent numerical method.

In the first test, we compare FD seismograms with seismograms calculated using the A and SE methods. The A method was developed
by Diaz & Ezziani (2008, 2010). The SE method was developed by Morency & Tromp (2008) and implemented in the open source software
SPECFEM2D (e.g. Komatitsch & Vilotte 1998) used for the SE calculations.

In the second test, we compare FD seismograms with those calculated using the SA method developed by Mesgouez & Lefeuve-Mesgouez
(2009) and Lefeuve-Mesgouez et al. (2012).

In the third test, we compare FD seismograms with those calculated by the SE method in a simplified sedimentary basin model. This
test also demonstrates a sub-cell resolution of our FD scheme.

7.1 Model of two half-spaces

Geometry of the model, positions of the source (indicated by a star) and two receivers (P1 and P2) are shown in the upper panel of Fig. 5.
Recall that each of the two receivers is split in the vx and vz parts due to the staggered grid. Material parameters of the half-spaces are shown
in Fig. 6. The upper poroelastic half-space with a zero resistive friction (zero viscosity) is in the horizontal planar contact with the lower
perfectly elastic half-space. We test in this case the simplest possible configuration of the P/E interface. The model and the source are the same
as in Morency & Tromp (2008, Fig. 13). The difference is in the source and receiver positions. An explosive source (line source perpendicular
to the plane of the wavefield propagation) is acting in the upper poroelastic half-space. The source is applied to both the solid matrix and fluid
through the stress and pressure increments in the constitutive laws for stress and pressure, respectively. The source-time function is given by
wavelet

s (t) = 2 β
[
1 + 2 β(t − tS)2]

exp
[
β (t − tS)2]

; β = −(π fP )2 (62)

The values of the free parameters tP and tS , amplitude Fourier spectrum and a log–log spectrum of the wavelet are shown in Fig. 5. The
P/E interface coincides with the grid line going through positions of the vz , qz and σxz . Computational parameters used in the FD and SE
simulations are shown in Fig. 7. Considering V P inf

slow = 1186m s−1 and the chosen maximum frequency fmax = 41.45Hz, the corresponding
minimum wavelength 28.61 m is sampled by 7.15 grid spacings.

Fig. 8 shows the vx and vz seismograms at receivers P1 and P2 in the model of the two half-spaces with the P/E interface obtained using
the A, SE and our FD methods. In order to quantitatively characterize differences between the FD and A seismograms, and between the FD
and SE seismograms, we evaluated the time–frequency envelope and phase misfits—TFEM and TFPM (Kristekova et al. 2006, 2008, 2009).
We can see small misfits close to the maximum frequency but mainly very low misfits at and close to the dominant frequency of 15 Hz. The
level of agreement is a good basis for comparing the SE and FD solutions for a more complicated model of a sedimentary basin in Section
7.3.

7.2 Model of two horizontal layers over half-space

Geometry of the model, positions of the source and two receivers (R1 and R2) are shown in the upper panel of Fig. 9. We consider four
rheological variants of the model:

3P-B both layers and the half-space are poroelastic, Biot’s constant resistive friction assumed
3P-JKD both layers and the half-space are poroelastic, JKD frequency-dependent permeability and resistive friction assumed
P-B-EE poroelastic upper layer over an elastic layer and elastic half-space, Biot’s constant resistive friction assumed in the upper layer
P-JKD-EE poroelastic upper layer over an elastic layer and elastic half-space, JKD frequency-dependent permeability and resistive

friction assumed in the upper layer

Material parameters of the 3P-B and 3P-JKD models are in Fig. 10, those of the P-B-EE and P-JKD-EE models in Fig. 11.
This set of the canonical models makes it possible to
A single vertical force (a line source perpendicular to the plane of wavefield propagation) is acting at the free surface and applied to

both the solid matrix and fluid through the body-force terms in the equations of motion for the vz and qz components of the solid-matrix and
relative fluid particle velocities. The source-time function is given by Ricker wavelet

s (t) =
√

π

2

(
a − 1

2

)
e−a ; a =

(
π

t − tS

tP

)2

(63)

The values of the free parameters tP and tS , and values of the Biot’s characteristic frequency fc in the upper poroelastic layer are
shown in the bottom panel of Fig. 9. Computational FD parameters are in Fig. 12. Considering V S = 227.2m s−1 and the chosen maximum
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� Test accuracy of modelling
- P-B/P-B and P-JKD/P-JKD interfaces,
- P-B/E and P-JKD/E interfaces,
- E/E interface

by one and the same discrete representation and FD scheme.
� Compare purely poroelastic models with combined poroelastic/elastic models for two variants of resistive friction.

frequency fmax = 105.6Hz, the corresponding minimum wavelength 2.15 m is sampled by 23.89 grid spacings. Such dense sampling is not
necessary. As in all other cases, three times coarser sampling would give almost the same result. Here, we wanted to meet two criteria together:
(i) The two specific layer thicknesses are chosen so that the 1-D vertical resonance frequency in the upper layer is very close to the resonance
frequency of both layers together. Such coincidence supports relatively strong interference in the two layers. (2) In this canonical comparison,
we wanted to have all interfaces coinciding with the grid lines. Both interfaces coincide with the grid lines going through vz , qz and σxz .
Moreover, in the process of detailed checking, we wanted to have the receiver positions as densely as in the second numerical example in
paper by Gregor et al. (2021), in which we have the same material parameters in the upper layer.

Fig. 13 shows the vx and vz seismograms at receiver R1 in the P-B-EE and P-JKD-EE models calculated by the FD and SA methods. The
figure shows a very good agreement between the FD and SA seismograms for both model variants—Biot’s and JKD in the upper poroelastic
layer. As expected, based on results by Gregor et al. (2021), there is a considerable difference between seismograms for the Biot’s and JKD
variants of the upper poroelastic layer. Fig. 14 shows a similar comparison for receiver R2.

Based on the above verification of our representation of the P/E interface, it is interesting to compare both mixed poroelastic/elastic
models P-B-EE and P-JKD-EE with their purely poroelastic counterparts 3P-B and 3P-JKD. As explained above, both layers and the half-space
are poroelastic in latter models.

Fig. 15 shows the vx and vz FD seismograms at receiver R1 in the 3P-B and P-B-EE models. Fig. 16 shows the same at receiver R2.
Figs 17 and 18 are analogous to Figs 15 and 16 but compare FD seismograms in the 3P-JKD and P-JKD-EE models. Note that we do not show
SA seismograms in Figs 15–18 because for the mixed models they are shown in Figs 13 and 14, and we verified our FD seismograms for
purely poroelastic models with those obtained by the SA method in paper by Gregor et al. (2021). The purpose of Figs 15–18 is to illustrate
effect of replacing the middle poroelastic layer and poroelastic half-space by the elastic layer and elastic half-space, respectively, for both
Biot’s and JKD variants of resistive friction in the poroelastic media. We can see in the figures that visual differences between the 3P-B and
P-B-EE seismograms are clearly larger than the difference between the 3P-JKD and P-JKD-EE seismograms.

7.3 Simplified model of a sedimentary basin

Here, we compare our FD solution with solution by the SE method. We choose a model of a surface sedimentary basin with a simplified
geometry shown in Fig. 19. The SE method using domain decomposition, the SE elements follow exactly the shape of the sediment–bedrock
interface. This means that the SE simulation exactly accounts for the geometry of the interface and, consequently, the SE seismograms can
be considered a sufficiently accurate reference for verifying the FD seismograms. At the same time, the sediment–bedrock interface does not
follow grid lines in the uniform spatial FD grid. This is illustrated for the deepest part of the interface in Fig. 20.

Material parameters are shown in Fig. 21. We consider poroelastic sediments with constant resistive friction embedded in an (strictly)
elastic bedrock. The wavefield is excited by a line (line perpendicular to the vertical plane of propagation) explosive source. Fig. 22 shows
the input signal, its amplitude and log–log Fourier spectra, and value of the Biot’s characteristic frequency ( fc = 187 H z). The source time
function was obtained by low-pass filtering a discrete Dirac pulse with a 10-pole (sharp) 1-pass (causal) Butterworth filter with corner frequency
of 35 Hz. Computational FD parameters are in Fig. 23. Considering V P inf

slow = 475.3 m s−1 and the chosen maximum frequency fmax = 55Hz,
the corresponding minimum wavelength 8.64 m is sampled by 10.8 grid spacings. Note that this specific sampling is also due to the comparison
procedure and is larger than necessary.

The SE seismograms are calculated using the open-source software SPECFEM2D (e.g. Komatitsch & Vilotte 1998) and the software
CUBIT (Blacker et al. 1994) to design an unstructured grid, with elements following exactly the interface between the poroelastic and elastic
domains. Comparison of the FD and SE seismograms is shown in Fig. 24. The figure shows very good agreement between the FD and SE
seismograms. As it is illustrated in Fig. 20, the sediment–bedrock interface in the FD computational model does not follow grid lines. This
means, given the very good agreement between the FD and SE seismograms, that the FD scheme is capable of subcell resolution—an interface
can have an arbitrary position in the spatial grid.

8 C O N C LU S I O N S

We have developed a new methodology of the FD modelling of seismic wave propagation in a strongly heterogeneous medium composed
of poroelastic (P) and (strictly) elastic (E) parts. A poroelastic part may have either of three models of resistive friction—zero, non-zero
constant or JKD frequency-dependent—independently of other poroelastic parts. The model can include P/P, P/E and E/E material interfaces
of arbitrary shapes. The medium in between the material interfaces may be smoothly heterogeneous.
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A material interface may have an arbitrary position in the spatial grid. This means that our FD scheme has a subcell resolution capability.
Our discrete representation of the strong material heterogeneity is based on averaging of material parameters which approximates

boundary conditions at interfaces. Our representation makes it possible to keep computational efficiency of the scheme for a smoothly and
weakly heterogeneous medium (i.e. medium without material interfaces).

We have checked accuracy and efficiency of our modelling using numerical tests against independent A, SA and SE methods. In the
numerical examples we indicated effect of the P/E interfaces for the poroelastic medium with a constant resistive friction and medium with
the JKD model of the frequency-dependent permeability and resistive friction.

We addressed the 2-D P-SV problem for the brevity and computational demands. The approach can be, however, readily extended to the
3-D problem.
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Moczo, P., Kristek, J., Vavryčuk, V., Archuleta, R. J. & Halada, L., 2002.
3D heterogeneous staggered-grid finite-difference modeling of seismic
motion with volume harmonic and arithmetic averaging of elastic moduli
and densities, Bull. seism. Soc. Am., 92, 3042–3066.

Morency, C., Luo, Y. & Tromp, J., 2011. Acoustic, elastic and poroe-
lastic simulations of CO2 sequestration crosswell monitoring based
on spectral-element and adjoint methods, Geophys. J. Int., 185,
955–966.

Morency, C. & Tromp, J., 2008. Spectral-element simulations of wave prop-
agation in porous media, Geophys. J. Int., 175, 301–345.

Ou, W. & Wang, Z., 2019. Simulation of Stoneley wave reflection from
porous formation in borehole using FDTD method, Geophys. J. Int., 217,
2081–2096.

Sun, Y.-C., Hengxin, R., Zheng, X.-Z., Li, N., Zhang, W., Huang, Q. & Chen,
X., 2019. 2-D poroelastic wave modelling with a topographic free surface
by the curvilinear grid finite-difference method, Geophys. J. Int., 218(3),
1961–1982.

Tohti, M., Wang, Y., Xiao, W., Di, Q., Zhou, K., Wang, J., An, S. & Liao,
S., 2021. Numerical simulation of seismic waves in 3D orthorhombic
poroelastic medium with microseismic source implementation, Geophys.
J. Int., doi:10.1093/gji/ggab219.

Tomar, S. K. & Arora, A., 2006. Reflection and transmission of elastic waves
at an elastic/porous solid saturated by two immiscible fluids. Intl. J. Solids
Struct., 43(7-8), 1991–2013.

Ward, N.F. Dudley, Eveson, S. & Lähivaara, T., 2020. A Discontinuous
Galerkin method for three-dimensional poroelastic wave propagation:
forward and adjoint problems, arXiv: 2001.09478 [physics.comp-ph].

Ward, N.F. Dudley, Lähivaara, T. & Eveson, S., 2017. A discontinuous
Galerkin method for poroelastic wave propagation: the two-dimensional
case, J. Comput. Phys., 350, 690–727.

Wuttke, F., Dineva, P. & Fontara, I.-K., 2017. Influence of poroelasticity on
the 3D seismic response of complex geological media, J. Theor. Appl.
Mech., 47(2), 34–60.

Zhang, W., 2020. Stability analysis for wave simulation in 3D poroelastic
media with the staggered-grid method, Commun. Comput. Phys., 28(2),
743–767.

Zhang, Y., Gao, J., Han, W. & He, Y., 2019. A discontinuous Galerkin
method for seismic wave propagation in coupled elastic and poroelastic
media, Geophys. Prospect., 67, 1392–1403.

A P P E N D I X A : E q u a t i o n s f o r t h e av e r a g e d p o r o e l a s t i c m e d i u m

The constitutive relations and equations of motion for the 2-D P-SV problem in the velocity–stress–pressure formulation for the averaged
poroelastic medium may be written as (Moczo et al. 2019; Gregor et al. 2021)

∂

∂ t

⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ = SA

∂

∂ t

⎡
⎢⎢⎢⎣

εxx

εzz

εxz

εw

⎤
⎥⎥⎥⎦ (A1)

and

∂

∂ t

⎡
⎢⎢⎢⎣

vx

−qx

vz

−qz

⎤
⎥⎥⎥⎦ = RA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ σx x

∂ x
+ ∂ σx z

∂ z
∂ p

∂x
Px

∂ σz z

∂ z
+ ∂ σx z

∂ x
∂ p

∂z
Pz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

The matrices SA, and RA have the following forms:
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SA ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X + X P X P

�
X Z + X P Z P

�
0

X P

�
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�
Z Z + Z P Z P

�
0

Z P

�

0 0 2〈μ〉H xz 0

X P

�

Z P

�
0

1

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

RA ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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〈Sz〉x

0 0 0

〈Rz〉x

〈
Gz

Rz

〉x

〈Sz〉x

〈Pz〉x 〈Gz〉x

〈Sz〉x

〈Pz〉x 〈H z〉x

〈Sz〉x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

The above equations are valid and sufficient in case of zero or constant resistive friction. In case of the JKD frequency-dependent
resistive friction, there are additional equations for the diffusive memory variables ψ i

n ; i ∈ {x, z}, n = 1, ..., N :

∂

∂ t
ψ i = − (DA + �A)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ σi j

∂ x j

∂ p

∂ xi

Pi

qi

ψ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A5)

Here, ψ i ≡ [ψ i
1, ψ

i
2, ..., ψ

i
N−1, ψ

i
N ]T. The diffusive memory variables ψ i

n appear in the formal wavefield variables Px and Pz . The
matrices DA and �A have the following forms:

DA ≡ − 1〈
Si

〉s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
Ri
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〉s 〈
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〉s 〈
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〉s 〈
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〉s 〈
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〉s
0 0 0 · · · 0 0

〈
Ri

〉s〈 Gi
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〉s 〈
Pi

〉s 〈
Gi

〉s 〈
Pi

〉s 〈
Hi

〉s
0 0 0 0 · · · 0

...
...

...
...

...
...

. . .
...

...

〈
Ri

〉s〈 Gi

Ri

〉s 〈
Pi

〉s 〈
Gi

〉s 〈
Pi

〉s 〈
Hi

〉s
0 0 · · · 0 0 0

〈
Ri

〉s〈 Gi

Ri

〉s 〈
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〉s 〈
Gi

〉s 〈
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〉s 〈
Hi

〉s
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)

s = z if i = x, s = x if i = z

and

�A ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −
̄ θ1 + 
̄ 0 · · · 0 0

0 0 0 −
̄ 0 θ2 + 
̄ 0 · · · 0

...
...

...
...

...
...

. . .
...

...

0 0 0 −
̄ 0 · · · 0 θN−1 + 
̄ 0

0 0 0 −
̄ 0 0 · · · 0 θN + 
̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

The averaged material parameters appearing in the constitutive relations (A1) and thus in the matrix SA are
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X X =
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(〈

λ

�

〉z)2

〈�〉H z

〉H x

Z Z =
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(〈

λ

�

〉x )2
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〈�〉H xz (A8)

X P =
〈〈
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�

〉z
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〈 α

�

〉z
〈

λ

�

〉z

〈�〉H z

〉H x

×
〈 〈

α − α λ
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〉z + 〈
α
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〉z〈�〉H z〈
� − α λ

�

〉z + 〈
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〉z〈�〉H z
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(A9)

Z P =
〈〈

� − α λ
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〉x

+
〈 α

�

〉x
〈

λ

�

〉x

〈�〉H x

〉H z

×
〈 〈

α − α λ

�

〉x + 〈
α

�

〉x 〈
λ

�

〉x 〈�〉H x〈
� − α λ

�

〉x + 〈
α
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〉x 〈
λ
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(A10)

� =
〈

1

M
+ α2

�

〉xz

−
(〈 α

�

〉xz)2

〈�〉H xz (A11)

The averaged material parameters appearing in the equations of motion (A2) and additional equations (A5) for the diffusive memory
variables, and thus in the matrices RA, DA and �A are

F ξ ≡ 1〈
ρ f

〉ξ Gξ ≡ 1

〈m〉ξ
H ξ ≡ 〈B〉ξ

〈m〉ξ

Pξ ≡ 〈ρ〉ξ〈
ρ f

〉ξ Qξ ≡
〈
ρ f

〉ξ
〈m〉ξ

Rξ ≡
〈

1

ρ f

〉ξ

Sξ ≡ 〈
Pξ

〉 − 〈
Qξ

〉
(A12)

and


̄ ≡
( n J

4

)2
{

1

2

[〈H x 〉z + 〈H z〉x ]}2

(A13)

Symbols 〈�〉ξ and 〈�〉Hξ indicate arithmetic and harmonic averages of �, respectively, in the ξ -direction. Symbols 〈�〉ξυ and 〈�〉Hξυ

indicate arithmetic and harmonic averages of �, respectively, in the ξ -direction and then in the υ-direction. In general, the averaging applies
to a representative area centred at a grid position of a relevant field variable.

If we consider solving the equations for the averaged medium using a staggered-grid FD scheme, then the averaging applies to an area
of a grid cell h × h centred at a position of the corresponding stress component or pore pressure or particle-velocity component. In case of
a generally heterogeneous medium, the averages are evaluated by a numerical integration. Fig. A1 shows the staggered FD grid cell with
indications of grid positions of the averaged material parameters appearing in relations (A3)–(A13).

A P P E N D I X B : M a t r i c e s f o r t h e u n i f y i n g e q u a t i o n

Matrices appearing in eqs (30) and (32):
X p q , Z p q are the p × q = (2 N + 8) × (2 N + 8) matrices

X p q ≡

⎛
⎜⎜⎝

0N+2, N+2 0N+2, N+2 X (1)
N+2, 4

0N+2, N+2 0N+2, N+2 X (2)
N+2, 4

X (3)
4, N+2 X (4)

4, N+2 04, 4

⎞
⎟⎟⎠ (B1)
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Figure A1. Positions of the field variables (discrete approximations of the true variables in the continuum) and averaged material parameters in the staggered
FD grid.

X (1)
N+2, 4 ≡

⎛
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X (3)
4, N+2 ≡

⎛
⎜⎜⎜⎜⎝

−X X 0 0 · · · 0
0 0 0 · · · 0

−X Z 0 0 · · · 0

X P

�

1

�
0 · · · 0

⎞
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⎜⎜⎜⎝
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⎞
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Z p q ≡
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⎜⎜⎝

0N+2, N+2 0N+2, N+2 Z (1)
N+2, 4

0N+2, N+2 0N+2, N+2 Z (2)
N+2, 4

Z (4)
4, N+2 Z (4)

4, N+2 04, 4

⎞
⎟⎟⎠ (B5)

X (1)
N+2, 4 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎜⎜⎜⎜⎝

−X Z 0 0 · · · 0
0 0 0 · · · 0

−Z Z 0 0 · · · 0

Z P

�

1

�
0 · · · 0

⎞
⎟⎟⎟⎟⎠ (B8)

Tp q ≡

⎛
⎜⎝

1N+2, N+2 0N+2, N+2 0N+2, 4

0N+2, N+2 1N+2, N+2 0N+2, 4

04, N+2 04, N+2 T (1)
4, 4

⎞
⎟⎠ (B9)

T (1)
4, 4 ≡

⎛
⎜⎜⎜⎝

1 0 0 X P
0 1 0 0
0 0 1 Z P
0 0 0 1

⎞
⎟⎟⎟⎠ (B10)

Sp q is the p × q = (2 N + 8) × (2 N + 8) matrix

Sp q ≡

⎛
⎜⎝Sx

N+2, N+2 0N+2, N+2 0N+2, 4

0N+2, N+2 Sz
N+2, N+2 0N+2, 4

04, N+2 04, N+2 04, 4

⎞
⎟⎠ (B11)
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Sx
N+2, N+2 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −〈H x 〉z

〈Sx 〉z a1 · · · −〈H x 〉z

〈Sx 〉z aN

0 0
〈Px 〉z〈H x 〉z

〈Sx 〉z a1 · · · 〈Px 〉z〈H x 〉z

〈Sx 〉z aN

0 −
̄
〈Px 〉z〈H x 〉z

〈Sx 〉z a1 + (
θ1 + 
̄

) · · · 〈Px 〉z〈H x 〉z

〈Sx 〉z aN

...
...

... · · ·
...

0 −
̄
〈Px 〉z〈H x 〉z

〈Sx 〉z a1 · · · 〈Px 〉z〈H x 〉z

〈Sx 〉z aN + (
θN + 
̄

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B12)

Sz
N+2, N+2 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −〈H z〉x

〈Sz〉x a1 · · · −〈H z〉x

〈Sz〉x aN

0 0
〈Pz〉x 〈H z〉x

〈Sz〉x a 1 · · · 〈Pz〉x 〈H z〉x

〈Sz〉x aN

0 −
̄
〈Pz〉x 〈H z〉x

〈Sz〉x a1 + (
θ1 + 
̄

) · · · 〈Pz〉x 〈H z〉x

〈Sz〉x aN

...
...

... · · ·
...

0 −
̄
〈Pz〉x 〈H z〉x

〈Sz〉x a1 · · · 〈Pz〉x 〈H z〉x

〈Sz〉x aN + (
θN + 
̄

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B13)

The abscissae θ 1, . . . θ N are the same for the whole averaged model, whereas weights a 1, . . . a N are calculated for each grid cell in the
averaged model.

A P P E N D I X C : S i m p l i fi e d m a t r i c e s

Application of relation (19) significantly simplifies matrices Si
N+2, N+2; i ∈ {x, z}:

Sx
N+2, N+2 = Sz

N+2, N+2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 0 0 · · · 0
0 0 θ 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · θN

⎞
⎟⎟⎟⎟⎟⎟⎠

(C1)

Since the matrices are diagonal, the matrix exponentials exp(−Sx �) and exp(−Sz �) can be obtained by exponentiating each entry on
the diagonal

E ≡ exp
(−Si

N+2, N+2 �
) ≈ S̃i

N+2, N+2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 0 e−θ1 � · · · 0
...

...
... · · ·

...
0 0 0 · · · e−θN �

⎞
⎟⎟⎟⎟⎟⎟⎠

; i ∈ {x, z} (C2)

Then, the analytical field variables i 
Q∗|m+1/2; i ∈ {x, z} can be calculated as

i 
Q∗∣∣∣m+1/2
= E i 
Q

∣∣∣m−1/2
; i ∈ {x, z} (C3)

A P P E N D I X D : T h e F D s c h e m e

The FD scheme for updating field variables V X, Q X, T X Z , F P and ψ x
l . Schemes for updating field variables V Z , Q Z , T X X, T Z Z

and ψ z
l are analogous. All they can be found in the paper by Gregor et al. (2021).

Let V X, V Z and Q X, Q Z be discrete grid values of vx , vz and qx , qz , respectively. Let T X X, T Z Z , T X Z and F P be discrete grid
values of σxx , σzz, σxz and fluid pressure p, respectively. For the grid values of the material parameters, we will use symbols defined by
eqs (A8)–(A11) and (A12). Fig. A1 shows positions of the field variables and material parameters in the grid cell. For brevity, we indicate
material parameters as they appear in the equations for the smoothly heterogeneous medium. Denote the fourth-order accurate operators of
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588 D. Gregor et al.

the first spatial derivatives with respect to x and z coordinates:

D(4)
x �n

I,L ≡ 1

h

[
9
8

(
�n

I+1/2, L − �n
I−1/2, L

) − 1
24

(
�n

I+3/2, L − �n
I−3/2, L

)]
D(4)

z �n
I,L ≡ 1

h

[
9
8

(
�n

I, L+1/2 − �n
I, L−1/2

) − 1
24

(
�n

I, L+3/2 − �n
I, L−3/2

)]
(D1)

The FD scheme consists of explicit FD formulae for updating the solid and fluid particle-velocity components, diffusive memory
variables, stress components and fluid pressure:

V Xm+1/2
I, L+1/2 = V X∗

I, L+1/2

+ 1

〈Sx 〉z
I, L+1/2

�

h

{〈F x 〉z
I, L+1/2

[
D(4)

x T X Xm
I, L+1/2 + D(4)

z T X Zm
I, L+1/2

]
+ 〈Gx 〉z

I, L+1/2 D(4)
x F Pm

I, L+1/2

}
V X∗

I, L+1/2 = s̃vx
vx ;I, L+1/2 V Xm−1/2

I, L+1/2 + s̃qx
vx ;I, L+1/2 Q Xm−1/2

I, L+1/2

+ s̃
ψ x

1
vx ;I, L+1/2 ψ

x ; m−1/2
1; I, L+1/2 + . . . + s̃

ψ x
N

vx ;I, L+1/2 ψ
x ; m−1/2
N ; I, L+1/2 (D2)

Q Xm+1/2
I, L+1/2 = Q X∗

I, L+1/2

− 1

〈Sx 〉z
I, L+1/2

�

h

{(
〈Rx 〉z

〈
Gx

Rx

〉z)
I, L+1/2

[
D(4)

x T X Xm
I, L+1/2 + D(4)

z T X Zm
I, L+1/2

]
+ (〈Px 〉z〈Gx 〉z)

I, L+1/2
D(4)

x F Pm
I, L+1/2

}
Q X∗

I, L+1/2 = s̃vx
qx ;I, L+1/2 V Xm−1/2

I, L+1/2 + s̃qx
qx ;I, L+1/2 Q Xm−1/2

I, L+1/2

+ s̃
ψ x

1
qx ;I, L+1/2 ψ

x ; m−1/2
1; I, L+1/2 + . . . + s̃

ψ x
N

qx ;I, L+1/2 ψ
x ; m−1/2
N ; I, L+1/2 (D3)

ψ
x ;m+1/2
n;I, L+1/2 = ψ x∗

n;I, L+1/2

− 1

〈Sx 〉z
I, L+1/2

�

h

{(
〈Rx 〉z

〈
Gx

Rx

〉z)
I, L+1/2

[
D(4)

x T X Xm
I, L+1/2 + D(4)

z T X Zm
I, L+1/2

]
+ (〈Px 〉z〈Gx 〉z)

I, L+1/2
D(4)

x F Pm
I, L+1/2

}
ψ x∗

n;I, L+1/2 = s̃vx
ψ x

n ;I, L+1/2 V Xm−1/2
I, L+1/2 + s̃qx

ψ x
n ;I, L+1/2 Q Xm−1/2

I, L+1/2

+ s̃
ψ x

1
ψ x

n ;I, L+1/2 ψ
x ; m−1/2
1; I, L+1/2 + . . . + s̃

ψ x
N

ψ x
n ;I, L+1/2 ψ

x ; m−1/2
N ; I, L+1/2

n = 1, . . . , N (D4)

T X Zm
I, L+1 = T X Zm−1

I, L+1

+ �

h

〈μ〉H xz
I, L+1

2

[
D(4)

z V Xm−1/2
I+1/2, L+1/2 + D(4)

x V Zm−1/2
I+1/2, L+1/2

]
(D5)

F Pm
I+1/2, L+1/2 = F Pm−1

I+1/2, L+1/2

− �

h

{(
X P

�

)
I+1/2, L+1/2

D(4)
x V Xm−1/2

I+1/2, L+1/2

+
(

Z P

�

)
I+1/2, L+1/2

D(4)
z V Zm−1/2

I+1/2, L+1/2

+
(

1

�

)
I+1/2, L+1/2

D(4)
x Q Xm−1/2

I+1/2, L+1/2

+
(

1

�

)
I+1/2, L+1/2

D(4)
z Q Zm−1/2

I+1/2, L+1/2

}
(D6)

The FD formulae for the remaining field components are specified in Appendix B of the paper by Gregor et al. (2021).
In case of the non-zero constant resistive friction, b = const > 0, eq. (D4) disappear and the second equations in (D2) and (D3) simplify:

V X∗
I, L+1/2 = V Xm−1/2

I, L+1/2 + 1

〈Px 〉z
I, L+1/2

[
1 − exp

(−� P H SI, L+1/2

)]
Q Xm−1/2

I, L+1/2 (D7)

Q X∗
I, L+1/2 = exp

(−� P H SI, L+1/2

)
Q Xm−1/2

I, L+1/2 (D8)

with P H S ≡ 〈Px 〉z〈H x 〉z/〈Sx 〉z .

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/228/1/551/6363690 by U

niverzita Kom
enskeho user on 11 O

ctober 2021


