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S U M M A R Y

We present an adaptive smoothing algorithm for reducing spurious high-frequency oscillations

of the slip-rate time histories in the finite-element (FE)–traction-at-split-node modelling of

dynamic rupture propagation on planar faults with the linear slip-weakening friction law. The

algorithm spatially smoothes trial traction on the fault plane. The smoothed value of the trial

traction at a gridpoint and time level is calculated if the slip is larger than 0 simultaneously at

the gridpoint and eight neighbouring gridpoints on the fault. The smoothed value is a weighted

average of the Gaussian-filtered and unfiltered values. The weighting coefficients vary with

slip.

Numerical tests for different rupture propagation conditions demonstrate that the adaptive

smoothing algorithm effectively reduces spurious high-frequency oscillations of the slip-rate

time histories without affecting rupture time. The algorithm does not need an artificial damping

term in the equation of motion.

We implemented the smoothing algorithm in the FE part of the 3-D hybrid finite-difference

(FD)–FE method. This makes it possible to efficiently simulate dynamic rupture propagation

inside a FE subdomain surrounded by the FD subdomain covering major part of the whole

computational domain.
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1 I N T RO D U C T I O N

The importance of the numerical simulation of the dynamic rupture

propagation in investigating physics of earthquakes is evident from

many recent theoretical and application studies as well as validation

projects and efforts (e.g. Harris & Archuleta 2004; Harris et al.

2004, 2009; Moczo et al. 2005, 2006).

Dynamic representations of the rupturing fault have been im-

plemented in different formulations of the, for example, finite-

difference (FD) method (e.g. Andrews 1973, 1976a,b, 1999;

Madariaga 1976; Day 1977, 1982; Miyatake 1980; Madariaga et al.

1998; Nielsen et al. 2000; Cruz-Atienza & Virieux 2004; Day et al.

2005, Dalguer & Day 2006, 2007; Moczo et al. 2007a; Rojas et al.

2008; for a brief review of the FD implementations see Moczo

et al. 2007b), FE method (e.g. Archuleta 1976; Archuleta & Frazier

1978; Oglesby et al. 1998, 2000; Oglesby 1999; Aagaard et al. 2001;

Anderson et al. 2003; Ma & Archuleta 2006; Ma 2008; Ma et al.

2008), boundary-integral method (e.g. Das 1980; Andrews 1985;

Cochard & Madariaga 1994; Aochi et al. 2000; Lapusta et al. 2000;

Lapusta & Rice 2003; Day et al. 2005) or spectral-element method

(e.g. Ampuero 2002, 2008; Festa 2004; Vilotte et al. 2006; Chaljub

et al. 2007; Kaneko et al. 2008).

The traction-at-split-node (TSN) method, developed indepen-

dently by Andrews (1973, 1999) and Day (1977, 1982), seems

to be the most suitable method to represent the fault discontinu-

ity in the FD and FE methods. Recently, Day et al. (2005) found

very good level of agreement between the FD implementation of

the TSN method (on partly staggered grid; called DFM in their

paper) with the boundary integral method. Moreover, Dalguer &

Day (2006) demonstrated superior accuracy of the TSN method

compared to the thick-fault (Madariaga et al. 1998) and stress-glut

method (presented by Andrews 1999).

Despite the superior properties of the TSN method, its implemen-

tations in the low-order approximation discrete methods are not free

from problems. In this paper, we focus on spurious high-frequency

oscillations often seen in the slip-rate time histories. We start with

general considerations.

For a given initial stress and material parameters on the fault,

it is the friction law that controls initialization, propagation and

healing of the rupture. Consider Coulomb friction law (Fig. 1a).

The stress is discontinuous at the crack tip, that is at the point of

the fault at the rupture arrival time tr . According to the left-hand

value, corresponding to the static friction, the point of the fault at

the crack tip should be at rest. According to the right-hand value,
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Figure 1. (a) Coulomb friction law. (b) Linear slip-weakening friction law.

σy – static traction, σd – dynamic traction, σ o
0 – initial traction and d0 –

critical slip.

corresponding to the dynamic friction, the point of the fault at the

crack tip should be slipping. This implies an infinitely large slip rate

at the crack tip, that is at time tr at a point of the fault. The slip-rate

value then rapidly decreases with time. The narrow pulse of slip

rate with the infinite peak value implies infinitely broad spectrum

and thus also very high frequencies.

Consider a linear slip-weakening friction law (Fig. 1b). The grad-

ual decrease of stress (during finite time and finite slip) removes

infinite value of the slip rate at the crack tip, at time tr (compared to

the Coulomb friction law). The slip rate increases from zero value

at tr . The steeper is the decrease of the stress in the friction law, the

steeper is the increase of the slip rate, and, consequently, the broader

is the spectrum of shear stress and slip rate variations generated by

the slipping point.

The gradual decrease of the stress at a slipping point implies

the existence of the breakdown zone. The breakdown zone is the

spatial zone on the fault plane behind the crack tip where the shear

stress decreases from its static value to its dynamic value. Con-

sequently, also the slip rate varies significantly in the breakdown

zone.

Thus a possibly broad-spectrum slip-rate and stress variations

generated by each slipping point as well as the spatial breakdown

zone have to be properly discretized in a numerical method in order

to avoid effect of numerical grid dispersion at higher frequencies

and to properly capture the stress degradation in the breakdown

zone.

In the wave propagation problems a size of the spatial grid spacing

(for a given order of approximation in a chosen numerical method)

determines how accurately high frequencies will be propagated by

a grid. An effect of the numerical grid dispersion, proportional to a

travel path length, may become considerable/visible for wavelengths

shorter than a certain value.

In the rupture propagation problems an effect of the numerical

grid dispersion may become more dramatic due to the coupling

between the shear stress and slip rate. In the TSN method a slip-

rate increment at each time level is calculated from the difference

between the so-called trial traction (value of the constraint traction

assuring zero slip rate) and frictional traction at a point of the fault.

Whereas the frictional traction itself does not suffer from oscilla-

tions (it is determined by the friction law), the trial traction is not

smooth in time reflecting the presence of the high-frequency stress

variations inaccurately propagated by the grid. The inaccurately de-

termined slip-rate increment is used in calculation of the slip rate

in the next time level causing oscillations of the slip rate which in

turn affects the value of the trial traction.

Thus for a given friction law (for a given steepness of the stress de-

crease) and order of approximation in the applied numerical method

it is the size of the spatial grid spacing that determines how accu-

rately high frequencies will be propagated by a grid and how large

the high-frequency oscillations of the slip rate will be.

Likely in most practical applications the spatial sampling will

not be fine enough to prevent visible spurious oscillations in the

low-order approximation numerical method.

If the oscillations do not affect (change) development and prop-

agation of the rupture, it is possible to apply a posteriori low-pass

filtration to remove the oscillations. The problem is that a priori we

cannot in principle assume that the oscillations would not change

the development and propagation of the rupture. Therefore, the

low-pass filtration cannot serve as a systematic tool for reducing

the oscillations.

Day (1982), Day & Ely (2002), Day et al. (2005) and Dalguer &

Day (2007) applied an added artificial viscosity in their implemen-

tations of the TSN method to regularize the numerical solution and

suppress the spurious oscillations. They added terms to the equa-

tions of motion that are proportional to the strain-rate components.

This leads to damping stresses of Kelvin–Voigt form characterized

by a damping parameter. The damping is scale selective, with the

scale set by the size of the grid spacing. The sensitivity to the damp-

ing parameter diminishes with increasing number of gridpoints per

breakdown zone. Whereas Day (1982), Day & Ely (2002) and Day

et al. (2005) applied the artificial damping throughout the volume

in the FD scheme on the partly staggered grid, Dalguer & Day

(2007) included the damping term only in the equations of motion

for the split nodes in the staggered-grid FD scheme. In both cases

Day et al. found preferred values of the damping parameters for

numerical simulations, and, consequently, local criteria for spatial

sampling of the breakdown zone. Although both TSN implementa-

tions (DFM—the discrete fault model on the partly staggered grid,

and SGSN—the staggered-grid split node method) converge even

with no artificial damping applied, the application of the damping

with proper values of the damping parameter greatly accelerates the

convergence. The artificial damping reduces the rupture time error

and spurious oscillations in the slip-rate time histories if a proper

value of the damping parameter is used. However, the peak slip-rate
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misfit increases with damping (having minimum if no damping is

applied).

In this paper, we present an alternative approach to suppress spu-

rious oscillations of the slip rate. We do not introduce any artificial

damping term in the equation of motion. The basic idea of our

approach is to spatially smooth the trial traction before it is used in

calculation of the slip-rate increment.

We restrict our study to the linear slip-weakening friction law.

We know from our unpublished numerical results that the slip-rate

history for friction law by Ohnaka & Yamashita (1989) is consider-

ably smoother compared to the linear slip-weakening friction law.

The very recent study by Rojas et al. (2009) shows that the slip-rate

oscillations are less of a problem in the rate-and-state friction laws

than in the linear slip-weakening friction law, because of a natural

damping inherent in the friction law.

We first very briefly present the FD–FE hybrid method used for

numerical simulations. Then we continue with considerations on

smoothing the trial traction. We continue with defining problem

configurations for simulations of rupture propagation. In the next

section, we present results of extensive numerical tests aiming to

find the best smoothing algorithm. Finally, we demonstrate the per-

formance of the preferred smoothing algorithm.

2 T H E F I N I T E - D I F F E R E N C E – F I N I T E -

E L E M E N T H Y B R I D M E T H O D

The numerical simulations were performed using the 3-D hybrid

FD–FE method. The method was presented in detail by Galis et al.

(2008). Here we just briefly summarize its principle and main fea-

tures. The method is based on a combination of the fourth-order

velocity–stress staggered-grid FD scheme with the second-order

displacement FE method. A computational domain can include one

or several relatively small FE subdomains whereas a major part of

the whole computational domain is covered by a FD grid. The FD

and FE parts causally communicate at each time level in the FD–FE

transition zone. The transition zone consists of the FE Dirichlet

boundary, FD–FE averaging zone and FD Dirichlet zone. The struc-

ture of the FD–FE transition zone is the key aspect of the hybrid

combination.

The FE subdomains can comprise extended kinematic or dynamic

models of the earthquake source or the free-surface topography. The

TSN method is implemented in the FE method for simulation of

the spontaneous rupture propagation. A detailed exposition of the

implementation of the TSN method is given in the monograph by

Moczo et al. (2007a).

Let us briefly mention the aspect of the numerical integration

within an element. We can use 8-point Gauss integration or 8-point

Lobatto integration in the FE algorithm. Because we use hexahedra

elements with trilinear shape functions, 8-point Gauss integration

is full integration while 8-point Lobatto integration is a reduced

integration. The 8-point Lobatto integration would be exact in the

case of the linear shape functions, similarly as the 1-point Gauss

integration would be in this case. With reduced 8-point Lobatto

integration it is not necessary to apply stabilization which would

be necessary with the 1-point Gauss integration; for details see Ma

& Liu (2006). In our numerical simulations we applied the 8-point

Lobatto integration.

The key feature of the computational efficiency of the hybrid

method is the fact that in many problems the FD method can be

applied to a major part of the computational domain. In addition

to this, the computational efficiency of the implemented FE formu-

lation itself is based on two approaches: (1) the use of the global

restoring-force vector significantly reduces memory requirements

compared to the standard formulation based on the global stiffness

matrix and (2) the use of new base functions allows employing new

effective parameters which eliminate redundant information in the

standard way of the restoring-force computation. The elimination

leads to the considerable reduction of the number of arithmetic op-

erations and thus to reduction of the computational time. The new

base functions and effective parameters for a 2-D problem are de-

scribed by Balazovjech & Halada (2007) and Moczo et al. (2007a).

A detailed 3-D theory will be presented in a separate study.

The numerical simulations used in this study included a rupturing

fault plane inside the FE subdomain.

3 S M O O T H I N G A L G O R I T H M – B A S I C

C O N S I D E R AT I O N S

We want to spatially (on the fault plane) smooth the trial traction.

This can be achieved by averaging values of the trial traction at

gridpoints in some neighbourhood of the gridpoint at which the

smoothed value is to be calculated. In principle there are two ques-

tions: (1) When or under which conditions the averaging should

be applied? (2) How to average? Here we outline preliminary con-

siderations which led us to definition of alternative smoothing al-

gorithms. The algorithms and the numerical tests will be detailed

later.

Obviously, an extreme possibility is to apply averaging over the

entire fault plane at each time level, that is, unconditionally. Intu-

itively we can anticipate that such averaging should be capable to

smooth the slip-rate time history. At the same time, however, such

averaging would be insensitive and robust—the unconditional av-

eraging might smooth the onset of the slip too much and thus likely

affect development of the rupture.

It seems more reasonable and natural to condition the averaging

at a gridpoint by some criterion. The averaging should not affect

the onset of the slip. Therefore, the averaging should not be applied

at the rupture front. The application to a slipping point should be

conditioned by a threshold value of slip or slip rate. The threshold

condition can be required only at a gridpoint or simultaneously at

the point and neighbouring gridpoints; the two possibilities differ

in the way of identifying the rupture front. The application of the

threshold condition to slip or slip-rate might depend on the adopted

friction law.

The averaging formula should allow for tuning and possibly also

for defining an adaptive smoothing that might reflect development

of the rupture. We define it as follows. Let p be the averaging

parameter, and

0 ≤ p ≤ 1. (1)

Then the weighted averaging can be expressed by

ĒT (i, j) = (1 − p) ET (i, j) + p ETG(i, j). (2)

Here ĒT (i, j) is the smoothed trial traction at the gridpoint (i, j),
ET (i, j) is the original trial traction and ETG(i, j) is obtained from

ET G(i, j) =

3
∑

k=1

3
∑

l=1

wG
k l

ET (i + k − 2, j + l − 2), (3)
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where

wG =







1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16






. (4)

Figure 2. Scheme of the effective weighting coefficients in the adaptive

smoothing algorithm for calculation of the trial traction at grid position

(i, j) on the fault plane. The weighting factor p ∈ 〈0, 1〉 and may vary with

time.

Note that elements of matrix wG are coefficients of the Gaussian

filter. Eq. (2) can be rewritten in the form

ĒT (i, j) =

3
∑

k=1

3
∑

l=1

w̄k l
ET (i + k − 2, j + l − 2) (5)

with

w̄ =







p/16 p/8 p/16

p/8 1 − 3p/4 p/8

p/16 p/8 p/16






. (6)

The averaging coefficients are illustrated in Fig. 2.

4 P RO B L E M C O N F I G U R AT I O N S

In order to develop and test a desired smoothing algorithm we

numerically simulate spontaneous rupture propagation for two con-

figurations of a planar fault embedded in a uniform infinite elastic

isotropic space. Configuration 1 is a modified Version 3 of the

Southern California Earthquake Center (SCEC) benchmark prob-

lem (Harris et al. 2004; Day et al. 2005; Dalguer & Day 2007). The

modification consists in different definition of the initialization zone

(as it will be detailed later). We use Configuration 1 for developing

a preferred smoothing algorithm.

The Configuration 1 geometry is shown in Fig. 3. The fault plane

is the xy-plane and the origin of the coordinate system is located

in the middle of the rupture-allowed area. The initial shear traction

is aligned with the x-axis. The x- and y-axes are axes of symmetry

or antisymmetry for the fault slip and traction components. Conse-

quently, the xz-plane is restricted to purely in-plane motion whereas

the yz-plane to purely antiplane motion.

Rupture is allowed within a fault area that extends 30 and 15 km

in the x- and y-directions, respectively. Spatially constant P- and

Figure 3. (a) Geometry of the rupture-allowed area and initialization zone. (b) Positions of the antiplane receiver R1, in-plane receiver R2 and mixed-position

receiver R3. (c) 3-D visualization of the initial shear traction in the initialization zone. (d) Initial traction along the strike position. σy is the static traction.
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Table 1. Dynamic stress parameters for initialization and spontaneous dynamic rupture simulation. RAA—Rupture Allowed

Area, SB—Strength Barrier.

Config. 1 Config. 2

Linear slip weakening

Static coeff. RAA µs 0.6778 0.6125

of friction SB µs 10 000 10 000

Dynamic coeff. of friction µd 0.525 0.525

Critical slip d0 [m] 0.4 0.275

Static traction σy = µs · σn0 [MPa] 81.333 73.5

Dynamic traction σd = µd · σn0 [MPa] 63 63

Initial stress

Initial shear stress outside the

initialization zone σ o
0 [MPa] 70 70

Initial normal stress σn0 [MPa] −120 −120

Stress drop 1τ = σ o
0 − σd [MPa] 7 7

Strength parameter S 1.62 0.50

Strength excess 1σy = σy − σ o
0 [MPa] 11.333 3.500

Initialization

Size of the Major semi-axis ra [m] 2035 1089

initialization zone Minor semi-axis rb [m] 1526 817

Overshoot εσ [% of 1σy ] 0.06765 0.06765

[MPa] 7.667 × 10−3 2.368 × 10−3

Max. value of the σ 2
0 initial shear

stress inside the initialization zone σ i
0 = σy + εσ [MPa] 81.341 73.502

Semi-major axis of the ellipse with σ i
0 r i [m] 2010.02 1064.53

Width of the smooth transition

zone of the initial stress rs [m] 1500 1500

S-wave velocities and density are 6000 m s−1, 3464 m s−1 and

2670 kg m−3. The dynamic stress parameters for initialization and

spontaneous rupture propagation are given in Table 1 and the linear

slip-weakening friction law is illustrated in Fig. 4. The initializa-

tion zone has elliptical shape and is located in the middle of the

rupture-allowed area as shown in Fig. 3(a). The major semi-axis

ra and minor semi-axis rb are determined as critical half-lengths

LcII and LcIII (Andrews 1976a,b) for the in-plane and antiplane

modes, respectively. The elliptical initialization zone enables a

smooth spatial transition between the shear traction inside and out-

side the initialization zone as it is detailed in Figs 3(c) and (d) and

Table 1. The rupture is simultaneously initiated due to the initial

shear traction slightly higher than the static traction in the initial-

ization zone (by 0.06765 per cent of the strength excess). After this

Figure 4. Linear slip-weakening friction laws for the two considered

configurations.

initialization the rupture propagates spontaneously following the

linear slip-weakening friction law.

Configuration 2 is a modification of Configuration 1. The pur-

pose of the modification was to allow for a rather different rupture

propagation condition, namely the supershear rupture propagation.

Parameters of the configuration are given in Table 1, the linear

slip-weakening friction law is shown in Fig. 4. Note the values of

ra and rb for Configuration 2. We had to use ra = 1.36LcII and

rb = 1.36LcIII in order to initialize spontaneous rupture propa-

gation (the increasing of the overshoot did not lead to a proper

initialization).

We can briefly comment on the values of ra and rb for both con-

figurations. We found that the estimates for 2-D problem (Andrews

1976a,b) are sufficient for the 3-D Configuration 1. Therefore, we

applied the trial and error procedure to find proper values for the 3-D

Configuration 2. The found values of ra and rb are smaller than the

estimate for the circular initialization zone according to Day (1982).

The geometrical configuration of the rupturing fault in the com-

putational domain is illustrated in Fig. 5. The FE subdomain is

covered by a uniform grid of cubic elements with size hFE, the

FD subdomain is covered by a uniform grid with grid spacing

hFD = 2hFE. All simulations are referred to according to the size of

the cubic element in the FE subdomain. For example, ‘h = 50 m’

will refer to the simulations with hFE = 50 m. Table 2 lists all

spatial discretizations used in numerical simulations. The left-hand

column shows how the particular discretization will be referred to

in the text.

5 E VA LUAT I O N O F T H E N U M E R I C A L

R E S U LT S

We present results of the numerical simulations using (1) plots of

the slip-rate time histories at the antiplane receiver R1, in-plane
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Figure 5. Schematic illustration of the geometrical configuration of the rupturing fault in the computational domain for the size of element in the FE subdomain

hFE = 50 m.

Table 2. hFE, size of element in the FE subdomain; hFD, size of grid spacing in the FD subdomain; 1t , time step; NFE,

number of elements in the FE subdomain; NFD, number of grid cells in the FD subdomain; MFE, number of elements if

the whole computational domain would be solved by the FEM.

hFE (m) hFD (m) 1t (s) NFE NFD MFE

h = 50 m 50 100 0.0033 11 520 000 25 040 000 198 200 000

h = 75 m 75 150 0.005 5 630 000 13 090 000 103 330 000

h = 100 m 100 200 0.0066 3 470 000 3 440 000 26 960 000

h = 150 m 150 300 0.0099 2 250 000 1 230 000 9 530 000

h = 250 m 250 500 0.016 890 000 390 000 3 000 000

h = 300 m 300 600 0.02 700 000 250 000 1 900 000

receiver R2, and mixed-position receiver R3 shown in Fig. 3(b), (2)

root mean square average over the fault plane of the apparent rupture

velocity differences between compared solutions, (3) contour plots

of the rupture front, (4) breakdown zone spatial resolution in the

antiplane direction.

In all cases we consider the rupture time tr (x, y) as the time at

which the slip rate first exceeds 1 mm s−1. The absolute value of

the rupture velocity at a point of the fault, | vr (x, y) |, is determined

through the rupture slowness sr (x, y)

sr (x, y) = grad[tr (x, y)], (7)

|vr (x, y)| = |sr (x, y)|−1. (8)

Because we have to expect numerical errors in evaluation of

|vr (x, y)| in the discrete space–time grid, it is reasonable to spa-

tially smooth value of |vr (x, y)|. We apply the Gaussian filter (see

eq. (4)).

The root mean square (rms) average of differences in the

rupture velocities between two solutions is evaluated over the

shadowed area (say rupture evaluation area, REA) shown in

Fig. 6. For Configuration 1, the major and minor semi-axes

of the inner ellipse are (2035 + 1500) m = 3535 m and

(1526 + 1500 × 1526/2035) m = 2650 m, respectively. The ma-

jor and minor semi-axes of the outer ellipse are 15500 and 8500 m.

For Configuration 2 the evaluation area is reduced using four el-

lipses with major and minor semi-axes equal to 4000 and 1800 m,

respectively. An angle between the x-axis and the major axis of the

additional ellipse is 40◦.

The removal of the areas is necessary because small differences

in positions of intersection of the original and bifurcating rupture

fronts in two solutions lead to large errors in the rms differences.

These errors are not due to different rupture velocities. Therefore,
Figure 6. Geometry of the fault area used in evaluation of the numerical

results for the two problem configurations.
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the evaluation of the rms misfit also in the removed areas would

lead to meaningless values.

The rms misfit between one solution and the solution considered

as reference is evaluated as

rms =

√

√

√

√

∑
[
∣

∣vr (x, y)
∣

∣

GF
−

∣

∣vREF
r (x, y)

∣

∣

GF

]2

∑
[
∣

∣vREF
r (x, y)

∣

∣

GF

]2
× 100 per cent,

(9)

where the summation relates to the gridpoints within the REA and

subscript GF denotes Gaussian-filtered values.

If we know the rupture time and time when shear traction reaches

level of the dynamic friction at each gridpoint along the chosen

direction, we can determine a breakdown-zone spatial resolution

along the chosen direction of the rupture propagation. We can also

visualize the breakdown zone in a graph with one axis correspond-

ing to the spatial coordinate along the chosen direction and one axis

corresponding to time. Because the width of the breakdown zone

varies with distance, we follow Day et al. (2005) and Dalguer & Day

(2007), and evaluate an average breakdown-zone spatial resolution

as a spatial resolution of a median of the breakdown-zone widths at

all gridpoints along the chosen direction of rupture propagation.

Day et al. (2005) and Dalguer & Day (2007) evaluated the

breakdown-zone resolution for the in-plane direction. They chose

the in-plane direction because the rupture propagates in this direc-

tion to longer distances which means larger number of gridpoints. If

we, however, evaluate the rms rupture velocity misfit over the REA

and relate it to the spatial grid spacing and breakdown-zone spatial

resolution, we should not bias this relation by inaccuracy due to in-

sufficient spatial resolution of the narrowest breakdown zone. In our

simulations the minimum resolution and average resolution for the

antiplane direction are smaller than those in the in-plane direction.

Therefore we consider the antiplane direction for evaluation of the

breakdown-zone resolution in relation to the size of the grid spacing

and rms misfit. Thus, N̄b will be used later to denote the median

breakdown-zone resolution evaluated for the antiplane direction.

6 S M O O T H I N G A L G O R I T H M

Fig. 7 summarizes all numerically tested smoothing algorithms.

Algorithm A: unconditional averaging of the trial traction over the

entire fault plane at each time level. The averaging is applied at

a point of the fault even after the slipping ceases at the point.

Algorithm B: averaging at a point of the fault is applied if a specified

condition on the slip rate (B1, B2) or slip (B3) is satisfied at the

point. Algorithm C: averaging at a point of the fault is applied if

a specified condition on the slip rate (C1, C2) or slip (C3, C4) is

satisfied simultaneously at the point and 8 neighbouring gridpoints

on the fault. Further we explain the numerical tests and search for

the preferred smoothing algorithm in detail.

Algorithm A. As it is specified in Fig. 7, we performed seven (N =
7) numerical simulations. The unconditional averaging was applied

in each of them for different value of parameter p = pmax (see two

rightmost columns in Fig. 7). There is no averaging if p = pmax = 0,

whereas p = pmax = 1 corresponds to the strongest, pure Gaussian

filtering, see eq. (2). The larger pmax is, the smoother is the slip

rate. The solutions strongly depend on the value of parameter pmax

and differ considerably in the rupture time and peak value. The

obtained results for the antiplane receiver R1 and in-plane receiver

R2 are illustrated in Fig. 8. The grey area shows the scatter of

all seven solutions. Its upper border represents maximum slip rate

from the seven solutions at each time, the lower border minimum

slip rate. Only two slip-rate time histories are shown explicitly—

the non-smoothed (p = pmax = 0) and the smoothed one for p =
pmax = 0.4. We conclude that the algorithm A is not a proper tool

for smoothing slip rate.

Algorithm B. In algorithm B we introduce parameter Q which is

either slip rate (in B1 and B2) or the ratio of the slip and the critical

slip (in B3).

In B1 the averaging at a point of the fault is applied if Q, the

slip rate at the point, is larger than Qthr = Qmax. We performed

simulations for five (N = 5 in Fig. 7) different values of Qthr = Qmax

and p = pmax = 0.4. The solutions are similar to those obtained

with algorithm A. We do not show them in Fig. 8.

In B2 the averaging parameter p increases linearly from 0 for

the slip rate equal to Qthr up to pmax for the slip rate equal to Qmax,

see the rightmost column in Fig. 7. We performed 2 simulations

differing in values of parameters Qthr and Qmax. The solutions are

very close to those obtained with algorithm B1. We do not show

them in Fig. 8.

In B3 the averaging at a point of the fault is applied if Q, the

slip-to-critical slip ratio at the point, is larger than Qthr = Qmax. We

performed six simulations differing in value of parameter Qthr =
Qmax (in all we used p = pmax = 0.4). The solutions are almost

identical to those obtained with algorithm B1. The smoothness of

the slip-rate curve and rupture time considerably depend on Qthr

especially at the antiplane receiver R1. The solutions obtained with

algorithm B3 are illustrated in Fig. 8. The grey area indicates the

scatter of the obtained solutions in the same way as in the case of

algorithm A. Explicitly shown are the non-smoothed solution and

the smoothed solution for Qthr = Qmax = 1/2. We conclude that

the algorithm B is not a proper tool for smoothing slip rate.

Algorithm C. The only but substantial difference between B1–B3

and C1–C3 algorithms, respectively, is that the condition on the slip

rate or the slip-to-critical slip ratio has to be satisfied simultane-

ously at the point and eight neighbouring gridpoints on the fault.

The structure of the performed numerical tests with the C1–C3

algorithms is the same as that with the B1–B3 algorithms, see

Fig. 7.

The solutions obtained with C1 considerably depend on Qthr at

the antiplane receiver R1 and much less at the in-plane receiver R2,

where the rupture times are relatively good. The solutions are not

shown in Fig. 8.

As in B2, also in C2 the averaging parameter p varies linearly

from 0 for the slip rate equal to Qthr up to pmax for the slip rate

equal to Qmax. Solutions are comparable with those obtained with

algorithm C1. The solutions are not shown in Fig. 8.

Contrary to C1 and C2, in C3 the threshold criterion is applied to

the slip-to-critical slip ratio. The solutions are illustrated in Fig. 8.

The grey areas for R1 and R2 indicate that the scatter of solutions

due to different values of Qthr = Qmax is similar in the antiplane and

in-plane receivers. However, at the antiplane receiver R1 the rupture

times of the smoothed solutions are smaller than the rupture time

of the non-smoothed solution, whereas at the in-plane receiver R2

it is just opposite. The time advance at R1 and delay at R2 increase

with the size of the grid spacing.

The numerical results obtained with algorithms A, B and C1–C3

lead us to conclude that it is better to apply a threshold criterion

simultaneously at a point and eight neighbouring gridpoints on

the fault, use slip for the threshold criterion, and adjust value of

the averaging parameter p to the slip development. The reason why

the slip is better quantity for a threshold criterion than the slip rate

can be explained in view of the applied friction law. While it is
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Code TC Q N Qthr Qmax pmax p (Q)

A N/A N/A 7 N/A N/A

0.0, 0.1, 0.2, 

0.4, 0.7, 0.8, 

1.0

p = pmax = const.

B1 1-point
slip rate

[m/s]
5

0.0,  0.001, 

0.5,  0.75,  1.0
0.4

B2 1-point
slip rate

[m/s]
2

0.0 0.5 0.4

0.5 1.0 0.4

B3 4.06tniop-1

C1 9-point
slip rate

[m/s]
5

0.0,  0.001, 

0.5,  0.75,  1.0
0.4

C2 9-point
slip rate

[m/s]
2

0.0 0.5 0.4

0.5 1.0 0.4

C3 4.06tniop-9

C4

a

9-point

4.006

b 11 0 1
0.0 – 1.0, 

step 0.1

c 3 1 0.4

pmax

p

0
Qthr= Qmax

Q0

pmax

p

0
Qthr= Qmax

Q0

pmax

p

0
Qthr= Qmax

Q0

pmax

p

0
Qthr= Qmax

Q0

p
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Q0
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0
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p
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Q0
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0
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Figure 7. Summary of all tested smoothing algorithms. Algorithm code: A—unconditional averaging on the entire fault plane, B1-B3—threshold condition

(TC) applied at one grid point, C1-C4—threshold condition applied at 9 grid points. Q—quantity to which TC is applied, N—the number of tested configurations

differing form each other by values of Qthr, Qmax and Pmax, p(Q)—the weighting factor as a function of Q.

difficult to estimate value of the slip rate at a point, we know the

critical slip in the linear slip-weakening friction law in advance.

Correspondingly, in the C4 algorithm the threshold criterion is

applied to the slip-to-critical slip ratio (i.e. this ratio defines Q

in C4; as in C3) simultaneously at a point and eight neighbouring

gridpoints on the fault, and the averaging parameter p varies linearly

from 0 for Q = Qthr up to pmax for Q = Qmax. We performed

detailed numerical investigation organized in C4a, C4b and C4c

sets, see Fig. 7.

Six C4a simulations with Qthr = 0 and pmax = 0.4 differ in val-

ues of Qmax. The results of simulations are illustrated in Fig. 8. It is

clear that the grey area is considerably smaller than in the case of al-

gorithms A and B. This means that the scatter of solutions due to dif-

ferent values of Qmax is relatively small. The best smoothed solution

is the one for Qmax = 1. The difference between the rupture times

of the smoothed and non-smoothed solutions is about one time step.

Eleven C4b simulations with Qthr = 0 and Qmax = 1 differ

in values of pmax. The results of simulations are illustrated in
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Figure 8. Illustration of numerical results obtained in the process of searching for the best smoothing algorithm. Slip-rate time histories obtained using

different tested smoothing algorithms. A, B3, C3 and C4 indicate smoothing algorithms summarized in Fig. 7. Grey area is the area including all considered

sets of smoothing parameters; the upper and lower limits of the area at each time are determined by the maximum and minimum slip-rate values from all

solutions.

Fig. 8. The scatter in the rupture times for different values of pmax

is smaller than the scatter due to different values of Qmax in C4a

solutions. The reason why we see some grey area is that the set

includes solutions from the non-smoothed (pmax = 0) through to

the Gaussian-filtered one (pmax = 1). The best smoothed solution

is the one for pmax = 0.4.

Finally, three C4c simulations with Qmax = 1 and pmax = 0.4

differ in values of Qthr. Because the threshold values larger than 0

lead to earlier rupture times compared to the non-smoothed solution,

we conclude that the preferred algorithm is C4 with Qthr = 0,

Qmax = 1, and pmax = 0.4: the averaging of the trial traction at a

gridpoint on the fault is applied if the slip-to-critical slip ratio (this

ratio defines Q) is larger than 0 simultaneously at the gridpoint and

8 neighbouring gridpoints on the fault, and the averaging parameter

p varies linearly from 0 for Q = Qthr up to pmaxfor Q = Qmax.

This algorithm will be applied to Configurations 1 and 2 in the next

section.

7 N U M E R I C A L T E S T S F O R T H E

A DA P T I V E S M O O T H I N G

Fig. 9 shows development of the breakdown zone during the rupture

propagation in the antiplane and in-plane directions for both con-

sidered configurations. Recall that the lower curve is determined

by the rupture time whereas the upper curve is determined by time

when shear traction reaches level of the dynamic friction at the

gridpoint. The figure shows results for the non-smoothed simula-

tions with the grid spacing h = 50 m. The minimum sizes of the

breakdown zone, 3IIImin in the antiplane and 3IImin in the in-plane

direction, as well as the corresponding medians 3̄III and 3̄II for

both configurations are also given in the figure. We can note that

outside the initialization zones, the breakdown zones are narrower

in the antiplane directions in both configurations. Therefore, we de-

fine the median breakdown-zone resolution N̄b as the ratio between

the median width of the breakdown zone in the antiplane direction

and the size of the grid spacing

N̄b = 3̄III

/

h. (10)

We can also note that the rupture time in the initialization zone in

Configuration 2 is slightly larger than zero. This is due to the defi-

nition of the rupture time (time at which the slip rate first exceeds

1 mm s−1) and relatively slower rupture initialization in Configura-

tion 2. We recall that the size of the initialization zone for Config-

uration 2 was found by a trial-and-error procedure with a series of

numerical simulations with different sizes of the zone and different

overshoots because the originally tested zone with the major semi-

axis ra and minor semi-axis rb determined as critical half-lengths

(Andrews 1976a,b) for the in-plane and antiplane directions did not

lead to the spontaneous rupture propagation.

Fig. 10 shows rms of differences in the apparent velocities as

a function of the grid spacing. The rms measure was determined
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Figure 9. Breakdown zone during rupture propagation along in-plane and antiplane directions in simulations with h = 50 m. Minimum and averaged values

shown for the in-plane (II) and antiplane (III) propagations.

Figure 10. The rms of differences in the apparent velocities determined at the grid positions in the rupture evaluation area shown as a function of the size of

grid spacing. The upper axis quantifies the breakdown zone resolution, N̄b = 3̄III/h.

according to eq. (9). The figure displays differences in the apparent

velocities for three cases. In the first one, non-smoothed solutions

for different h are compared with the non-smoothed solution for

h = 50 m. The rms differences are shown using symbol ‘+’. In

the second case, smoothed solutions for different h are compared

with the non-smoothed solution for h = 50 m (see symbol ×). In

the third case, smoothed solutions are compared with the smoothed

solution for h = 50 m (see symbol ◦). We can see that the rms

values are smaller than 1 per cent for simulations with h ≤ 100 m,

and the C4 smoothing (with Qthr = 0, Qmax = 1, pmax = 0.4)

practically does not affect the convergence rate. This observation is

consistent with our goal to find an algorithm that would only reduce

spurious high-frequency oscillations of the slip rate.

Fig. 10 also shows (on the upper horizontal axis) the breakdown-

zone spatial resolution defined by eq. (10). Note that N̄b values for

Configurations 1 and 2 were determined for the respective values

of 3̄III (therefore they are different for the two configurations). The

comparable convergence curves for the two configurations indicate

that it was reasonable to define the breakdown-zone spatial resolu-

tion for the antiplane direction. This statement can be explained. The

medians in the in-plane direction are 3̄II = 473 m and 3̄II = 850 m

for the Configurations 1 and 2, respectively. Similarly, the medians

in the antiplane direction are 3̄III = 371 and 383 m. If the rms

differences in the apparent rupture velocities depended on the spa-

tial sampling of the breakdown zone in the in-plane direction we

should see better convergence for Configuration 2. We, however, do

not see better convergence. This suggests that the rms difference

primarily depends on the spatial sampling of the breakdown zone

in the antiplane direction—the medians in the antiplane directions

are very close for the two configurations.

For N̄b ≥ 4 the rms of differences in the apparent velocities are

below 1 per cent.

The rupture propagation is illustrated also in Fig. 11. Each

of the frames shows just one quadrant of the rupture area for

better visual resolution. This possibility comes with the symme-

try of the problem. The figure compares rupture fronts in the

smoothed and non-smoothed simulations at discrete times for both

configurations and 4 different sizes of the grid spacing h. We

can notice slight differences in the rupture front contours near

the curve of intersection of the original and bifurcating rupture

fronts. Overall, however, the contour plots illustrate that the C4

smoothing (with Qthr = 0, Qmax = 1, pmax = 0.4) practically

does not affect rupture times—the conclusion indicated already by

Fig. 10.

We compare smoothed with non-smoothed slip rates in Figs 12(a)

and (b) forConfigurations 1 and 2, respectively. The top panel in

each figure compares slip rates for four different sizes of the grid

spacing h (50, 75, 100 and 150 m) at the antiplane receiver R1,
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Figure 11. Contour plots of the rupture front shown only in quadrants for better visual resolution. The numbers labelling the contours show rupture times in

seconds.

in-plane receiver R2, and mixed-position receiver R3. Note that the

y component is different from zero only at R3 and the vertical scale

differs from that for the x component. The bottom panel compares

smoothed slip rates for 3 different h (75, 100 and 150 m) with the

smoothed slip rate for h = 50 m.

We can see in the top panels of both figures that the C4 smoothing

(with Qthr = 0, Qmax = 1, pmax = 0.4) effectively reduces spurious

high-frequency oscillations in the slip-rate time histories in both

problem configurations without affecting the rupture time. The late-

time tails are not smoothed as much as the main part of the slip-rate

time history. The difference between the smoothness of the main

part and the tail is best visible at the antiplane receiver R1. A

likely explanation is that the smoothing does not sufficiently reduce

corresponding frequencies which are lower than the frequencies

of the spurious oscillations in the main part of the slip-rate time

histories.

The bottom panel clearly shows that the smoothness of solu-

tions for h = 75, 100 and 150 m is close to that of the solution

for h = 50 m. Overall, the smoothed slip rates for all h in Con-

figuration 1 are close, although slight differences appear with the

increasing h. In Configuration 2, however, we can see consider-

ably increasing differences with increasing h. Because we can see

analogous differences between the non-smoothed slip rates for dif-

ferent values of h in the top panel of Fig. 12(b), it is obvious that

the differences are not due to the applied smoothing algorithm.

The differences between smoothed or non-smoothed solutions for

different values of h are most likely due to the TSN algorithm

itself.

Fig. 13 shows the fault shear traction as a function of time for

the slip rates obtained for Configurations 1 and 2 with h = 150 m.

The columns of the figure correspond to those in Figs 12(a) and (b).

Curves in red show the fault shear traction in the non-smoothed so-

lutions, curves in black show the fault shear traction in the smoothed

solutions. We can see that the application of the adaptive smoothing

algorithm does not cause error in the shear traction. Small visible

differences between the tractions in the smoothed and non-smoothed
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Figure 12. (a) Slip-rate time histories for Configuration 1. (b) Slip-rate time histories for Configuration 2.

solutions at the mixed-position receiver R3 are very likely due to

the fact that the receiver is located close to the line along which

the rupture front bifurcates. As we previously mentioned, the lines

slightly differ in position in the smoothed and non-smoothed solu-

tions. Note however, that we show the coarsest spatial discretization.

The level of agreement is better in finer discretizations (h = 50, 75

and 100).

8 C O N C LU S I O N S

We have developed an adaptive smoothing algorithm for reducing

spurious high-frequency oscillations of the slip-rate time histories in

the FE–traction-at-split-node modelling of dynamic rupture propa-

gation on planar faults with the linear slip-weakening friction law.

The algorithm spatially smoothes trial traction on the fault. The

smoothed value of the trial traction at the gridpoint (i, j), at a given

time level, is obtained as a weighted average of the Gaussian-filtered

and unfiltered values

ĒT (i, j) =

3
∑

k=1

3
∑

l=1

w̄k l
ET (i + k − 2, j + l − 2). (11)

Here ET denotes the original value of the trial traction,

w̄ =







p/16 p/8 p/16

p/8 1 − 3p/4 p/8

p16 p/8 p/16






, (12)

and p varies during slip development linearly from 0 for zero slip up

to pmax = 0.4 for the critical slip value. The averaging formula (11)
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Figure 12. (Continued.)

is applied if the slip is larger than 0 simultaneously at the gridpoint

(i, j) and eight neighbouring gridpoints on the fault.

Extensive numerical tests demonstrate that the adaptive smooth-

ing algorithm effectively reduces spurious high-frequency oscilla-

tions of the slip-rate time histories without affecting rupture time.

The smoothing algorithm is a purely numerical tool.

We implemented the smoothing algorithm in the FE part of the

3-D hybrid FD–FE method. This makes it possible to simulate

dynamic rupture propagation inside a FE subdomain surrounded by

the FD subdomain covering major part of the whole computational

domain.

Finally, we conclude with remarks on possible extensions. In all

performed simulations we assumed a uniform grid on the fault.

This allowed using the same weighting coefficients in the averaging

formula at all gridpoints. In principle it should not be a problem to

determine weighting coefficients in the case of a non-uniform grid.

As stated in the introduction, the traction-at-split-node method

has been implemented in various FD schemes. We assume that the

presented algorithm or some slightly modified algorithm should

work also with the FD implementations.

The two possible extensions and generalizations require further

separate studies.
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Figure 13. Fault shear traction in smoothed and non-smoothed solutions for two configurations obtained with h = 150 m.
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