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Abstract This article documents a comparative exercise for numerical simulation of
ground motion, addressing the seismic response of the Grenoble site, a typical Alpine
valley with complex 3D geometry and large velocity contrasts. Predictions up to 2 Hz
were asked for four different structure wave-field configurations (point source and
extended source, with and without surface topography). This effort is part of a larger
exercise organized for the third international symposium on the effects of surface
geology (ESG 2006), the complete results of which are reported elsewhere (Tsuno et al.,
2009).

While initial, blind computations significantly differed from one another, a
remarkable fit was obtained after correcting for some nonmethodological errors for
four 3D methods: the arbitrary high-order derivative discontinuous Galerkin method
(ADER-DGM), the velocity-stress finite-difference scheme on an arbitrary discontinu-
ous staggered grid (FDM), and two implementations of the spectral-element method
(SEM1 and SEM2). Their basic formulation is briefly recalled, and their implementation
for the Grenoble Valley and the corresponding requirements in terms of computer
resources are detailed.

Besides a visual inspection of PGV maps, more refined, quantitative comparisons
based on time-frequency analysis greatly help in understanding the origin of differ-
ences, with a special emphasis on phase misfit. The match is found excellent below
1 Hz, and gradually deteriorates for increasing frequency, reflecting differences in
meshing strategy, numerical dispersion, and implementation of damping properties.

While the numerical prediction of ground motion cannot yet be considered a
mature, push-button approach, the good agreement reached by four participants indi-
cates that, when used properly, numerical simulation is actually able to handle correctly
wave radiation from extended sources in complex 3D media. The main recommenda-
tion to obtain reliable numerical predictions of earthquake ground motion is to use
at least two different but comparably accurate methods, for instance the present formu-
lations and implementations of the FDM, SEM, and ADER-DGM.

Introduction

The very fact that a large part of the world’s populations
lives in earthquake-prone areas implies that seismologists
must predict earthquake ground motion during potential fu-
ture earthquakes, no matter whether they can or cannot timely
predict earthquake occurrence. Prediction of the earthquake
motion at a site of interest is extremely important for design-
ing new buildings and reinforcing existing ones, as well as for
undertaking actions that could help mitigate losses during
future earthquakes.

Theory and numerical simulation are irreplaceable tools
in the earthquake ground-motion research, mainly for two
reasons. Considering the present-day limitations of direct
controlled physical experiments in seismology, it is extre-
mely difficult to scale laboratory experiments to real struc-
tures. Moreover, in most cases, there is a drastic lack of
earthquake recordings at the sites of interest.

Given the present state of our knowledge of the processes
and structures that form earthquake groundmotion, and, at the
same time, capabilities of modern seismic arrays, realistic 3D
computational models have to include nonplanar interfaces
between layers, gradients in velocity, density, and quality
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factors inside layers, and often free-surface topography. In
particular, the rheology of the medium has to allow for real-
istic broadband attenuation. Realistic strong ground-motion
simulations should also account for nonlinear behavior in soft
soils, which will, however, be neglected here for the sake of
simplicity.

Only approximate computational methods are able to
account for the structural complexity of the realistic models.
The most important aspects of each method are accuracy and
computational efficiency (in terms of computer memory and
time). These two aspects are in most cases contradictory. A
reasonable balance between the accuracy and computational
efficiency in case of complex realistic structures made the
numerical modeling methods dominant among all approxi-
mate methods.

A number of different numerical modeling methods
have been developed within the last few decades. Each meth-
od has its advantages and disadvantages that often depend on
the particular application. Therefore, it is very unlikely that
one of the existing or recently developed numerical modeling
methods can be systematically and simultaneously the most
accurate and the most efficient for all important medium
wave-field configurations.

In general, a sufficiently high level of agreement or suf-
ficiently small level of misfit between data and theoretical
prediction can be considered a confirmation of a theoretical
model of an investigated process. In particular, the agreement
between recorded and numerically predicted earthquake
motion can be considered an ultimate criterion for capability
of seismologists to simulate earthquake ground motion. A
procedure of evaluating the capability of the theoretical mod-
el to describe the reality can be called validation. Clearly, in
the validation it is necessary to understand what is a reason-
able level of agreement. Given the complexity and inevitable
uncertainty of realistic models (earthquake source and mate-
rial structure), this is not a simple problem. Certainly, first
we have to be sure that the numerical simulation method
and its implementation in the computer code are correct.
A procedure of evaluating the capability of the method to
solve the elastodynamic equations with initial and boundary
conditions can be called verification. Without the method
verification, it is impossible to properly evaluate the level
of agreement between recorded and simulated motions.
Consequently, verification of the recent numerical modeling
methods for complex realistic models is an important task.

The importance of the objective comparison, verifica-
tion, and validation of the numerical modeling methods is
evidenced by different initiatives. On one hand, the Southern
California Earthquake Center (SCEC) has recently organized
3D numerical simulation code validation projects for wave
propagation (Day et al., 2003) and dynamic rupture simula-
tions (Harris et al., 2009). The goal was to validate and
compare 3D earthquake simulation methods, and foster their
application by the engineering community. On the other
hand the EU FP6 SPICE project (Seismic Wave Propagation
and Imaging in Complex Media: A European Network,

www.spice‑rtn.org, 2004–2007) aimed at development of
computational tools for seismic wave propagation, earth-
quake motion, and seismic imaging. SPICE has established
an open Internet-based digital library (Gallovic et al., 2007;
www.spice-rtn.org/library), which comprises computer
codes, training materials, simulation exercises, and an inter-
active web interface for code validation (Moczo et al., 2006;
www.nuquake.eu/SPICECVal/). The main goal of the SPICE
Code Validation is to provide an open long-term basis for
possible tests and comparisons of the numerical methods
and codes for the seismic wave propagation and earthquake
motion simulations. The objective evaluation of accuracy
and comparison is facilitated using the time-frequency misfit
criteria (Kristekova et al., 2006) interactively applicable to a
solution one wants to compare with any of the previously
uploaded solutions.

In parallel, real sites and realistic models were prime
targets of the blind prediction tests in framework of three
international symposia on the effects of surface geology
(ESG) in Odawara, Japan (1992), Yokohama, Japan (1998),
and Grenoble, France (2006). The ESG 2006 symposium
provided an excellent opportunity to focus on numerical
modeling of earthquake motion in the Grenoble Valley for
local weak and moderate earthquakes. The Grenoble Valley
is a very interesting and typical deep Alpine sediment-filled
structure. The Grenoble urban area, mostly built over the
sedimentary area, gathers a significant population (around
500,000), a number of high-tech and/or sensitive industrial
facilities, and educational and research institutions. There-
fore, despite an only moderate regional seismic hazard (with
known historical events hardly reaching magnitude 6) and
considerable broadband site effects, Lebrun et al. (2001)
raised the concern about the seismic risk in such Alpine
valley configurations, which are also met in different other
areas within the European Alps, and in other mountainous
areas with embanked valleys filled with young, postglacial
lacustrine sediments.

Our article presents results of a multi-institution project
and an unprecedented comparison of very different and
important methods applied to a structurally complex model
of a real site. The scope of our article is not to benchmark
computer codes that solve a well-referenced problem with a
known analytical solution. Rather, our article considers a
realistic 3D problem for which we do not have a reference
solution. There is no objective way of defining an absolute
level of accuracy for the different predictions of the seismic
response of the Grenoble Valley.

The applied methods have been developed by various
teams in different institutions using different computer
facilities. It was not technically feasible to perform presented
simulations on the same computer. It is important to realize
that the use of the same computer is of marginal importance
compared with the main aspect of the article.

The scope and goal of our article match those of the
SCEC code validation project that targeted the Los Angeles
basin to demonstrate the reachable level of agreement among
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the leading U.S. modeling teams. Our article has a similar
goal; in addition, it considers awider set of numericalmethods
and a significantly higher maximum frequency.

Compared with the Los Angeles basin, the modeling of
the Grenoble Valley is complicated by the relatively large
velocity contrast and the complex interface geometry. The
level of the reached agreement was not possible to anticipate
and thus is not trivial.

Structurally complex models of real sedimentary valleys
pose great challenges. Even though there have been a number
of attempts at validation, the agreement between synthetics
and data remains far from satisfactory, except for very low
frequencies, say <0:1 Hz. This is because one cannot isolate
the validity of the simulation from that of other factors, such
as the material model, including possible nonlinearities, and
the source description. One common way to reduce the
influence of these factors is to use small earthquakes, whose
rupture can be modeled as a point source.

Given the model complexity and methodological differ-
ences among the applied methods, we found a surprisingly
good level of agreement for four of the submitted predictions
obtained by different teams: Käser et al. (2006) used the
arbitrary high-order derivative discontinuous Galerkin meth-
od (ADER-DGM), Chaljub (2009) used the spectral-element
method (SEM), Kristek et al. (2009) used the finite-difference
method (FDM), and Stupazzini (2009) and Stupazzini et al.
(2009) used another implementation of the SEM. The ADER-
DGM, FDM, and SEM differ both in the basic formulations
of the equations of motion and boundary conditions, and the
way they construct discrete models and the resulting systems
of algebraic equations. They also differ in the required com-
putermemory and time.At the same time these threemethods,
together with the finite-element method (FEM), are at present
the most powerful numerical modeling methods for earth-
quake ground motion. Whereas the FDM and FEM have a
relatively long tradition, the SEM has been used since the
early 1990s; ADER-DGM has been elaborated and applied
to seismology rather recently. Despite this relatively long
tradition of the FDM and FEM, they are still being developed
in terms of accuracy and efficiency, and it is reasonable to
expect considerable improvements.

In this article we first present the structural model of the
Grenoble Valley and definition of the numerical simulations.
In the next section we briefly introduce the ADER-DGM,
FDM, and SEM. Computational aspects of the simulations
for the Grenoble Valley are then discussed. The main part
of the article presents comparison of the numerical results
obtained with the ADER-DGM, FDM, and two implementa-
tions of the SEM. We conclude with main lessons learned and
recommendations for future blind predictions and bench-
mark tests.

Structural Model of the Grenoble Valley

Grenoble is settled on Quaternary fluvial and postglacial
deposits at the junction of three large valleys of the French

external Alps (Fig. 1), surrounded by three mountain ranges.
This junction mimics the letter Y (the so-called Grenoble Y),
with three legs:

1. The northeastern branch of the Y is the N30°–40° trend-
ing Grésivaudan Valley, extending about 60 km upstream
along the Isère River.

2. The northwestern branch is the N150° trending, Cluse-
de-l’Isère Valley, extending from Grenoble to Moirans
(about 20 km), where the Isère River flows to the
northwest.

3. The southern branch follows the Drac River, flowing
from the south and arriving in a small plain about 15 km
upstream of Grenoble.

The three massifs delineated by these valleys are the
Belledonne crystalline massif to the east and two subalpine
foothills consisting of sedimentary rocks (limestone) to the
north (Chartreuse) and the southwest (Vercors). These foot-
hills were formed when the Alpine shortening displaced the
sedimentary cover to the northwest, forming folds and related
thrusts (7 to 5 m.y. B.P.) and uplifted the crystalline basement
(5 m.y. B.P.) to the east of the study area (Belledonne massif).

The IsèreValley (from upper Grésivaudan to downstream
Cluse-de-l’Isère) therefore extends for about 110 km from
Albertville in the northwest to Rovonwest of theVercorsmas-
sif; it is 3 to 5 km wide and quasi-flat, with slowly decreasing
altitudes (330 m in Albertville, 211 m in Grenoble, 180 m in
Rovon). The surrounding mountains exhibit, however, a
pronounced topography with maximum elevations slightly
above 2000 m in Vercors and Chartreuse and above 3000 m
in the Belledonne massif. As explained by Gamond et al.

Figure 1. Situation map of the Grenoble area in the French
Alps, showing the Y-shaped Grenoble Valley surrounded by the
Vercors and Chartreuse limestone massifs with maximal elevation
of 2000 m, and the crystalline Belledonne chain where elevation
reaches 3000 m. GMB1 indicates the location of the Montbonnot
borehole (see text).
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(2009), this course runs along several hundred meters deep
paleovalley carved in the Mesozoic sedimentary cover of the
Alpine foothills. The northeast-southwest GrésivaudanValley
was dug by erosion around 5 m.y. B.P. through the tributaries
of the paleo-Isère River, while the northwest-southeast
Cluse-de-l’Isère was carved by epigenesis between 5 and
2 m.y. B.P. when the foothills were uplifted.

Its present morphology presents asymmetrical inclined
sides and longitudinal moraines typical of glacial valleys.
During the last glacial-interglacial cycles, as all valleys in the
western Alps, it was successively eroded and overdeepened
by thick Alpine glaciers (Isère glacier, local glaciers of the
Belledonne massif, Drac-Romanche glacier) feeding large
ice lobes at the piedmont and then filled essentially by lake
sediments as glaciers were melting and retreating higher up
in the catchments during warm phases. In the IsèreValley,
both proglacial and deltaic lacustrine sediments completely
filled an up to 900 m deep and 100 km long fjordlike basin
during the last deglaciation, while only a thin, fluvial
sequence formed during our interglacial period (Chapron
et al., 2009).

Despite the relatively good mechanical characteristics of
these quaternary deposits, the large impedance contrast with
the embedding rocks, together with the large embankment
ratio, cause huge amplifications as observed by Lebrun et al.
(2001), Cornou et al. (2003a, 2003b), and Cornou et al.
(2009). A series of geotechnical and geophysical investiga-
tions has thus been carried out in theGrenoble area to improve
the knowledge of the underground structure. A summary of
these investigations can be found in the series of dedicated
articles included in Volume 2 of the ESG 2006 proceedings
(Chapron et al., 2009; Cornou et al., 2009; Dietrich et al.,
2009;Gamond et al., 2009;Guéguen et al., 2009; Jerram et al.,
2009;Ménard, Blein, Fournier et al., 2009; Ménard, Dietrich,
Vallon et al. 2009) and in Guéguen et al. (2007). Their
primary focus was to constrain the deep structure responsible
for the low-frequency effects; once this objective was met, a
secondary objective was assigned to better understand the
shallow structure controlling the higher-frequency amplifica-
tion and its short-wavelength lateral variations. Because the
ESG 2006 numerical simulations were limited to a 2 Hz max-
imum frequency, only the deep underground structure and
large-scale geometry and topography are presented here.

The first deep investigations consisted in several hun-
dreds of gravimetric measurements that allowed constraining
the geometry of the sediment/bedrock interface and indicat-
ing a large thickness close to 1 km in the deepest part (Vallon,
1999). This information was checked and calibrated through
the drilling of one deep borehole in the Grésivaudan Valley
(the Montbonnot GMB1 site in Fig. 1, now instrumented
with three accelerometers at the surface, GL-42 m, and
GL-550 m), which reached the bedrock at a depth of 535 m,
very close to the expectations from the gravimetric survey.
Above a thin (4 m thick) glacial till, the post-Würm filling
sequence consists in 520 meters of monotonous lacustrine
sandy-silty formations corresponding to the postglacial lake,

and ends with 15 meters of sandy-pebbly alluvium deposited
when the presently working Isère fluviatile regime started
again (Nicoud et al., 2002).

As described by Chapron et al. (2009), Dietrich et al.
(2009) and Ménard, Dietrich, Vallon et al. (2009), the nature
of this postglacial sedimentary infill has also been documen-
ted by a set of seismic reflection profiles acquired both on
land in the Isère Valley and in large valley lakes, such as
the Le Bourget Lake 50 km to the north of Grenoble. All
highlight very thick, rather homogeneous quaternary depos-
its with nonnegligible P- and S-wave velocity gradients. All
these measurements have been complemented by several
hundreds of microtremor measurements processed with the
H/V technique (Guéguen et al., 2007, 2009), which consis-
tently exhibit a low-frequency peak (usually between 0.3 and
0.5 Hz) associated with the thick lacustrine filling, and in
some parts, a second higher frequency peak (ranging from
2 to 5–6 Hz).

In summary, the main conclusions of all these deep
investigations are:

• 20 km of seismic reflection profiles at different cross sec-
tions along the Isère Valley, together with the information
collected in the borehole drilled near Grenoble and reach-
ing the sediment-bedrock, allowed us to calibrate or con-
firm the information provided by gravimetric surveys and
background noise H/V measurements on distribution of the
sediment thickness in the valley.

• The bottom of the valley is marked by an irregular topo-
graphy. The bottom of the Isère Valley shows a great vari-
ety of shapes: flat bottom, wide open V-shape, V-shape
interlocked in a larger U-shaped valley. At some places,
there exist underground substratum highs, such as a hillock
(probably of tithonic age) that could be identified just south
of the Grenoble downtown (see Fig. 2).

• The depth of the substratum increases downstream the
Isère River from about 200 m in the upper Grésivaudan,
500 m in the lower Grésivaudan, and more than 800 m
in the Cluse of Grenoble.

• The seismic velocities are roughly laterally homogeneous
at depths larger than 20–40 m, in line with the filling of the
valley by the postglacial lacustrine deposits.

• The P- and S-wave velocity distributions within the sedi-
ments are characterized by moderate to strong vertical
gradients, with the VP=VS ratio varying between 6 near
the surface and 2.7 at several hundred meters depth.

Given the limitation of our numerical simulation exer-
cise to an upper frequency of 2 Hz, we thus considered a
simple depth-varying sediment velocity model derived from
the deep borehole measurements. The valley model is thus
described by two main components:

• A 3D geometry consisting of a free-surface topography and
a sediment-basement interface.

• Sediment and bedrock velocity models exhibiting only a
1D depth dependence.
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The geometry of the surface topography is shown in
Figure 1, and the underground topography is depicted in
Figure 2. The velocity model is detailed in Table 1. This
model is still distant from the reality, especially for the shal-
low part. It constitutes, however, a good starting model that is
able to reproduce the main features of the low-frequency
response, and it is complex enough to enable a meaningful
comparison between different numerical methods.

The quality factor values were chosen infinite in the un-
derlying bedrock. The bedrock is very stiff and the computa-
tions are performed only for local, shallow sources, so that
crustal damping effects may be thought negligible in a first
step. The quality factor was taken slightly larger than that
actually measured in the Montbonnot borehole (QP � 35,
see Cornou, 2002), but these measurements were obtained
at higher frequencies (several tens of Hertz); higher Q values
are needed to reproduce the observed low-frequency duration
within the valley (Chaljub, 2009).

Selected Earthquakes

Various active tectonic features such as basement thrusts
and strike-slip faults have been described in this part of the
Alps (Thouvenot et al., 2003, 2009). However, the known
history reports only moderate earthquakes with intensities
reaching VIII on the Medvedev, Sponheuer, and Karnik
(MSK) scale, and estimated magnitudes between M 5 and
M 6. The last significant earthquake in the Grenoble immedi-
ate surroundings was an M 5.3 earthquake that occurred in
Corrençon (Vercors, about 30 km to the southwest of Gre-
noble) in 1962, which caused some chimney falls in the city.

The densification of the seismic monitoring networks
undertaken in the late 1980s revealed some clear, previously
unsuspected seismic alignments. In particular, the Belle-
donne Border Fault (BBF) has been identified as the most
active of these new features: it consists of a 50 to 70 km long,
northeast-southwest trending segment, characterized by

Figure 2. Map of sediment thickness in the Grenoble Valley showing 40 receivers (R01 to R40) used in the simulations. Contour lines
every 100 m are shown; the bold black line indicates the points where the sediment thickness equals 50 m. The positions of the point source
W1 and extended source S1 are shown in red. Red boxes indicate particular receivers for which a detailed comparison is shown further in the
article. Receiver R06 corresponds to the GMB1 location in Figure 1.

Table 1
Mechanical Parameters for the Grenoble Valley Model

Unit Thickness Unit Mass (kg=m3) S-Wave Velocity β (m=sec) P-Wave Velocity α (m=sec) Quality Factor QS Quality Factor QP

Sediments Up to 1000 m 2140� 0:125z* 300� 19
p
z 1450� 1:2z 50 37.5 α2=β2

Bedrock 0–3 km 2720 3200 5600 ∞ ∞
3–27 km 2720 3430 5920 ∞ ∞
27–35 km 2920 3810 6600 ∞ ∞
>35 m 3320 4450 8000 ∞ ∞

*z refers to depth expressed in meters.
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many small earthquakes exhibiting a right-lateral strike-slip
motion consistent with an east–west compressive tectonic
environment. Such a segment could therefore easily accom-
modate an M 6 event, with recurrence rates, however, well
beyond the 500- to 1000-year historic period. This fault runs
indeed east of and parallel to the northeast branch of the Y,
with a distance of approximately 5–7 km from the eastern
edge of the Isère–Grésivaudan Valley.

Because several recordings could be obtained at differ-
ent sites from a small magnitude event on this fault near the
village of Lancey in 2003, it was decided to simulate the
ground motion for two earthquakes (Chaljub et al., 2009):

• A real, weak one, called W1, corresponding to this 2003
event. This event had a moment magnitudeM 2.9, and was
assumed to be a point source with a 45° strike angle and a
90° dip angle, located at a 3 km depth. (There is, however, a
significant uncertainty on the depth estimate, which could
be up to 8 km).

• A hypothetical, stronger event (S1), corresponding to an
M 6 event rupturing the Belledonne Border Fault along
a segment centered at the W1 hypocenter. The fault length
and width were assumed to be 9 and 4.5 km, respectively.
A very simple (and, indeed, somewhat pessimistic and
unrealistic) kinematics was assumed. The rupture nucle-
ates at the fault center, propagates circularly with a rupture
velocity equal to 2:8 km=sec, and stops abruptly when
it reaches the boundary of the rectangular fault area. In
addition, the slip distribution is flat (i.e., constant slip over
the whole ruptured area). Such a fault mechanism gener-
ates very strong stopping phases, especially as the rupture
is very shallow: the resulting ground-motion values are
thus unrealistically high, and should be taken with much
caution if applied to hazard estimates. Such a scenario
nevertheless constitutes a good case for a comparison
between different numerical methods, because it includes
very strong pulses with high directivity.

For both cases, the source function was defined as

s�t� � 0:5�1� erf�4�t � 2τ�=τ ��; (1)

where τ is the rise time chosen to provide an average slip
velocity on the fault plane equal to 1 m=sec. It was thus
taken equal to 0.03 sec for the weak event (W1) case, and to
1.16 sec for the strong event case (S1).

The ground motion from each of these events was com-
puted at a series of 40 receivers displayed in Figure 2 (some
of them corresponding to the location of a few seismological
or accelerometric stations that recorded the M 2.9, 2003
Lancey earthquake). Most of these receivers are located at
the surface, but two are located at depth and correspond to
the Montbonnot downhole sensors (receiver R06 corre-
sponds to the GMB1 location in Fig. 1). Receivers R01, R04,
and R33 to R40 are located on rock outcrops, whereas all the
others are located within the valley.

The simulation exercise proposed for the ESG 2006
symposium also included another set of twin events (W2,
S2), located 20 km to the south of Grenoble, corresponding
to a conjugate strike-slip fault with a west-northwest–
east-southeast strike. A more complete description of the
simulation exercise can be found in Chaljub et al. (2009)
and Tsuno et al. (2009). In the present article, however, only
the (W1, S1) set of events is considered.

Fourteen different groups from eight countries contribu-
ted to the ESG 2006 comparison, providing a total of 18
prediction sets; three groups used the empirical Green’s func-
tion technique for the few receivers collocated with strong
motion stations, two used a 1D (horizontal layering) approach
for the borehole site, three modeled the response of a 2D
cross section, and seven addressed the 3D problem, out of
which three could account for the effects of both underground
and surface topography. The numerical schemes used for 3D
contributions belong to the finite-difference, spectral-element
and discontinuous-Galerkin finite-element methods. Four
participants whose 3D predictions were surprisingly close
updated their results after the ESG meeting, after correcting
some nonmethodological errors (evidenced by comparing to
other predictions) in preparation of the numerical simulations.
Only the results from the corrected predictions are considered
here. Further details on all other methods and results can be
found in Tsuno et al. (2009).

Computational Methods

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Although the FDM has been used in seismology since the
late 1960s, its elaboration for the structurally complex media
is certainly far from being completed. Recent elaboration of
the staggered-grid schemes for viscoelastic media with mate-
rial interfaces as well as the development of the optimally
accurate schemes are two examples soundly indicating that
the best times of the finite-difference modeling are still ahead
of us. Because we do not have space here for more details, we
refer to the recent comprehensive review (Moczo, Robertsson,
Eisner, 2007) and monograph (Moczo et al., 2007).

For the numerical simulations we used a 3D fourth-order
velocity-stress finite-difference scheme on an arbitrary dis-
continuous staggered grid. A complete theory can be found
in articles byMoczo et al. (2002, 2004), Kristek et al. (2002),
Kristek and Moczo (2003), and Moczo and Kristek (2005).
Here we restrict our focus to the essential aspects of the
simulation method.

The scheme solves the equation of motion and Hooke’s
law for viscoelastic medium with rheology of the generalized
Maxwell body,

ρ _vi � σij;j �fi; (2)

and
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bulk and shear moduli; Yκ

l and Yμ
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~u�xi; t� displacement vector; t time; ~f�xi; t� body force per
unit volume; σij�xk; t�, εij�xk; t�, i, j, and k∈f1; 2; 3g stress
and strain tensors; ξijl material-independent anelastic func-
tions; and ωl relaxation angular frequencies. Summation con-
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are obtained from
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where α and β are elastic (corresponding to the unrelaxed
moduli) P- and S-wave velocities, and anelastic coefficients
Yα
l and Yβ

l are obtained from the desired/measured quality
factor values
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The schemes for solving the equation of motion and time
derivative of Hooke’s law have the same structure as standard
fourth-order velocity staggered-grid schemes. The accuracy
of our scheme is determined by how we treat smooth material
heterogeneity and material discontinuity. The effective grid
density for a corresponding particle velocity component is
evaluated as an integral volume arithmetic average of density
inside a grid cell centered at the grid position of the corre-
sponding particle velocity component; for example

ρAI;J�1=2;K�1=2 �
1

h3

Z
xI�1=2

xI�1=2

Z
yJ�1

yJ

Z
zK�1

zK

ρdxdydz: (7)

The effective grid, unrelaxed bulk, and shear moduli are
evaluated as integral volume harmonic averages of moduli in
respective grid cells centered at grid positions of the stress-
tensor components; for example

κHI�1=2;J�1=2;K�1=2 �
�
1

h3

Z
xI�1

xI

Z
yJ�1

yJ

Z
zK�1

zK

1

κ
dxdydz

��1
:

(8)

The integrals are evaluated numerically, and the grid cell can
contain a material discontinuity. The anelastic coefficients Yκ

l

and Yμ
l are determined as follows: An average viscoelastic

modulus in the frequency domain is numerically determined

for a cell as an integral harmonic average. A corresponding
quality factor is then determined from the averaged visco-
elastic modulus at specified frequencies. Equation (6) for the
bulk and shear moduli is then used to determine average
anelastic functions. A coarse spatial distribution of the anelas-
tic functions is applied in order to reduce the memory
requirements.

The free surface is simulated using the AFDA technique
(Kristek et al., 2002; Moczo et al., 2004).

If the near-surface sedimentary body with lower seismic
wavevelocities is covered by a fine spatial grid and underlying
stiffer bedrock with larger velocities is covered by a coarser
spatial grid, the number of grid points and, consequently, the
computer memory and time requirements are significantly
reduced compared with the uniform grid. In order to make
such a combined (or discontinuous) spatial grid efficient,
the ratio of the size of the spatial grid spacing in the coarser
grid and that in the finer grid should correspond to the ratio of
the shear-wave velocities in the stiffer bedrock and softer
sediments. Therefore, Kristek et al. (2009) and Moczo et al.
(2007) developed an algorithm that enables us to adjust a dis-
continuous spatial grid accordingly except that, due to the
structure of the staggered grid, the ratio of the spatial grid spa-
cings in the coarser and finer grids has to be an odd number. In
other words, depending on the model of medium, we can
choose a1∶1 (uniform) grid, or 1∶3; 1∶5;… discontinuous grid.
The grid is illustrated in Figure 3. A Fortran 95 computer code
3DFD_VS has been developed for performing the finite-
difference scheme. PML absorbing boundary conditions
are implemented. The code is MPI parallelized (see the Data
and Resources section for details).

3D Spectral-Element Method

The spectral-element method (SEM) has been introduced
quite recently for seismological applications (Seriani and
Priolo, 1991, 1994; Faccioli et al., 1997; Komatitsch and Vi-
lotte, 1998). The SEM is a special kind of the finite-element
method (FEM) that relies on the use of a high-order spectral
polynomial basis. Like the FEM, the SEM can naturally han-
dle media with complex geometries, including surface topo-
graphy and nonplanar interfaces, and it allows local mesh
refinement to account for variations in seismic wavelengths.
Moreover, compared with the traditional low-order FEM,
the high-order spectral basis yields very accurate results by
minimizing numerical dispersion and numerical anisotropy
(Seriani and Oliveira, 2007; de Basabe and Sen, 2007). In
practice, polynomial orders N � 4 to N � 8 are used and
provide sufficiently accurate results for both body and sur-
face waves, as soon as 5 to 6 points are used to sample the
seismic wavelengths.

In the classical SEM, as in the two implementations
presented hereafter, the choice of the element shapes, poly-
nomial basis, and numerical integration rule relies on tensor-
ization, that is, on separation of variables. The advantage is
the possibility to increase significantly the computational
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Figure 3. Avertical grid plane in the arbitrary discontinuous spatial staggered grid in the case of the coarser-to-finer spatial grid spacing
equal to 3. The interior grid positions of the finer grid: green, 4th-order FD scheme; blue, 2nd-order FD scheme; yellow, bicubic interpolation.
The interior grid positions of the coarser grid: red, 4th-order FD scheme. The red-circumscribed green positions define the boundary of the
coarser grid.
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efficiency by (1) leading to a diagonal mass matrix, allowing
fully explicit schemes to be used for time evolution; and
(2) decreasing the computational cost of the internal forces.
The drawback is the restriction of the geometry of spectral
elements to quadrangles in 2D and to hexahedra in 3D. Recall
indeed that in order to account properly for discontinuities in
elastic parameters, the spectral elements must not intersect
the physical interfaces. This condition is not always easy
to account for in a hexahedra-based SEM, for example, near
valley or basin edges. Extensions of the SEM to 2D meshes of
triangular elements have been proposed recently at the price
of either losing the diagonal character of the mass matrix
(Mercerat et al., 2005) or decreasing the spectral accuracy
(Komatitsch et al., 2001).

Review papers presenting the numerous developments
of the SEM for global or regional seismology applications
can be found in Komatitsch et al. (2005) and Chaljub et al.
(2007). Here, we briefly recall the key features of the SEM
discretization.

Through the principle of virtual work, the dynamic
equilibrium problem for the medium Ω can be stated in the
following weak or variational form: find u � u�x; t�, displa-
cement vector, such that ∀t∈�0; T�

∂2

∂t2
Z
Ω
ρu · vdΩ�

Z
Ω
σij�u�εij�v�dΩ

�
Z
ΓN

t · vdΓ�
Z
Ω
f · vdΩ;

i; j � 1…d for all v; (9)

where t is time, ρ � ρ�x� the material density, σij the stress-
tensor, εij the infinitesimal strain tensor, f � f �x; t� the
known body force distribution, t � t�x; t� the vector of
external traction prescribed onΓN , and v � v�x� is the generic
function (candidate to represent admissible displacements).
Note that the free-surface condition is obtained implicitly,
or naturally, in the weak formulation. The stress and strain
tensors in (9) are related to the displacement by Hooke’s
law (3).

An appropriate numerical solution of (9) can be
achieved through discretization in the space and time
domain. Herein, the latter is done via finite differences; the
best trade-off in terms of accuracy, stability, and computa-
tional complexity is obtained using the explicit second-
order leapfrog scheme (LF2-LF2) (Maggio and Quarteroni,
1994) that must satisfy the well-known Courant-Friedrichs-
Lewy (CFL) stability condition.

The spatial discretization is based upon the Galerkin
approximation to equation (9). It starts with a decomposition
of the computational domain Ω into a family of nonover-
lapping, unstructured quadrilaterals Ωk (or hexahedra in 3D).
Each element Ωk is obtained by a regular mapping of a ref-
erence element Ωref (the unit square ��1;�1�2 in 2D and the
unit cube ��1;�1�3 in 3D). Then, admissible displacements
are approximated by polynomials of degree N on each
element. This writes formally

XK
k�1

∂2

∂t2
Z
Ωk

ρu�i�N · v�i�dΩ�
XK
k�1

Z
Ωk

σlm�u�i�N �εlm�v�i�N �dΩ

�
XK
k�1

Z
Γ�k�
N

t�i�v�i�dΓN �
XK
k�1

Z
Ωk

f�i�v�i�dΩ; (10)

where uN and vN denote the approximations of u and v, and
u�i�N , v�i�N , t�i�N , f�i� the scalar components of the vectors uN , vN ,
t and f . Note that equation (10) implicitly assumes that the
displacements are globally continuous, but the material prop-
erties can be discontinuous across elements.

The integrals in (10) are evaluated numerically by a
high-order quadrature formula based on the Gauss-Lobatto-
Legendre (GLL) points (Davis and Rabinowitz, 1984; Canuto
et al., 1988). The polynomials used to approximate the dis-
placements are then defined as the shape functions of the
GLL points. Thanks to this particular choice, the SEM inherits
the exponential accuracy of spectral methods in space: for
problems with sufficiently smooth exact solution u, the
numerical solution uN obtained in the SEM converges more
rapidly than those based upon the classical FEM. This prop-
erty is known as spectral accuracy in the literature, and the
convergence of the spectral methods is referred to as expo-
nential or geometrical, as opposed to the algebraic conver-
gence of the classical FEM. Note that this does not hold
for the numerical realization of the free-surface condition:
the convergence of numerical traction toward the prescribed
traction is only algebraical (Deville et al., 2002). For the
wave propagation applications, the numerical accuracy is
more properly assessed by the analysis of numerical disper-
sion, which has been shown recently to be optimal for the
SEM (Seriani and Oliveira, 2007; de Basabe and Sen, 2007).

Assembling the elementary contributions to account for
the continuity of displacements, equation (10) can be written
as a global system of ordinary differential equations in time,

�M� �U�t� � �K�U�t� � F�t� � T�t�; (11)

where vectors F and T stem from the contributions of
the external forces and applied tractions, U stores the displa-
cement values uN�x; t� at the GLL nodes, and �M� and �K�
denote the mass and the stiffness matrices, respectively. An
important consequence of the choice of the polynomial basis
is that the mass matrix is diagonal, which, as stated pre-
viously, allows for the use of fully explicit finite-difference
schemes for the time evolution.

In the following we will present two different implemen-
tations of the SEM. In the first SEM-based code, hereafter
referred to as SEM1, viscoelasticity is accounted for using
a superposition of the standard linear solids (SLS; Liu et al.,
1976), which are implemented via memory variables (see
Chaljub et al., 2007, and references therein). Note that a
parallel superposition of the SLS is also called the general-
ized Zener body. Also note that the rheology of the general-
ized Zener body is equivalent to that of the generalized
Maxwell body as shown byMoczo and Kristek (2005). Thus,
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the rheology in the SEM1 is equivalent to that implemented in
the FD and ADER-DGMmethods described in the article. The
Lysmer and Kuhlemeyer (1969) absorbing boundary condi-
tions are applied. (See the Data and Resources section for
details on the SEM1 software package.)

In the second implementation, hereafter referred to as
SEM2, the viscoelastic behavior is implemented with a fre-
quency linear dependent quality factor, implying that all
frequency components are equally attenuated (Faccioli et al.,
1997). Kosloff and Kosloff (1986) showed that this can be
easily obtained by replacing the inertia term into the wave
equation with an ad hoc expression. The absorbing bound-
aries are implemented following Stacey’s (1988) first-order
P3 paraxial conditions. A more detailed description of the
software package adopted for the SEM2 simulation can be
found in Stupazzini et al. (2009) (also see the Data and Re-
sources section for details on the SEM2 software).

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER-Time Integration of Unstructured
Tetrahedral Meshes

The proposed numerical method combines a dis-
continuous Galerkin (DG) finite-element scheme with a
time-integration technique using Arbitrarily high-order
DERivatives (ADER) in order to solve the governing PDEwith
arbitrarily high approximation order in time and space. The
system of the 3D seismic wave equations formulated in
velocity-stress leads to a hyperbolic system of the form

∂Qp

∂t � Apq

∂Qq

∂ξ � Bpq

∂Qq

∂η � Cpq

∂Qq

∂ζ � EpqQq� Sp;

(12)

where the vector Q of unknowns contains the six stress and
the three velocity components. The Jacobian matrices A, B,
and C include the material values and can include aniso-
tropic, viscoelastic, or poroelastic material properties as
explained in detail in Dumbser and Käser (2006), Käser et al.
(2007), de la Puente et al. (2007) and (2008). The viscoelastic
medium and the attenuation is defined by rheology of the
GMB-EK, the same as described in the section on the
finite-difference method. Furthermore, the reactive source
term E is necessary, if viscoelastic attenuation is considered,
and S is an external source term accommodating force of mo-
ment tensor sources. In the discontinuous Galerkin approach,
the solution is approximated inside each tetrahedral element
by a linear combination of space-dependent polynomial
basis functions and time-dependent degrees of freedom as
expressed through

�Qh�p�ξ; η; ζ; t� � Q̂pl�t�Φl�ξ; η; ζ�; (13)

where the basis functions Φl form an orthogonal modal basis
and are defined on the canonical reference tetrahedron. Note
that there are no integration points necessary, because the

basis is a modal basis and not a nodal basis as typically used
in the SEM.

As the fully detailed derivation of the numerical scheme
would go beyond the scope of this article, we refer to the
previous work of Käser and Dumbser (2006) and Dumbser
and Käser (2006) for a detailed mathematical formulation of
the discontinuous Galerkin method. The unique property of
the ADER-DGM scheme is, that the time accuracy of the
scheme is automatically coupled to the space accuracy deter-
mined by the degree of approximation polynomials used in
equation (13). This is due to the ADER time-integration
approach (Titarev and Toro, 2002), where the fundamental
idea is to expand the solution of equation (12) via a Taylor
series in time

Qp�ξ; η; ζ; t� �
XN
k�0

tk

k!

∂k

∂tk Qp�ξ; η; ζ; 0�; (14)

where we then replace all time derivatives in equation (14) by
space derivatives using the governing PDE in equation (12).
It can be shown that the k-th time derivative can be expressed
recursively as

∂k

∂tk Qp � ��1�k
�
Apq

∂
∂ξ � Bpq

∂
∂η� Cpq

∂
∂ζ

�
k

Qq

� Epq

∂k�1

∂tk�1 Qp �
∂k�1

∂tk�1 Sp: (15)

Using equations (13) and (15) in (14), the Taylor series
expansion only depends on space derivatives of the basis
functions Φl and lower order time derivatives of the source
terms. The resulting expression for the degrees of freedom
can be integrated in time analytically as shown in detail
by Dumbser and Käser (2006) or Käser et al. (2007).
Therefore, this new approach, termed ADER-DG method,
provides arbitrarily high-order approximation in space and
time depends on the degree of the used basis polynomials
Φl in equation (13) and the corresponding order of the time
Taylor series chosen in equation (14).

Once the high-order time-integrated degrees of freedom
are computed, the evolution of the numerical solution in time
is calculated via local stiffness and flux terms (Dumbser and
Käser, 2006). Especially, the flux computations contribute as
the major part with more than 80% to the overall computa-
tional cost. A numerical flux out of the element and a numer-
ical flux into the element have to be calculated for each
element boundary, that is, triangular surface, for each tetra-
hedral element. Each flux computation requires a multiplica-
tion of two matrices F and Q of the sizes:

size of F: (number of degrees of freedom) × (number of
degrees of freedom) and

size of Q: (number of degrees of freedom) × (number of
variables in the system).

The stiffness terms, however, are relatively cheap as
only one matrix-matrix-multiplication of the same computa-
tional complexity has to be carried out. Nevertheless, all
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operations use only local data, that is, data from the element
itself and its direct neighbor sharing a common element
boundary. Due to this local character of the numerical
scheme, a number of different optimization approaches have
been developed (Dumbser et al., 2007) to enhance computa-
tional efficiency, in particular for parallel computing.

pτ -Adaptation. In most applications, the computational
domain is larger than a particular zone of interest. Therefore,
a large number of elements is needed to discretize the entire
geometry of the model. However, high-order accuracy might
only be required in a relatively small portion of the computa-
tional domain, which makes it desirable to choose the accu-
racy adaptively in space. With the ADER-DG approach, it is
possible to vary the degree p of the approximation polyno-
mials Φl in equation (13) from one element to the other. Due
to the direct coupling of the time and space accuracy via the
ADER approach, the scheme automatically becomes adaptive
in time accuracy, which is referred to as pτ -adaptation.

Local Timestepping. Geometrically complex computa-
tional domains or spatial resolution requirements often lead
to meshes with small or possibly degenerate elements. The
timestep for explicit numerical schemes is determined by
the ratio of the mesh size h of the smallest element and the
corresponding maximum wave speed in this element. For
global timestepping schemes, all elements are updated with
this extremely restrictive timestep length, leading to a large
amount of iterations. With the ADER approach, time accurate
local timestepping can be used, so that each element is
updated by its own, optimal timestep. An element can be
updated to the next time level if its actual time level and
its local timestep Δt fulfill the condition with respect to all
neighboring tetrahedrons n,

t�Δt ≤ min�tn �Δtn�: (16)

Information exchange between elements across interfaces
appears when numerical fluxes are calculated. These fluxes
depend on the length of the local time interval over which a
flux is integrated and the corresponding element is evolved in
time. Therefore, when the update criterion (16) is fulfilled for
an element, the flux between the element itself and its neigh-
bor n has to be computed over the local time interval:

τn � �max�t; tn�;min�t�Δt; tn �Δtn��: (17)

This can reduce the overall amount of flux calculations
dramatically because only the small elements have to be up-
dated frequently according to their small timestep lengths. A
full description of the pτ -adaptation and local timestepping
of the ADER-DG scheme is given by Dumbser et al. (2007).

Grouped Mesh Partitioning. For large-scale applications
it is essential to design a parallel code for supercomputing
facilities, where load balancing is an important issue.

However, if pτ -adaptivity and especially local timestepping
are applied, the partitioning is sophisticated because a sub-
domain can have different polynomial orders and timestep
lengths. We split the computational domain into zones that
usually contain geometrical or geological entities that are
meshed individually. Then, each of these zones is partitioned
separately into subdomains of equal numbers of elements,
which now include tetrahedral elements with roughly the
same sizes and orders of accuracy. Finally, each processor
receives a subdomain from each zone and therefore gets a
similar computational load. In Figure 4a we show a partition
of the full tetrahedral mesh used for the Grenoble model,
where each subdomain is color-coded. In Figure 4b we show
the grouped partitioning used to improve load balance.

Figure 4. (a) Partitioning of an unstructured tetrahedral discre-
tization of the Grenoble model. (b) Separate subdomains that con-
tain a balanced number of small and large tetrahedrons from
different zones are given to each processor, as indicated by the same
color, to optimize the load balance.
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Comparison of Computational Aspects in Modeling
Earthquake Motion in Grenoble Basin

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Space-Time Grid. The computational domain is a rectan-
gular parallelepiped covered by a discontinuous staggered
grid. The upper part of the model with a sedimentary body,
1125 m thick, is covered by a finer grid with a grid spacing of
25 m. The finer grid is made of 1321 × 1431 × 45 grid cells.
The lower part of the model, covering a major part of the
bedrock, 8125 m thick, is covered by a coarser grid with
a grid spacing of 125 m. The coarser grid is made of 265 ×
287 × 65 grid cells. The coarser grid is overlapping 187.5 m
of the finer grid. The 1∶5 discontinuous spatial grid means
87% reduction in the total number of grid cells compared to
the uniform grid with a grid spacing of 25 m (approximately
90 mil. of grid cells in the discontinuous grid instead of
700 mil. of grid cells in the uniform grid). Fifty and ten grid
spacings are grid thicknesses of the PML boundary regions in
the finer and coarser grids, respectively. The timestep is
0.0022 sec. The used spatial grid means that the simulation
should be sufficiently accurate up to 2.5 Hz.

Material Heterogeneity and Attenuation. The true model
geometry of the material interfaces as well as the smooth
material heterogeneity inside the sedimentary body are
accounted for in the evaluation of the effective material elas-
tic and anelastic grid parameters grid using relations (5)–(8)
and the approach described therein. We can note that the
scheme using the integral volume harmonic averages of
the moduli and integral volume arithmetic average of density,
evaluated for each cell centered at a relevant grid position, is
capable to sense the true position of the material interfaces
within the cell.

The constant Q�ω� law is simulated using the rheology
of the generalized Maxwell body. The so-called coarse grid
graining is applied in the spatial discretization of the anelas-
tic coefficients and functions. The Q values are specified at

four frequencies: 0:07 Hz, 0.225 Hz, 0.71 Hz, and 2.25 Hz.
This should accurately cover the frequency range of 0.04 to
4 Hz. The P- and S-wave velocities are specified at a fre-
quency of 1 Hz.

Treatment of the Kinematic Source. The finite kinematic
model of the rupturing surface is simulated using 1836 reg-
ularly distributed point double-couple sources over a fault
area 9 km × 4:5 km for the S1 event. Each point source is
simulated using a discrete system of body forces acting at
the grid positions centered at the grid position of the normal
stress-tensor component. All point sources have the same
focal parameters and source-time functions. The action of
the individual point sources in time is prescribed and corre-
sponds to the specified rupture velocity.

Accuracy versus Efficiency. All simulations were per-
formed on a small cluster of the Opteron 2.2 machines (6
CPUs, 10 GB RAM in total). The computational parameters
are given in Table 2.

3D Spectral-Element Method: The
SEM1 Implementation

Model Geometry and Mesh Generation. In the first imple-
mentation of the SEM, SEM1, a simple meshing strategy, as
proposed by Komatitsch et al. (2004), is adopted. The topol-
ogy of the mesh is that of a layer-cake model in which the
interfaces are deformed to follow, as much as possible, the
physical interfaces. This strategy has the advantage of being
easy to implement, but it also has some drawbacks. First,
the size of the elements does not vary horizontally, which
prevents the use of very large models as the ones that
would be needed to propagate the seismic wave field from
a distant earthquake to the Grenoble Valley. For the Grenoble
simulation, which considers only local sources, this point is
not critical; it has the nice consequence of providing a more
accurate discretization of the free-surface topography, which
is rather stiff in the Grenoble area (see Fig. 5). Second, the
sediment-bedrock interface is not accounted for at depths
shallower than about 350 m (see Fig. 6). The velocity

Table 2
Comparison of the Computational Parameters

Test Case
Number of Grid
Cells or Elements

Order in
Space/Time Timestep

Number of Central
Processing Units

Central Processing
Unit Time Memory

DSG Velocity-Stress FD

W1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB
S1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB

SEM1

W1 Flat 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB
S1 Topography 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB

SEM2

S1 Topography 216,972 3=2 0.0003 sec 63 ∼10 hr ∼18 GB
ADER-DG

W1, S1 Flat 870,613 5=5 0.0001 sec 510 ∼32 hr ∼50 GB
S1 Topography 1,259,721 5=5 0.0001 sec 510 ∼48 hr ∼70 GB

1438 E. Chaljub, P. Moczo, S. Tsuno, P.-Y. Bard, J. Kristek, M. Käser, M. Stupazzini, and M. Kristekova



contrasts near the valley edges are thus approximated by con-
tinuous variations using the polynomial basis within each
spectral element. Although not quantified, the error due to
this approximation is not expected to be too large because
the size of the near-surface elements close to the valley edges
is that of the smallest wavelength in the simulation (that is,
about 150 m for a 2 Hz calculation). The mesh is coarsened
with depth using the conforming strategy proposed by
Komatitsch et al. (2004) as shown in Figure 6. We use a
polynomial order N � 4 within each element. For calcula-
tions accurate for frequencies up to 2 Hz, the mesh contains
332,160 elements and 22,062,624 grid points.

Material Heterogeneity and Attenuation. For the attenua-
tion model provided in the ESG exercise, the generalized
Zener body with three relaxation mechanisms was used in
order to mimic a constant shear quality factor in the sedi-
ments within the frequency band (0.2 Hz–10 Hz). The refer-
ence frequency, which was not imposed, is chosen to be the
fundamental frequency of the Grenoble Valley, f0 � 0:3 Hz.
Time extrapolation was handled by a second-order explicit
Newmark finite-difference scheme, with an additional
Runge-Kutta scheme being used to march in time the mem-
ory variables needed to model viscoelasticity (see details in
Komatitsch and Tromp, 1999).

Treatment of the Kinematic Source. To model the strong
motion case S1, we considered a set of 1250 point sources
regularly distributed on the prescribed fault plane. Each point
source was assigned a moment magnitude M 2:9 and an
onset time consistent with the imposed rupture kinematics.

Accuracy versus Efficiency. All simulations were per-
formedon a cluster of 42 SUN-V40Znodes equippedwith four
AMD-Opteron 2.6 GHz processors, each having 8 GB RAM.
The computational parameters are summarized in Table 2.

3D Spectral-Element Method: The
SEM2 Implementation

Model Geometry and Mesh Generation. In the second
implementation of the SEM, SEM2, the meshing strategy
adopted aims at accounting for true positions of material
interfaces. This task was successfully solved thanks to the
software CUBIT, which incorporates a set of powerful and
advanced meshing schemes specifically developed to handle
the hexahedral unstructured meshing problem (see the Data
and Resources section for details). A thorough description of
the meshing strategy adopted to strictly account for the geo-
metry of the Grenoble Valley can be found in Stupazzini
(2009). The final mesh is depicted in Figure 7 and consists
of 216,972 elements, the size of which ranges from a mini-
mum of about 20 m (inside the alluvial valley) up to 900 m.
The mesh is designed to propagate frequencies up to 2 Hz
with N � 3 (5,659,551 nodes) and up to around 3 Hz with
N � 4 (13,300,892). A detailed zoom of a portion of the
computational domain is presented in Figure 8, showing
the strategy adopted to account for the discontinuity between
the soft soil and bedrock. The computational domain is sub-
divided into small chunks; each of them is sequentially
meshed starting from the alluvial basin down to the bedrock.

Material Heterogeneity and Attenuation. Inside the alluvial
deposit the smooth vertical variation is taken into
account assigning at each GLL point the mechanical prop-
erties evaluated according to the prescribed depth variation.
The layer stratification is considered in the bedrock. The
discontinuity between the soft soil and bedrock is strictly
accounted for as previously mentioned. With respect to the
constant quality factor model, frequencies smaller than 0.5 Hz
will be overdamped, whereas higher frequencies will be
enhanced in the alluvial deposits.

Figure 5. Surface view of the mesh of 192 × 160 elements used
in the SEM1 calculations. The colors indicate surface elevation.
The mesh contains 192 × 160 elements for 2 Hz calculations.
The length of the elements does not vary horizontally and is kept
smaller than 150 m. Each surface element contains 125 gridpoints
(not shown here).

Figure 6. View of the 3D mesh of elements used in the SEM1
calculations. Golden colors indicate elements that are entirely with-
in the bedrock, whereas blue colors stand for elements that intersect
the sediments. The bedrock-sediment interface is not accounted for
at depths shallower than 350 m, in particular for elements close to
valley edges. The mesh is coarsened with depth following a simple
conforming strategy proposed in (Komatitsch et al., 2004).
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Treatment of the Kinematic Source. The seismic source is
introduced through an appropriate distribution of the seismic
moment tensor density (Aki and Richards, 2002). To model
the strong motion case S1, we considered a set of 750 point
sources regularly distributed on the prescribed fault plane.

Accuracy versus Efficiency. The simulations were per-
formed on AMD Opteron 250 (64 bit single core 2.4 GHz)
with 2 GB RAM and 1000T Ethernet (Oeser et al., 2006).
The computational parameters are summarized in Table 2.

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER Time Integration of Unstructured
Tetrahedral Meshes

Model Geometry and Mesh Generation. The ADER-DG
method uses a tetrahedral mesh that accounts for the given
geometry of the internal and external boundaries. Both the
digital elevation model of the topography and the interface
between the basin structure and the bedrock are provided
on a regular grid with x-, y-, and z-coordinates, which is
imported into a CAD tool to construct parameterized surfaces.

These surfaces are then triangulated with an appropriate mesh
size, and finally the volumes between the surfaces are filled
with tetrahedral elements. Hereby the tetrahedral elements
are conformingly connected to the surface triangulations.
Furthermore, variable element sizes are chosen in order to
account for the variable seismic velocity structure. Therefore,
the edge lengths of the tetrahedral elements vary between
200 m inside the basin up to 5000 m at the bottom of the
model, smoothly growing with increasing distance from
the basin. Within the whole basin structure the mesh size
increases vertically up to 500 m at the bottom of the basin.

In order to capture the topography sufficiently accu-
rately the lateral growths factor along the free surface is
chosen to result in a maximum edge length of 1000 m at
the top lateral boundaries.

Material Heterogeneity and Attenuation. The smooth ver-
tical heterogeneities inside the basin and in the surrounding
bedrock are approximated in the ADER-DG approach by
piecewise constant material; that is, the material parameters
are evaluated at the barycenter of a tetrahedral element and
are then assumed to be constant within the volume covered
by the element. Similarly, theQ-factor for the viscoelastic ma-
terial properties inside the basin is evaluated at the barycenter.
The given wave velocities at that position are then assumed to
be given for a central frequency of 1 Hz within the absorption
band from 0.1 to 10 Hz. The frequency-independent constant
Q-law is approximated with three relaxation mechanisms
defined by a generalized Maxwell body.

Treatment of the Kinematic Source. The ADER-DG
method treats the source term in both cases (W1 and S1) as
a kinematic seismic source. Whereas the W1 case uses a
single, double-couple point source with given location and
source parameters, the S1 source is represented by 5000
aligned slip patches of a dimension of 90 m × 90 m to cover
the specified 9 km × 4:5 km fault surface. Each slip patch is
treated as a point source with the same parameters (strike,
dip, rake) and the same shape of the source time function
and possess different onset times as derived from the given
rupture velocity. Therefore, the resulting seismic wave field
is generated as a superposition of all individual slip patches.

Accuracy versus Efficiency. The simulations were per-
formed on Intel Itanium2Madison processors 1.6 GHz, 4 GB
RAM per node. The computational parameters are summa-
rized in Table 2.

Comparison of Numerical Predictions

Outline of the Comparison Method

Comparing numerical predictions of ground motion in a
realistic 3D application is not straightforward because no
reference solution is available, and each prediction may
come with its own errors, either intrinsic (due to the limita-

Figure 8. In order to account for the discontinuity between soft
soil and bedrock the computational domain is subdivided into small
chunks, each of them is sequentially meshed starting from the
alluvial basin down to the bedrock.

Figure 7. Three-dimensional view of the mesh used in the
SEM2 calculations. The mesh contains 216,972 elements, ranging
from 20 m (inside the alluvial basin) up to 900 m; for 2 Hz calcula-
tions N � 3 is sufficient. Different colors refer to different mechan-
ical properties.
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tions of the numerical method used) or case-dependent (due
to implementation and human errors). While it can be as-
sumed that intrinsic errors can be identified by a proper
knowledge of the numerical method being used, implemen-
tation errors need more user experience and often a complex
iterative process to be tracked and hopefully minimized.

Here we present the results of such comparison process
for the Grenoble Valley between four implementations of the
numerical techniques presented before: DGM based on the
discontinuous Galerkin method, FDM based on the finite-
difference method, and SEM1 and SEM2, two implementa-
tions of the spectral-element method. We carefully checked
that the presented numerical predictions are not affected by
technical mistakes in individual implementations and simu-
lations.

We compare the ground-motion predictions for the weak
and strong motion cases W1-FLAT and S1-FLAT, respec-
tively. The comparison includes a visual inspection of
ground acceleration at selected receivers and global maps
of peak ground velocity, as well as a quantitative analysis
based on two different measures introduced recently: the
goodness-of-fit score proposed by Anderson (2004), which
consists of an average of ground-motion indicators of com-
mon use in engineering seismology, and the misfit measure
proposed by Kristekova et al. (2006), which is based on the
time-frequency representation of the seismograms.

Finally, we present the results obtained for the strong
motion case S1-TOPO and compare the different predictions
of the effects of surface topography.

Peak Velocities

Figure 9 shows the global maps of PGV (i.e., the peak
values of the norm of the ground velocity vector) computed
for the strong case motion case S1-FLAT by the four codes:
DGM, FDM, SEM1, and SEM2.

Note the high level of ground motion for thisM 6 event,
especially in the eastern part of the valley. Lower values
would be obtained by choosing a more physical source kine-
matics (instead of the Haskell model considered here, which
produces a very strong directivity effect on the S wave) and
depth (the top of the fault for the S1 event is located only
750 m below sea level, or about 1.5 km below surface).
All maps show little correlation with the sediment thickness,
except near the receiver R21, where the low values of ground
velocity are consistent with the presence of steep bedrock
uplift (see Fig. 2). The strongest amplitudes occur in the
southeast part of the valley, with peak velocities exceeding
1:5 m=sec. These localized high values are caused by late
interferences of surface waves diffracted off the eastern edge
of the valley with surface waves backscattered off the bed-
rock uplift.

The PGVmaps computed by the four codes look remark-
ably similar. Subtle differences can be seen, for example, in
the source region where the patterns differ slightly. This
could indicate small differences in the implementations of

the extended source. Also, the level of the peak values
displayed by the FDM code seems systematically larger than
that of the other predictions. However, given the intrinsic
difficulty of comparing peak values, the level of agreement
shown in Figure 9 is found to be satisfactory.

Quantitative Comparison

Similarity Score and Misfit Measure. The issue of assess-
ing the reliability of numerical predictions of ground motion
has received renewed interest in recent years with the intro-
duction of new tools to quantify the fit, either between syn-
thetics and observations or between numerical predictions.

Anderson (2004) proposed a measure of the goodness-
of-fit between two seismograms that is based on the compar-
ison of 10 criteria that are commonly used in engineering
applications: Arias duration (criterion1, or C1), energy dura-
tion (C2), Arias integral (C3), energy integral (C4), peak
acceleration (C5), peak velocity (C6), peak displacement
(C7), response spectrum (C8), Fourier spectrum (C9), and
cross correlation (C10). These criteria are evaluated in
narrow frequency bands and scaled between 0 and 10. A
global average (between individual criteria and different
frequency bands) is then applied to end up with one number,
the so-called similarity score. Based on the systematic com-
parison of the horizontal components of recorded motions,
Anderson (2004) introduced the following verbal scale for
goodness-of-fit: a score below 4 is a poor fit, between 4
and 6 is a fair fit, between 6 and 8 is a good fit, and beyond
8 is an excellent fit.

Figure 10 shows an example of calculation of the simi-
larity between the predictions of the north–south ground
acceleration at the borehole receiver R06 for the S1-FLAT
case. Solution SEM1-FLAT is used as a reference for all mea-
surements, and only one frequency band, 0.1,2 Hz, is
considered. Figure 10 confirms the impression of good fit
from visual inspection of seismograms. It also shows that
the differences between predictions obtained by different
codes are smaller than the difference between predictions
obtained by the same code with and without including the
effect of surface topography (SEM1-FLAT and SEM1-TOPO).

Kristekova et al. (2006) proposed a measure of the misfit
between two seismograms,which relies on the time-frequency
representations of the signals. Their time-frequency misfit
measure (hereafter referred to as TF misfit measure or simply
TF misfit) allows separating amplitude (envelope) and phase
differences both in the time and frequency domains.

Figure 11 shows an example of application of the TF
misfit to the predictions of north–south ground acceleration
at R06 for the S1-FLAT case by the FDM and SEM1 codes.
The figure shows the time-frequency envelope (amplitude)
and phase misfits, respectively, denoted by TFEM and TFPM.
An average of the absolute values of TFEM and TFPM over
time and frequency results in single-valued estimations of the
envelope (EM) and of the phase (PM) misfits. A single,
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global score (denoted by EPM) is finally obtained by aver-
aging EM and PM.

Application to the S1-FLAT and W1-FLAT Cases. We
computed both the similarity score and the TF misfit for
all 40 receivers and all predictions, taking the SEM1 result
as a reference. We chose to use a single reference to alleviate
the task of computing the misfits for each pair of predictions.
Our analysis was performed for a time window 0,20.48 sec
(2048 samples with timestep Δt � 0:01 sec) for each
component of ground acceleration.

The correspondence between the similarity score and the
TF misfit is summarized in Figure 12. Each dot represents a
pair of measures evaluated at a single receiver, on a single
component of ground acceleration for one of the cases
S1-FLAT, S1-TOPO, or W1-FLAT. The figure shows a linear
trend between the results of the two measures, which is

particularly accurate for well-matching predictions. The level
of the excellent fit, defined by Anderson (2004) as the simi-
larity score above 8, corresponds to a TF misfit level below
0.4. The equation of the linear regression writes
�10-S� � 5M, where S and M stand for the similarity score
and TF misfit, respectively. Based on this equivalence, we
will hereafter represent the results of the comparison of nu-
merical predictions using the sole TF misfit measure.

We found no significant dependence of the TF misfit on
the ground-motion component considered: the mean differ-
ence (averaged over the 40 receivers) between different
single-component TF misfits does not exceed 0.04 (or 0.2
in terms of the similarity scores). We will therefore use a
unique misfit value at each receiver, referred to as the total
misfit, and defined as the arithmetic mean of the three indi-
vidual TF misfits computed for the X, Y, and Z components.

Figure 9. PGV maps obtained by the four codes (a) DGM, (b) FDM, (c) SEM1, (d) SEM2 for the strong motion case S1 without surface
topography (S1-FLAT). Receiver locations are indicated by the triangles. The X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map and the bold straight line shows the surface
projection of the fault for the S1 event.

1442 E. Chaljub, P. Moczo, S. Tsuno, P.-Y. Bard, J. Kristek, M. Käser, M. Stupazzini, and M. Kristekova



Figure 13 shows the TF misfits between the different
predictions of the S1-FLAT and W1-FLAT cases computed at
the 40 receivers in the frequency band 0.1–2 Hz. Each dot
corresponds to the total TF misfit averaged over the three
components of ground acceleration.

For the S1-FLAT case, the misfit between the different
predictions is almost everywhere lower than 0.4, which cor-
responds to the level of the excellent fit defined by Anderson
(2004). Note the high similarity between the predictions of
the FDM and SEM1 codes, despite the systematic amplitude
shift observed in Figure 9. This illustrates the importance of

Figure 11. Example of application of the TF misfit analysis to
the predictions of the NS ground acceleration at receiver R06 for the
S1-FLAT case. (a),(c) Panels show the time-frequency envelope
(TFEM) and phase (TFPM) misfits, respectively, taking the
SEM1 prediction as a reference. (b) Time series of acceleration
predicted by codes FDM (red) and SEM1 (black) are shown.
Single-valued envelope (EM) and phase (PM) misfits are obtained
by averaging the absolute values of TFEM and TFPM over time and
frequency. The total TF misfit is obtained by averaging the envelope
and phase misfits EM and PM.
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Figure 12. Comparison of results obtained with the TF misfit
(M) plotted against those using the similarity score (S). Both mea-
sures have been applied to the 3 components of the 40 receivers for
the benchmark cases S1-FLAT, S1-TOPO, and W1-FLAT. A global
linear trend (red line) with equation (10-S � 5M) is found.

-0.70
0.00
0.70
1.40 SEM1TOPO

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 D G M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 F D M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 S E M 2    

R 0 6 - N   

O

6 12 18 24 30

Time (s)Dec 31 (365), 1969 23:59:59.442

-0.70
0.00
0.70
1.40 S E M 1    

R 0 6 - N   

O

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Anderson criteria

77

88

99

10 10

Sc
or

e

DGM
FDM
SEM2
SEM1-TOPO

R06 NS component
Reference: SEM1-FLAT

(a) (b)

Figure 10. (a) Time series of the NS ground acceleration computed at receiver R06 by 4 different codes for the strong motion case
S1-FLAT: DGM (green), FDM (red), SEM1 (black), and SEM2 (blue). The topmost trace (orange curve) was computed by the code
SEM1 including surface topography (S1-TOPO). (b) Goodness-of-fit as measured by the 10 criteria proposed by Anderson (2004).
The SEM1-FLAT prediction is used as reference in each case. The dashed lines indicate the levels of the global similarity scores for each
prediction. Note that the fit between different predictions of the same simulation case (S1-FLAT) is better than the fit between predictions of
different simulation cases (S1-TOPO and S1-FLAT) by the same code (SEM1).
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using a quantitative misfit measure instead of a single
ground-motion parameter. Although the implementation of
the point source is expected to be much simpler, the level
of misfit is higher for the weak-motion case W1-FLAT than
for the strong-motion case S1-FLAT. This is related to the
larger high-frequency content of the W1 source, compared
with the S1 source, which challenges the numerical methods
at hand. Individual time series and amplitude spectra of the
three components of ground acceleration at receiver R02,
located in the center of the Grenoble Valley, are shown in
Figure 14 and Figure 15 for the S1-FLAT case and W1-FLAT
case, respectively.

Visual inspection of the traces and spectra confirms the
high similarity between the different predictions of the
S1-FLAT case, including at late arrival times, whereas larger
differences in amplitude and phase arise for the predictions
of the W1-FLAT case. Note in particular in Figure 15 the dif-
ferences in timing and amplitude between the predictions of
the diffracted Rayleigh wave arriving around 8 sec. Because
of the wider frequency content of the source, the weak
motion case also tends to highlight the differences in the
implementation of intrinsic attenuation as described in the
previous section (see, for example, the larger high-frequency
content of the SEM2 prediction compared with the others).

Figure 16 and Figure 17 show the results obtained for
the S1-FLAT case at two other locations: R06 (Montbonnot
borehole ground-level station) in the middle of the 2D profile
across the Grésivaudan Valley and R21 close to the steep
bedrock uplift (see Fig. 2). Note the high similarity between
all predictions at receiver R06 and the differences in ampli-
tude and phase that lead to the large misfit between SEM1
and DGM at R21. This last example (R21) is one of the only
cases where the level of misfit is surprisingly high in one
component only (Z).

The global TF misfit distributions displayed in Figure 13
do not show any particular dependence on either the soil con-
dition or the receiver location within the valley. The main
trend is a systematic increase of the misfit with increasing
distance to the source. This is expected because intrinsic

errors (e.g., numerical dispersion) or differences in physical
modeling (e.g., intrinsic attenuation) tend to accumulate with
time andwith the distance propagated. In the remainder of this
section, we will therefore represent the misfit as a function of
the source-receiver distance. The detail of the TF misfits in
terms of amplitude and phase is shown for the S1-FLAT case
in Figure 18. Both measures show the same pattern, with the
highest similarity being found between the FDM and SEM1
predictions. However, the phase misfit seems to be more
helpful in tracking differences between predictions. For
example, the amplitude misfit between DGM and SEM1 is
roughly identical to the one between SEM1 and SEM2, but
larger phase misfits are seen between SEM1 and SEM2. Note
also that the increase of the total TF misfit between FDM and
SEM1 predictions with distance only appears in the amplitude
(envelope) misfit, the difference in phase being roughly con-
stant for all 40 receivers.

To better understand the differences between numerical
predictions for the S1-FLAT case, we plot in Figure 19 the
amplitude and phase misfits computed in three frequency
bands: low-frequency (LF) 0.2,0.5 Hz; intermediate fre-
quency (IF) 0.5,1.0 Hz; and high-frequency (HF) 1.0,2.0 Hz.
Note that the LF band is roughly centered at the fundamental
frequency of the Grenoble Valley (around 0.3 Hz); the energy
radiated by the source in the S1-FLAT case decreases signifi-
cantly in the HF band, suggesting that the weight of the HF
misfit in the total TF misfit is weak. There is a global trend
for the TF misfits (amplitude and phase) to increase with
frequency. Therefore, it becomes more difficult at higher
frequencies to assume a linear dependence on the source-
receiver distance. This can be mainly explained by the fact
that intrinsic errors of each numerical method (in particular
numerical dispersion) increase with frequency.

We finally remark that there is a strong dependence of
the amplitude misfit between DGM and SEM1with frequency,
which results in large differences in the HF band. The TF
misfits computed for the W1-FLAT case (see Fig. 13) suggest
that these discrepancies become dominant when the high-
frequency content of the source is larger.
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Figure 13. (a) TF misfits computed for the S1-FLAT case and (b) for the W1-FLAT case, taking the SEM1 prediction as reference. Each
dot corresponds to the average of the 3 components of total misfit (average of envelope and phase) measured on the predictions of ground
acceleration at each receiver in the frequency band 0.1,2.0 Hz. Receivers R01, R04, R08, and R33–R40 are located on rock sites.
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Figure 14. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R02 by the
four different codes for the strong motion case S1-FLAT.
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Figure 15. Same as Figure 14 for the weak motion case W1-FLAT.

1446 E. Chaljub, P. Moczo, S. Tsuno, P.-Y. Bard, J. Kristek, M. Käser, M. Stupazzini, and M. Kristekova



-0.70
0.00
0.70
1.40 D G M     

R 0 6 - E   

-0.70
0.00
0.70
1.40 F D M     

R 0 6 - E   

-0.70
0.00
0.70
1.40 S E M 1    

R 0 6 - E   

5 10 15 20 25 30
Time (s)

-0.70
0.00
0.70
1.40 S E M 2    

R 0 6 - E   

S E M 2    

0.30 0.60 0.90 1.20 1.50 1.80

Frequency (Hz)

10-2

10-1

100

101

S E M 1    
R 0 6 - E   

F D M     

10-2

10-1

100

101

S E M 1    
R 0 6 - E   

D G M     

10-2

10-1

100

101

10-2

10-1

100

101
10-2

10-1

100

101
10-2

10-1

100

101

10-2

10-1

100

101
10-2

10-1

100

101
10-2

10-1

100

101

S E M 1    
R 0 6 - E   

-0.70
0.00
0.70
1.40 D G M     

R 0 6 - N   

-0.70
0.00
0.70
1.40 F D M     

R 0 6 - N   

-0.70
0.00
0.70
1.40 S E M 1    

R 0 6 - N   

5 10 15 20 25 30

Time (s)

-0.70
0.00
0.70
1.40 S E M 2    

R 0 6 - N   

S E M 2    

0.30 0.60 0.90 1.20 1.50 1.80

Frequency (Hz)

5 10 15 20 25 30

Time (s)

0.30 0.60 0.90 1.20 1.50 1.80

Frequency (Hz)

S E M 1    
R 0 6 - N   

F D M     
S E M 1    
R 0 6 - N   

D G M     
S E M 1    
R 0 6 - N   

-0.40
0.00
0.40
0.80
1.20

D G M     
R 0 6 - Z   

-0.40
0.00
0.40
0.80
1.20

F D M     
R 0 6 - Z   

-0.40
0.00
0.40
0.80
1.20

S E M 1    
R 0 6 - Z   

-0.40
0.00
0.40
0.80
1.20

S E M 2    
R 0 6 - Z   

S E M 2    
S E M 1    
R 0 6 - Z   

F D M     
S E M 1    
R 0 6 - Z   

D G M     
S E M 1    
R 0 6 - Z   

(a) (b)

(c) (d)

(e) (f)

Figure 16. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R06 by the
four different codes (DGM, FDM, SEM1, and SEM2) for the strong motion case S1-FLAT.
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Figure 17. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R21 by the
four different codes for the strong motion case S1-FLAT. Note the low similarity between the DGM and SEM1 predictions on the vertical
component.

1448 E. Chaljub, P. Moczo, S. Tsuno, P.-Y. Bard, J. Kristek, M. Käser, M. Stupazzini, and M. Kristekova



5 10 15 20 25

Source receiver distance (km)

0

0,2

0,4

0,6

0,8

M
is

fi
t

DGM
FDM
SEM2

5 10 15 20 25
Source receiver distance (km)

0

0,2

0,4

DGM
FDM
SEM2

S1 FLAT  Amplitude misfit [0.1,2.0] Hz
Reference: SEM1 FLAT Reference: SEM1 FLAT

S1 FLAT Phase misfit [0.1,2.0] Hz(a) (b)

Figure 18. (a) Envelope and (b) phase misfits computed for the S1-FLAT case and plotted against source-receiver distance. Solid lines
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Figure 19. Same as Figure 18 for different frequency bands: (a),(b) 0.2,0.5 Hz; (c),(d) 0.5,1.0 Hz; and (e),(f) 1.0,2.0 Hz.
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Effect of Surface Topography

Three codes (DGM, SEM1, and SEM2) computed the
strong motion case S1-TOPO, which includes the effect of
surface topography. The PGVmaps obtained for the S1-TOPO
case are shown in Figure 20. Note the deformation of the
predicted patterns (compare with Fig. 9) close to the source
due to the presence of surface topography on top of the fault
plane. The overall distributions of peak values look quite
similar inside the valley, suggesting that the main differences
with respect to the S1-FLAT case occur on the rock sites. This
is only partly confirmed by Figure 21, which shows the maps
obtained by dividing the PGV by those obtained in the S1-
FLAT case. Noticeable differences are indeed observed in
the southwestern part of the valley, a region where strong
variations of the sediment thickness occur. The patterns

observed on the three maps of PGV ratios are quite consistent
outside of the valley: systematic amplification is found on
the mountain peaks (see, for example, receivers R33 and
R34 in the eastern Belledonne chain and receivers R39
and R40 in the northern Chartreuse massif), whereas
deamplification is found invalleys (see receiverR35). Seismic
motion on slopes is more complex because amplification or
deamplification can occur depending on the slope orientation
with respect to the seismic event (see the two flanks bordering
the Romanche Valley around receiver R35 at coordinates
X � 880 km, Y � 2015 km). Extreme and mean values of
amplification and deamplification are given in Table 3.

The average effect of surface topography inside the val-
ley, as measured by the ratio of the PGV, is found to be
negligible, but large differences in extreme values occur:
the maximal predicted amplifications vary significantly on

Figure 20. PGV maps obtained by three codes: (a) DGM, (c) SEM1, (d) SEM2 for the strong motion case S1-TOPO. (b) The map of
surface elevation is shown. Receiver locations are indicated by the triangles; the X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map; the bold straight line shows the surface
projection of the fault for the S1 event.

1450 E. Chaljub, P. Moczo, S. Tsuno, P.-Y. Bard, J. Kristek, M. Käser, M. Stupazzini, and M. Kristekova



rock sites and, more surprisingly, within the valley. This
could result from differences in the implementation of sur-
face topography, in the representation of velocity contrasts
near the valley edges, and in the design of the meshes for
the S1-FLAT and S1-TOPO cases.

Conclusions

The third international symposium on the effects of
surface geology in Grenoble, France (ESG 2006), provided

an excellent opportunity to focus the traditional blind predic-
tion experiment on numerical modeling of earthquake
motion in a typical deep Alpine sediment-filled structure,
the Grenoble Valley.

The Grenoble urban area gathers a significant popula-
tion of around 500,000, a number of high-tech and sensitive
industrial facilities, and educational and research institutions.
This and observed broadband site effects imply that the mod-
erate regional seismic activity poses a concern about the seis-
mic risk in the area. Moreover, similar conditions are also
met in other areas within the European Alps and in other
mountainous areas with embanked valleys filled with young,
postglacial lacustrine sediments. This specific area also
presents a further interest in relation to its relatively small
extent, which allows performing deterministic numerical
simulation up to higher frequencies than is usually consid-
ered in much wider areas such as the Los Angeles basin.

The present article reports partial results from this simu-
lation exercise for four structure wave-field configurations
that were specified for voluntary participants: W1-FLAT,
S1-FLAT, W1-TOPO, S1-TOPO, withW and Smeaning weak
and strong, FLAT and TOPO meaning geometry of the free
surface, respectively. The weak configurations comprised

Figure 21. Maps of ratios between the PGVobtained with the surface topography and PGVobtained for the flat free surface by the three
codes: (a) DGM, (c) SEM1, and (d) SEM2. (b) The map of surface elevation is shown. Receiver locations are indicated by the triangles and
the X and Y labels denote distances (in km) in the local Lambert coordinate system. The bold curve indicates the 50 m contour line in the
sediment thickness map and the bold straight line shows the surface projection of the fault for the S1 event.

Table 3
Extreme and Average Values of the Ratio of Peak
Ground Velocity Computed by the Codes DGM,

SEM1, and SEM2*

DGM SEM1 SEM2

Minimum ratio (valley) 0.447 0.549 0.133
Maximum ratio (valley) 2.255 1.641 3.599
Mean ratio (valley) 0.996 0.998 0.991
Minimum ratio (rock) 0.543 0.533 0.277
Maximum ratio (rock) 3.222 2.464 2.095

*With and without accounting for the effects of surface
topography.
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double-couple point sources, the strong ones finite kinematic
source models.

Fourteen groups from eight countries contributed to the
ESG 2006 comparison with at least one numerical method
and possibly different cases, providing a total of 18 predic-
tion sets; seven groups addressed the 3D problem, out of
which three could account for the effects of both under-
ground and surface topography. The numerical schemes used
for the 3D contributions belong to the finite-difference,
spectral-element, and discontinuous-Galerkin finite-element
methods. Four participants whose 3D predictions were sur-
prisingly close updated their results after the ESG meeting,
after correcting some nonmethodological errors (evidenced
by comparing to other predictions) in preparation of the
numerical simulations. Only the results from the corrected
predictions were considered here.

One of the main lessons of this comparative exercise
concerns the present capabilities of numerical simulation
and is indeed a lesson of modesty: all the submitted predic-
tions exhibit a very large variability. This variability confirms
that the numerical prediction of ground motion in general
certainly cannot be considered a mature, push-button ap-
proach, and the variability in direct uncorrected numerical
predictions can be significantly larger than the variability
associated with empirical predictions. This is also because
not all applied numerical codes implement the best metho-
dologically possible algorithms; some of the codes are not
yet bug free. Much care should be also given to an unambig-
uous definition of the input solicitation (input signal and/or
source kinematics). Not sufficiently elaborated numerical
predictions may yield wrong results and therefore will lead
to large mistrust from end users.

However, there is also another lesson, which is a lesson
of hope: the striking similarity between predictions by com-
pletely different numerical methods is a very encouraging
result. Despite the structural complexity, that is geometry
and relatively large velocity contrast at the sediment-
basement interface as well as smooth heterogeneity, and the
methodological differences among the simulation methods,
we found a surprisingly good level of agreement among four
of the submitted predictions obtained by the finite-difference
method (FDM), two implementations of the spectral-element
method (SEM1 and SEM2), and arbitrary high-order deriva-
tive, the discontinuous Galerkin method (ADER-DGM). It
clearly shows that, when used with caution, numerical simu-
lation is actually able to handle wave radiation correctly from
an extended source and their subsequent propagation in
complex 3D media.

The expression good agreement is not simply a matter of
subjective feeling. It indeed results from a detailed, quanti-
tative comparison between the four numerical predictions
using the misfit criteria proposed by Kristekova et al. (2006).
These misfit criteria are based on the time-frequency repre-
sentations of the signals and allow proper quantification and
characterization of disagreement between signals. This misfit
measurement is found to be consistent with the engineering-

oriented similarity score proposed by Anderson (2004).
Another instructive comparison was achieved by looking at
predicted PGV maps.

The main conclusions from the detailed comparison are
explained in the following list:

• The objective quantification of the mismatch between the
different predictions proves to be effective and useful. The
two different comparison tools used for quantification,
although very different, do provide very consistent results.
While Anderson’s engineering-based criteria are probably
enough for validating numerical predictions for end users,
more refined comparisons based on time-frequency analy-
sis greatly help in understanding the origin of differences.
In particular, the analysis of the phase misfit with the tech-
nique of Kristekova et al. (2006) proves very instructive in
identifying differences in propagation properties from one
numerical method to another, and thus in orienting further
investigations to refine computational tools.

• The match is found to be good at low frequencies (below
1 Hz) and to gradually deteriorate with increasing fre-
quency, as expected. The reasons for that could not be un-
ambiguously individualized, but may be related both to
differences in the numerical methods (numerical disper-
sion, implementation of damping) and differences in the
model implementation.

• An important component to explain the differences is cer-
tainly related to the meshing. While the applied finite-
difference scheme authorizes a good automatic accounting
for the details of the sediment-basement interface, different
strategies were used by the three other groups: some used a
rather coarse meshing that did not follow details of the
valley boundaries, especially at shallow depth, while some
others spent much time in refining the mesh. The 2 Hz
maximum frequency considered here is still too low to ac-
tually clearly identify the effects of the valley boundaries,
considering also the rather smooth velocity variation in the
sediments and the absence of shallow weathered layers in
the bedrock. This issue is presently investigated within the
framework of another numerical comparative exercise on
the Volvi–Euroseistest site in Greece, where both sedi-
ments and bedrock exhibit complex shallow structures
with inner interfaces between different units.

• The effects of free-surface topography were found signifi-
cant in elevated areas in the three surrounding mountain
ranges, but less important within the valley. However,
while they are negligible in the S1 case, they slightly in-
crease in theW1 case corresponding to higher predominant
frequencies. This result cannot therefore be extrapolated to
frequencies higher than 2 Hz, and the question is still open.

The comparison of the numerical predictions obtained
with the FDM, two implementations of the SEM, and ADER-
DGM indicates that each of these methods can be applied to
simulation of the earthquake motion in structurally complex
sediment-filled valleys with the flat free surface. In addition
to being methodologically relatively simpler than the SEM
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and ADER-DGM, the presented implementation of the FDM
can be computationally more efficient because the volume
harmonic averaging of moduli and volume arithmetic aver-
aging of density allows to account for irregular interfaces in
regular grids well-suited to parallel implementation, while
abrupt changes in the grid size are also allowed at the transi-
tion between sediments and much stiffer bedrock. In the case
of the presented predictions, the FDM needed approximately
65% of the computational time used by SEM, but obviously
the difference may depend on the used computer and on the
particular case under study. On the other hand, for the SEM
and ADER-DGM the incorporation of the nonplanar free sur-
face poses no methodological problem; thus, the methods
can be equally easily applied to both the flat and nonplanar
free surface. In general, it is far from easy and natural to
implement free-surface condition in the FDM. The applied
DSG Velocity-Stress FDM cannot account for the free-surface
topography. If the incorporation of the topography is inevi-
table, for example, at particular sites and at higher frequen-
cies, a hybrid combination with the finite-element method
(Galis et al., 2008) might be an alternative to the applied
DSG VS FDM.

We would like to stress two main conclusions based on
the ESG 2006 simulation exercise and the detailed compar-
ison of the four closest numerical predictions:

1. No single numerical modeling method can be consid-
ered as the best for all important medium wave-field config-
urations in both computational efficiency and accuracy.

2. Reliable predictions of the earthquake ground motion
in complex structures should be made using at least two
different but comparably accurate methods to enhance reli-
ability of the prediction. Our study indicates that the proper
formulations and implementations of the FDM, SEM, and
ADER-DGM can be applied.

Data and Resources

All data used in this article came from published sources
listed in the references. The Fortran 95 computer code for
performing the finite-difference scheme is available at www
.nuquake.eu/Computer_Codes/ (last accessed June, 2010).
A detailed description of the SEM1 software package can
be found at www.geodynamics.org/cig/software/packages/
seismo/specfem3d (last accessed June, 2010). A detailed
description of the software package adopted for the SEM2
simulation can be found at http://geoelse.stru.polimi.it (last
accessed June, 2010). The software CUBIT is available at
http://cubit.sandia.gov/ (last accessed June, 2010).
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