The 2014 M_w6.0 Napa Valley earthquake: Inversion for the parameters of the friction law

Workshop NNEM2015

The calculation of synthetic data requires:

- a model of the system under investigation
- a physical theory linking the parameters of the model to the parameters being measured.

Predicting the observations, given a model, constitutes the "forward problem".

The "inverse problem" consists in using the actual observations to infer the parameters of the model that characterizes the system under investigation.

Tarantola, 2005 2

Finite-Fault inversion: Kinematic model

"The branch of mechanics concerned with the motion of objects without the reference to the forces which cause the motion"

Oxford Dictionary

Finite-Fault inversion: Kinematic model

Fault plane

Finite-Fault inversion: Dynamic model

"The branch of mechanics concerned with the motion of bodies under the action of forces"

Oxford Dictionary

Finite-Fault inversion: Dynamic model

What do we invert for ? (1)

Strength of the fault: The stress to overcome to start the rupture

Background stress: The initial stress of the fault

Characteristic slip-weakening distance:
The amount of slip required to slide at the residual stress level

What do we invert for ? (2)

Initial stress conditions

<u>Strength</u>

Geometry of the ellipse:

- location (x_0, y_0)
- size (*a*,*b*)
- orientation (ϕ)

Initial asperity (I.A.):

- location (x_a, y_a)
 - size (r_a)
 - strength (T_a)

Inversion procedure

The Napa Valley earthquake

- 21 stations from the CGS, NCSN, and USGS network
- The acceleration data are integrated twice into displacement
- The data are filtered between
 0.1 and 0.5 Hz

- The fault plane: 18.5 km long and 11.5 km wide strike: N159°, dip: 87°, rake: 180°

Best fitting model: fit to the stations

Up-Down comp.

0.06

Best fitting model: rupture process

Time: 6.05s

Phase #1: bilateral rupture propagation at depths between 6 to 11 km for the first ~1.6 sec.

Phase #2:

oblique up-dip rupture propagation from 1.6 to 6 sec. after which the rupture dies out.

The overall rupture progresses at ~3 km/s

Best fitting model: initial conditions and final distributions

13

What have we learnt about the friction (1)

What have we learnt about the friction (2)

Criticality of the rupture

- Rupture resistance

 $\Delta U = rac{1}{2} \langle D
angle au_0$ - Strain energy change per unit fault surface

$$\kappa < \kappa_c$$
 - Rupture doesn't grow

—
$$\kappa > \kappa_c$$
 - Rupture grows sub-shear

Rupture grows super-shear $\kappa \gg \kappa_c$

Criticality of the rupture

Conclusions

- It is possible to invert for the parameters of the friction law. Thus, we can use observations to constrain these parameters and gain insight into rupture dynamics
- The inversion allows us to explore a wide range of dynamic models and thus investigate the different stress conditions under which we can get a model that fits the observed data.