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Earthquake energy budget

AW =E.+E,+E,

N N

Fracture Radiated Friction (heat)

Radiated energy is estimated from the kinetic energy carried by seismic waves

E, = f f j oc v (t)dtdS

Sy —o

Most of the energy is carried by high frequencies (mostly P and S)

S, 1s a sphere 1n the far-field of the source within which we
assume a homogeneous whole space

Need to remove wave propagation effects
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Earthquake energy budget

AW =E.+E,+E,

N N

Fracture Radiated Friction (heat)

Radiated energy is estimated from the kinetic energy carried by seismic waves

E, = I [ peV(pafas

S, 0
Most of the energy is carried by high frequencies (mostly P and S)

S, 1s a sphere 1n the far-field of the source within which we
assume a homogeneous whole space

Need to remove wave propagation effects



Data: global arrivals of body waves
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Global STA/LTA stacks broadband vertical 8sec IRIS
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Data: global arrivals of body waves
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Data: global arrivals of body waves
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Data: global arrivals of body waves
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Data: global arrivals of body waves

3D Green’s functions are required to study
large earthquakes
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Global Green’s functions to calibrate path effects

1. Green’s function from
simulation of wave
propagation in 3D Earth

+ would be ideal

+ receivers can be from
anywhere

— computationally challenging
for high frequency Gfs

— require accurate high
resolution global velocity
models

2. Empirical Green’s
function from small
events (eGf)

+ true 3D path

+ aftershocks are great
candidates for eGf

+ receivers can be from
anywhere

— Small events have lower

SNR at long periods
- require knowledge of eGf

source spectrum

Attenuation Q and ray
tracing in simple
PREM/TASPEI 3D
Earth

+ computationally
inexpensive

+ good approximation at
long period

— only valid for direct
waves such that receivers
are restricted to 30-90°
angular distance

— does not include lateral
path effects (often called
1D Green’s function)

Free surface affects the body-wave GF
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P wave train of shallow
earthquakes: gP =P + pP + sP ‘

)/

dt depends on source
depth <> | sP

N
| dA depends on source
| depth & radiation pattern
v

>

time

Apparent corner frequency

—

df depends on 1
source depth frequency

>
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P wave train of shallow earthquakes: gP =P + pP + sP

P displacement time series

' ' M7.3 05/12/15 TU.INCN
(source depth = 15km from free surface)
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P displacement spectrum
(n=1.9, fc = 0.087Hz)
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Depth-phase interference

Boatwright and Choy (1986) propose a depth-phase correction and assume

that we can sum the energies:

15° dipping pure thrust

P 15
10
EgP
05
E,+L ,+ EpP

12



Two approaches to estimating radiated energy

1. Energy flux from Boatwright’s 2.  Energy from spectral shape
work (single-station)
27aM
=27’ pa [ | SCHI I E, = < f £S5 I
—e e ~C
Respect use \ '\
impedance
of Parseval’s locity?
theorem veloeny Independent  Radiation Velocity?:
measure of pattern squared  S(f) is
se1smic averaged over ~ normalized
moment the focal sphere to low
frequency

asymptote
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Two approaches to estimating radiated energy

1. Energy flux from Boatwright’s
work

E, =320pa [ | S(HI df

+ true measure of energy flux

- individual measurements are
sensitive to:
* radiation pattern
 geometrical spreading
- require well distributed and
dense receivers to capture the
entire focal sphere

Often used with “1D” Green's function
1
GO = g-exp(=af1*(f)
P

Depth-phase correction

E,=E,/(1+E,/E, +E,,|E,)

2.  Energy from spectral shape
(single-station)

2aME(R,) e~ o
Eg =2 [ S0 af

po

+only relies on spectral shape
+one station is sufficient to

estimate energy
— assumes that the spectral

shape 1s constant at all azimuth
and takeoff angles

— normalization to low
frequency asymptote sensitive
to SNR and data processing

— assumes a whole space
around the source (not valid for
“very” shallow earthquakes)

Often used with empirical Green s function
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Two approaches sensitive to depth phases

1. Energy flux from Boatwright’s 2.  Energy from spectral shape
work (single-station)
Tendency to Tendency to
underestimate energy overestimate energy
Destructive interferences High apparent corner

frequency if normalization is
performed on the low
frequency asymptote

=>» Correction for both approaches when we use 1D Green’s functions
=» Characterize uncertainties when we use empirical Green’s functions
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Example : Nepal 2015 earthquake sequence
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Example : Nepal 2015 earthquake sequence
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Example : Nepal 2015 earthquake sequence
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Along-dip Main Himalayan Thrust (MHT) geometry

Depth (km)

100 | | | | |
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Distance from MFT (km)
J.P. Avouac (2015)

CA2000

100
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EEEEE | Cattin and Avouac (2000)
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Inelastic deformation rate (x10-13s-1)
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P displacement spectra (GSN stations)

(a) M7.8

(b) M7.3
best fit source 's'p'e'ctrum' P
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Fit source depth
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Fit source depth
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Fit source spectrum: corner frequency (ignore depth phase)

Ao = MO( e )

10Y T T T T — T T 042/3
Madariaga (1976)
ot S s 1 Ao =137 MPa
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Fit source spectrum: corner frequency (account for depth phases)
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Best fit source (a) Stacked source spectra
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logio(Er/Mo) =-4.12
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Radiated Energy Correction for depth phase interference

1) Measure apparent energy from synthetics at each station 7 between f; and 1, :
E. Gl D

2) Measure total synthetic energy between 0 and oo :

Etrue([() ’ OO])
3) Multiply individual apparent energy measurements with the ratio (2) by (1).

Uncorrected energy
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Estimates from point sources

* P wave trains at teleseismic
distances from M6+ in the upper 35

km will show interferences of direct

and depth phases.

* Interferences significantly bias
estimates of corner frequencies and
low frequency asymptote.

* Bias in radiated energy estimates is

controlled by source depth and
source size (~ corner frequency).

(b) M6.7 radiated energy (q = 23.4)
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(c) M7.3 radiated energy (q = 23.4)
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(d) M7.8 radiated energy (q = 23.4)
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Estimates from finite sources: low and high frequency backprojection
From Wenyuan Fan and Peter Shearer (Fan and Shearer, accepted in GRL)

0.05t00.2 Hz
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Estimates from finite sources: Stage #1
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Estimates from finite sources: Stage #1 (

(a) (b)

/\u( t)

A = area
My = uDA
u™(t)
X b " b2
A¥=b2A . L
Mo = b3Mj Prietd'et al. (2004)
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A TB
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Estimates from finite sources: Stage #1
2.3 T T T
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From stage #1 to stage #2: passage through a lateral ramp
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From stage #1 to stage #2: passage through a lateral ramp
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From stage #1 to stage #2: passage through a lateral ramp

J.L. Mugnier et al. / Tectonophysics 509 (2011) 33-49
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From stage #1 to stage #2: passage through a lateral ramp

BP times
0-5s 1

5-10s M |{28°
10-15s

m epicenters

, relocated seismicity
(Ader et. al., 2012)

© HF backprojection
(F&S 2015)

LF backprojection |
(F&S 2015)
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From stage #1 to stage #2: passage

through a lateral ramp

Rupture through kinks:
The antiplane-shear S;; case
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From stage #1 to stage #2: passage

through a lateral ramp time : 20
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Conclusion on the beginning of the Nepal M7.8 earthquake

110° Main Frontal Thrust
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Concluding remarks

* [f not properly removed from path effects, direct and depth phases
interference greatly affects the P spectral shape.

* Interferences introduce large biases in corner frequency and low-frequency
asymptote.

* We can properly estimate the source depth, spectra, and radiated energy by
best fitting the predicted P wave train spectral shape.

* We applied these methods to the Nepal earthquake sequence.

* We expanded the point source approximation to look into finite source
effects on high frequency radiated energy.
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Questions

* Are depth-phase interference responsible to the apparent scaling in scaled
energy Eg / M, (in cases of shallow large seismicity)?

» With refined depth and radiated energy estimates, do we see trends
radiated energy with depth?

* When earthquake size > earthquake depth, the homogeneous whole space
assumption fails. What do we do?



