Radiated energy of shallow moderate-to-large earthquakes

Marine A. Denolle and Peter M. Shearer

NMEM, Smolenice, 2015

Cecil H. and Ida M. Green

Radiated energy is estimated from the kinetic energy carried by seismic waves

$$E_R = \iint_{S_0} \int_{-\infty}^{\infty} \rho c \, v^2(t) dt dS$$

Most of the energy is carried by high frequencies (mostly P and S)

 S_0 is a sphere in the far-field of the source within which we assume a homogeneous whole space

Need to remove wave propagation effects

Radiated energy is estimated from the kinetic energy carried by seismic waves

$$E_R = \iint_{S_0} \int_0^\infty \rho c \, \mathbf{V}^2(f) df dS$$

Most of the energy is carried by high frequencies (mostly P and S)

 S_0 is a sphere in the far-field of the source within which we assume a homogeneous whole space

Need to remove wave propagation effects


~~~~WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW







#### **Global Green's functions to calibrate path effects**

- 1. Green's function from <u>simulation</u> of wave propagation in 3D Earth
- + would be ideal

### + receivers can be from anywhere

computationally challenging for high frequency Gfs
require accurate high resolution global velocity models

- 2. Empirical Green's function from <u>small</u> events (eGf)
  - + true 3D path
    + aftershocks are great
    candidates for eGf
    + receivers can be from

#### + receivers can be from anywhere

- Small events have lower SNR at long periods
- require knowledge of eGf
   source spectrum

 Attenuation Q and ray tracing in simple PREM/IASPEI 3D Earth

# + computationally inexpensive + good approximation at long period

only valid for direct
waves such that receivers
are restricted to 30-90°
angular distance
does not include lateral
path effects (often called
1D Green's function)

#### Free surface affects the body-wave GF



#### **P** wave train of shallow earthquakes: gP = P + pP + sP



#### **Depth-phase interference**

Boatwright and Choy (1986) propose a depth-phase correction and assume that we can sum the energies:  $E_{gP} = E_P + E_{sP} + E_{pP}$ 



#### Two approaches to estimating radiated energy

2.

Energy flux from Boatwright's 1. work

 $E_B = 32\pi^3 \rho \alpha \int_0^\infty \left| f S(f) \right|^2 df$ Respect use impedance

of Parseval's theorem

velocity<sup>2</sup>

Energy from spectral shape (single-station)  $E_s = \frac{2\pi M_0^2}{2\pi M_0^2} \langle \mathbf{r} \rangle$  $\boldsymbol{J}_0 \mid \boldsymbol{J}$ Independent Velocity<sup>2</sup>: Radiation measure of pattern squared S(f) is seismic averaged over moment the focal sphere to low frequency

normalized asymptote

#### Two approaches to estimating radiated energy

~~~~~~

 Energy flux from Boatwright's work

$$E_B = 32\pi^3 \rho \alpha \int_0^\infty \left| f S(f) \right|^2 df$$

+ true measure of energy flux

- individual measurements are sensitive to:

- radiation pattern
- geometrical spreading
 require <u>well distributed</u> and <u>dense</u> receivers to capture the entire focal sphere

Often used with "1D" Green's function $\left|G(f)\right| = \frac{1}{\Re_{P}} \exp(-\pi f t^{*}(f))$

Depth-phase correction $E_{B} = E_{B} / (1 + E_{sP} / E_{P} + E_{pP} / E_{P})$ 2. Energy from spectral shape (single-station)

$$E_{S} = \frac{2\pi M_{0}^{2} \langle R_{P} \rangle^{2}}{\rho \alpha^{5}} \int_{0}^{\infty} \left| f \,\overline{S}(f) \right|^{2} df$$

+only relies on spectral shape
+one station is sufficient to
estimate energy
- assumes that the spectral
shape is <u>constant</u> at all azimuth
and takeoff angles
- <u>normalization</u> to low
frequency asymptote sensitive
to SNR and data processing
- assumes a <u>whole space</u>
around the source (not valid for
"very" shallow earthquakes)

Often used with empirical Green's function

Two approaches sensitive to depth phases

 Energy flux from Boatwright's work

Tendency to underestimate energy Destructive interferences 2. Energy from spectral shape (single-station)

Tendency to overestimate energy

High apparent corner frequency *if normalization is performed on the low frequency asymptote*

Correction for both approaches when we use 1D Green's functions
Characterize uncertainties when we use empirical Green's functions

Example : Nepal 2015 earthquake sequence

Example : Nepal 2015 earthquake sequence

Example : Nepal 2015 earthquake sequence

Along-dip Main Himalayan Thrust (MHT) geometry

Fit source depth

CMT depth: 17.4 km PDE/NEIC depth: 24.8 km

CMT depth: 15 km PDE/NEIC depth: 12 km

Fit source depth

Fit source spectrum: corner frequency (ignore depth phase)

Fit source spectrum: corner frequency (account for depth phases)

Radiated Energy Correction for depth phase interference

1) Measure apparent energy from synthetics at each station *i* between f_1 and f_2 :

$$E_{syn}(i, [f_1, f_2])$$

2) Measure total synthetic energy between 0 and ∞ :

$$E_{true}([0, \infty])$$

3) Multiply individual apparent energy measurements with the ratio (2) by (1).

• P wave trains at teleseismic distances from M6+ in the upper 35 km will show interferences of direct and depth phases.

• Interferences significantly bias estimates of corner frequencies and low frequency asymptote.

• Bias in radiated energy estimates is controlled by source depth and source size (~ corner frequency).

Estimates from finite sources: low and high frequency backprojection

From Wenyuan Fan and Peter Shearer (Fan and Shearer, accepted in GRL)

Estimates from finite sources: Stage #1

From stage #1 to stage #2: passage through a lateral ramp

J.L. Mugnier et al. / Tectonophysics 509 (2011) 33-49

From stage #1 to stage #2: passage through a lateral ramp

Conclusion on the beginning of the Nepal M7.8 earthquake

Concluding remarks

• If not properly removed from path effects, direct and depth phases interference greatly affects the P spectral shape.

• Interferences introduce large biases in corner frequency and low-frequency asymptote.

• We can properly estimate the source depth, spectra, and radiated energy by best fitting the predicted P wave train spectral shape.

• We applied these methods to the Nepal earthquake sequence.

• We expanded the point source approximation to look into finite source effects on high frequency radiated energy.

Questions

• Are depth-phase interference responsible to the apparent scaling in scaled energy E_R / M_0 (in cases of shallow large seismicity)?

• With refined depth and radiated energy estimates, do we see trends radiated energy with depth?

• When earthquake size > earthquake depth, the homogeneous whole space assumption fails. What do we do?