Seismic source spectra, stress drop and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures

Yoshihiro Kaneko, GNS Science (New Zealand) Peter Shearer, UC San Diego

	hp	n_S
Brune (1970)	N/A	0.37
Sato & Hirasawa (1973)	0.42	0.29
Madariaga (1976)	0.32	0.21

 $Vr = 0.9\beta$

S corner

frequencies

P-wave displ.

Time $(t\beta/a)$

• Madariaga (1976): dynamic calculations for a singular crack with spontaneous healing of slip using FDM, $V_r = 0.9\beta$

P-wave spectra

 10^{-2} 10^{-1} 10^{0} Frequency (fa/β)

A factor of 5.5 difference in $\Delta\sigma$ between Brune and Madariaga

Our model: cohesive zone that prevents a stress singularity

Variation of corner frequencies over the focal sphere

Implication for absolute levels of stress drops

For a model with the smallest cohesive-zone, there are 305 node points along the source radius.

- model with spontaneous healing of slip and becomes independent of A_{w} .
- Spherical average of f_c is larger by about 20% than that of Madariaga (1976).
- k is smaller than the model of Sato & Hirasawa (1973) with $k_p = 0.42$ and $k_s = 0.29$.

Application of the Madariaga model overestimates stress drops by a factor of 1.7.

Asymmetrical circular source with $V_r = 0.9\beta$ drops and radiated energy Allmann and Shearer (2009) Baltay et al. (2011) $k^{P} = 0.29$ S corner $k^{S} = 0.28$ *P* corner P corner Scaled energy frequencies frequencies frequencies 10 ⁰ propagation direction Chuetsu 2004 directior Chuetsu-Oki 2007 10 Iwate Miyagi Symmetrical circular source with $V_r = 0.9\beta$ $k^{P} = 0.38$ $k^{S} = 0.26$ S corner P corner P corner 7.5 8.0 6.0 6.5 7.0 5.0 5.5 frequencies frequencies frequencies Mw 0.4

- The asymmetrical model displays a strong azimuthal dependence of $f_{\rm c}$ due to larger directivity effect
- The spherical average of the S-wave f_c is comparable to that of the symmetrical model

Asymmetrical elliptical source with **supershear** rupture $V_r = 1.6\beta$

Asymmetrical circular source with subshear rupture $V_r = 0.9\beta$

- P-wave f_c are larger than those of subshear rupture
- The pattern of the S-wave $f_{\rm c}$ is different from that of subshear rupture
- This is caused by Mach waves; the S-wave $f_{\rm c}$ is largest at the Mach angle $\cos^{-1}(\beta/V_{\rm r})$
- A factor of 2 difference is obtained from a variety of source scenarios $(0.6\beta < V_r < 1.6\beta)$

- The asymmetrical circular and elliptical models show large variations in the estimated scaled energy; e.g., for supershear case, E_r^s/M_o ranges from 0.04 to 4.0
- A factor of 5 difference in the spherical average of E_r^s/M_o is obtained from a variety of source scenarios ($0.6\beta < V_r < 1.6\beta$)

Conclusions

- We have re-visited the classical problem of a circular fault and derived a new relation between a source dimension and the spherical average of corner frequencies of far-field body wave spectra.
- In observational studies that assumed Madariaga (1976), the mean value of $\Delta \sigma$ may have been overestimated by a factor of 1.7.
- At least a factor of 2 difference in the spherical average of f_c is expected in observational studies simply from variability in source geometry, rupture directivity, and rupture speeds, translating into a factor of 8 difference in estimated $\Delta \sigma$.
- At least a factor of 5 difference in scaled energy is expected from the variability in the same source characteristics. These numbers increase with an insufficient station coverage (not discussed in this talk).
- Mach waves generated by supershear rupture lead to much higher f_c and scaled-energy estimates locally, suggesting that supershear earthquakes can be identified from the analysis of f_c and scaled energy.

Kaneko and Shearer (GJI, 2014; JGR, 2015)

Future work: Consider rupture characterized by self-healing pulse (e.g., $V_{\rm r} = 0.9\beta$ and $V_{\rm h} = 0.7\beta$)

