Evolution of rupture style with total fault displacement: insight from meter-scale direct shear experiments

Shiqing Xu (NIED)

In collaboration with Eiichi Fukuyama (NIED), Futoshi Yamashita (NIED), Kazuo Mizoguchi (CRIEPI), Shigeru Takizawa (Univ. of Tsukuba), Hironori Kawakata (Ritsumeikan Univ.)

NMEM – July 7, 2015 @ Smolenice Castle, Slovakia

Motivations

- Fault zone properties: maturity, roughness, gouge layer thickness, off-fault damage, permeability, etc
- Fault motion styles: stable creep, unstable rupture propagation, conditionally (un)stable motion
- Question: what controls the type of fault motion (loading condition, fault zone properties, etc)
- Focus on how fault rupture style evolves with the total fault displacement (net effect)

Experimental loading configurations

USGS at Menlo Park

Small displacement (~ cm) Slow loading rate Cannot check the fault surface condition

Photos courtesy of McLaskey and Beeler

NIED, Tsukuba, Japan

Up to 0.4 m displacement per run

Both slow and fast loading rate

Can check the fault surface condition after each run

LB09-001 (in 2014)

- Normal stress: 6.7 MPa
- Loading rate: 0.01 mm/s
- Incremental displacement: 6.9 mm
- Cumulative displacement: 6.9 mm

	normal stress(MPa)	loading vel (mm/s)	max. disp(mm)	strain mode	AE sensors	ACC	Conducted date
LB09-001	6.7	0.01	6.9	shear only	P−mode, 64ch	NIED,3Comp	4/7
LB09-002	6.7	0.01	6.1	shear only	S-mode, 64ch	NIED,3Comp	4/7
LB09-003	6.7	0.1	36.2	shear only	S-mode, 64ch	NIED,3Comp	4/8
LB09-004	6.7	1	396.0	shear only	S-mode, 64ch	none	4/8
LB09-005	6.7	0.1/0.01	22.2	shear only	S-mode, 64ch	NIED,3Comp	4/9
LB09-006	6.7	0.1/0.01	34.4	shear only	P-mode, 64ch	NIED,3Comp	4/9
LB09-007	6.7	0.1/0.01	35.5	shear only	S-mode, 64ch	NIED,3Comp	4/9

Yamashita-type (100mm/gabbro)

LB09-002 (in 2014)

- Normal stress: 6.7 MPa
- Loading rate: 0.01 mm/s
- Incremental displacement: 6.1 mm
- Cumulative displacement: **13.0 mm**

		normal stress(MPa)	loading vel (mm/s)	max. disp(mm)	strain mode	AE sensors	ACC	Conducted date	
	LB09-001	6.7	0.01	6.9	shear only	P-mode, 64ch	NIED,3Comp	4/7	
	LB09-002	6.7	0.01	6.1	shear only	S-mode, 64ch	NIED,3Comp	4/7	
	LB09-003	6.7	0.1	36.2	shear only	S-mode, 64ch	NIED,3Comp	4/8	
	LB09-004	6.7	1	396.0	shear only	S-mode, 64ch	none	4/8	
	LB09-005	6.7	0.1/0.01	22.2	shear only	S-mode, 64ch	NIED,3Comp	4/9	
	LB09-006	6.7	0.1/0.01	34.4	shear only	P-mode, 64ch	NIED,3Comp	4/9	
	LB09-007	6.7	0.1/0.01	35.5	shear only	S-mode, 64ch	NIED,3Comp	4/9	

Yamashita-type (100mm/gabbro)

LB09-007 (in 2014)

- Normal stress: 6.7 MPa
- Loading rate: 0.1 mm/s , then 0.01 mm/s
- Incremental displacement: 35.5 mm
- Cumulative displacement: **537.3 mm**

	normal stress(MPa)	loading vel (mm/s)	max. disp(mm)	strain mode	AE sensors	ACC	Conducted date
LB09-001	6.7	0.01	6.9	shear only	P−mode, 64ch	NIED,3Comp	4/7
LB09-002	6.7	0.01	6.1	shear only	S-mode, 64ch	NIED,3Comp	4/7
LB09-003	6.7	0.1	36.2	shear only	S-mode, 64ch	NIED,3Comp	4/8
LB09-004	6.7	1	396.0	shear only	S-mode, 64ch	none	4/8
LB09-005	6.7	0.1/0.01	22.2	shear only	S-mode, 64ch	NIED,3Comp	4/9
LB09-006	6.7	0.1/0.01	34.4	shear only	P-mode, 64ch	NIED,3Comp	4/9
LB09-007	6.7	0.1/0.01	35.5	shear only	S-mode, 64ch	NIED,3Comp	4/9

Yamashita-type (100mm/gabbro)

LB09-007 / E0152 (598.06000s - 598.09000s)

LB09-007 / E0153 (618.62700s - 618.65700s)

LB09-007 / E0154 (640.98800s - 641.01800s)

Fault rupture style – Cumulative displacement – Damage pattern

We collect gouges after each run, but gouges were kept during each run

What determines rupture speed

Proposed localization model

Patches with locally high normal and shear stress – high coupling, high work rate and wear rate

Some improvement in 2015

 LB12-001 LB12-002
Cumulative displacement < 50 mm
LB12-006 LB12-007
Cumulative displacement > 400 mm

LB12-008

23

Conclusions

- With the accumulation of total fault displacement under direct-shear loading, rupture style along the synthetic fault changes from slow propagation to fast propagation.
- Evolution of the fault surface properties are responsible for the above change of rupture style.
- Developed fault heterogeneities (grooves and gouges) facilitate strain localization, encouraging more efficient release of the stored strain energy (e.g. gouge lubrication) and faster rupture propagation.
- Natural faults are more heterogeneous and span a wider range of scales. We should care about the local/macroscopic description, and the scale-dependency.

