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Motivations	

•  Fault zone properties: maturity, roughness, gouge layer thickness, 

off-fault damage, permeability, etc	

                                	

•  Fault motion styles: stable creep, unstable rupture propagation, 

conditionally (un)stable motion 	


•  Question: what controls the type of fault motion (loading condition, 
fault zone properties, etc)	


•  Focus on how fault rupture style evolves with the total fault 
displacement (net effect)	
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Experimental loading configurations	
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Scholz (1990)	


Triaxial 	

compression	


Direct 
shear	


Biaxial 
loading	


Rotary 
shear	


large displacement	

up to m/s loading velocity	

	

centimeter-scale	

steady-state or transient 
frictional response	


high confining pressure	

	

centimeter-scale	

	

fracture of intact rocks 	

rupture along pre-cut surface	


stick-slip events	

	

up to meter-scale	
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2	  m	  

USGS at Menlo Park	


Photos courtesy of McLaskey and Beeler	


Small displacement (~ cm)	

Slow loading rate	

Cannot check the fault surface condition 	
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15	  m	  

NIED, Tsukuba, Japan	


2	  m	  

Up to 0.4 m displacement per run	

	

Both slow and fast loading rate	

	

Can check the fault surface condition 
after each run	




Strain gauge array	
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Map view (lower sample)	


Side view	


1560 mm	


Indian metagabbro	


Sampling rate:  1 MHz	
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Undulation: <10 µm	

Grit: #800	




What can be inferred from the strain data?	
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Static strength?	


Dynamic strength?	


Initial level 
before 	

failure? 	


Breakdown duration?	
 20 mm off 
the fault	


OK	


OK	


overestimated	


underestimated	


negative change 	


Svetlizky & Fineberg (2014, Nature)	


LEFM	


εxy (x 10-3)	
Vr = 0.88 Cs	


Off-fault 	

smearing-out 
effect	




LB09-001 (in 2014)	


•  Normal stress: 6.7 MPa	

•  Loading rate: 0.01 mm/s	

•  Incremental displacement: 6.9 mm	

•  Cumulative displacement: 6.9 mm	
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Fs / FN	


0 -40 
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Ohnaka (1996, PNAS)	




LB09-002 (in 2014)	


•  Normal stress: 6.7 MPa	

•  Loading rate: 0.01 mm/s	

•  Incremental displacement: 6.1 mm	

•  Cumulative displacement: 13.0 mm	
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0 -40 

1560 mm 



LB09-007 (in 2014)	


•  Normal stress: 6.7 MPa	

•  Loading rate: 0.1 mm/s , then 0.01 mm/s	

•  Incremental displacement: 35.5 mm	

•  Cumulative displacement: 537.3 mm	
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Fault rupture style – Cumulative displacement – Damage pattern	
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Cumulative Disp. 	

up to  6.9 mm	


Cumulative Disp. 	

up to 537.3 mm	


Vr: 10s to 100s m/s	
 Vr: comparable to Cs (km/s)	


Cumulative Disp. 	

up to 13 mm	


Vr: 100s to ~ 1000 m/s	


Gouge weight: 0.0032 g	
 Gouge weight: 0.0021 g	
 Gouge weight: 0.1283 g	


We collect gouges after each run, but gouges were kept during each run	


Fs / FN	
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Initial level	


Strain/stress drop	
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Ben-David et al. (2010, Science)	


What determines rupture speed	
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Tromborg (Thesis)	


Our	  study	  

Stored	  strain	  energy	  	  

Fracture	  energy	  
Das and Aki: S	


S =
⌧s�⌧0
⌧0�⌧d

 =
⌧20
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L

Dc

Madariaga and 
Olsen: κ	




Proposed localization model 	
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High efficiency	
Low efficiency	
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Patches with locally high normal and shear stress – high coupling, 
high work rate and wear rate	


Slow speed	


07	


Fast speed	


Di Toro et al. (2011, Nature) 	


Powder lubrication	


Reches and Lockner (2010, Nature)	




Some improvement in 2015	
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True end of 
breakdown zone	
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Not stress 
overshoot	


We wish to obtain 
the asymptotic 
behavior towards the 
true rupture front	
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Cumulative displacement < 50 mm	


Data from LB12 series	


LB12-001	

LB12-002	


LB12-006	

LB12-007	

LB12-008	


Cumulative displacement > 400 mm	


6.7 MPa	

0.01 mm/s	




Conclusions	

•  With  the  accumulation  of  total  fault  displacement  under  direct-shear 

loading,  rupture  style  along  the  synthetic  fault  changes  from  slow 
propagation to fast propagation. 	


•  Evolution  of  the  fault  surface  properties  are  responsible  for  the  above 
change of rupture style.	


•  Developed  fault  heterogeneities  (grooves  and  gouges)  facilitate  strain 
localization, encouraging more efficient release of the stored strain energy 
(e.g. gouge lubrication) and faster rupture propagation.  	


•  Natural faults are more heterogeneous and span a wider range of scales. We 
should  care  about  the  local/macroscopic  description,  and  the  scale-
dependency.	
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