Laboratory Investigation of Slip Mode along A Bimaterial (Gabbro/Marble) Fault Interface: Preliminary Results and Implications Shiqing Xu¹, Shigeru Takizawa¹, Eiichi Fukuyama¹, Futoshi Yamashita¹, Kazuo Mizoguchi^{2,1}, Hironori Kawakata^{3,1} ¹National Research Institute for Earth Science and Disaster Prevention, Japan ²Central Research Institute of Electric Power Industry, Japan Abstract Contact: stiller.xu@gmail.com ³Ritsumeikan University, Japan

We conduct a series of meter-scale direct shear experiments along a gabbro/marble fault interface at NIED. Unlike the transitional behavior from stick-slip to stable sliding along a marble/marble interface under 1.3 MPa normal stress and 0.01 mm/s loading rate, the bimaterial case shows persistent stick-slip behavior under the same loading conditions as well as under 2.6 MPa normal stress in subsequent tests. Visual observations of the damage pattern reveals quite different features between the marble/marble case and bimaterial case. For the marble/marble case, the generated grooves typically show a low aspect ratio between loading-parallel and loading-perpendicular directions, suggesting that some diffusional deformation is effective during slip. In contrast, the corresponding grooves for the gabbro/marble case still show preferred growing direction parallel to loading, similar to what has been observed along a gabbro/gabbro interface. Detailed observation further reveals that gabbro asperities can penetrate into the softer marble and can be partially sheared off during ruptures. Supportive strain array data show that the apparent friction before failure at these locations is high or even above 1, confirming the contribution from gabbro asperities. These results highlight the role of discrete brittle asperities in generating stick-slip fault behavior in a surrounding ductile-like environment. An analogous natural example may be found by the role of seamount in generating earthquakes through or underneath sediments in subduction zones (Cloos, 1992). We also analyze the strain array data to understand the detailed rupture process during failure. Because asperity distribution is not likely to be uniform along the surface and there are variations in rupture nucleation site, more work needs to be done before making any conclusion on rupture directivity solely based on the bimaterial effect.

