Initiation of Dynamic Ruptures in Numerical Simulations

<u>Martin GALIS</u>¹, Jean-Paul AMPUERO², P. Martin MAI¹, Jozef KRISTEK^{3,4}, Peter MOCZO^{3,4}

- ¹ KAUST, Thuwal, Saudi Arabia
- ² California Institute of Technology, Pasadena, USA
- ³ Comenius University Bratislava, Slovakia
- ⁴ Slovak Academy of Sciences, Bratislava, Slovakia

e-mail: martin.galis@kaust.edu.sa

NMEM 2015 Smolenice castle | Slovakia | 5 – 9 July 2015

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters of the IZ
- optimal parameters of the IZ
- summary

artificial procedures are used to initiate dynamic ruptures under linear slip-weakening friction law

the artificial initiation may have significant impact on the resulting dynamic rupture propagation

therefore,

it is desirable to understand and then minimize side effects of the initiation

here we discuss initiation using an overstressed asperity, i.e., region with initial traction higher than static traction

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters of the IZ
- optimal parameters of the IZ
- summary

critical parameters | the critical area of the IZ (Galis et al. 2015)

the initiation is controlled by the area of the initiation zone (not by the half-length or shape)

critical parameters | estimates of the critical area (Galis et al. 2015)

critical parameters | estimates of the critical area (Galis et al. 2015)

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters on the IZ
- optimal parameters of the IZ
- summary

transition from 3D (init. controlled by area) to 2D (init. controlled by length)

 au_0 b a transition from 3D (init. controlled by area) to 2D (init. controlled by length)

a - half-length in in-plane direction

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters of the IZ
- optimal parameters of the IZ
- summary

verification | introduction

to demonstrate that our results and conclusions are not biased by the choice of the numerical method, we verify our results using

FESD

2nd order finite-element method Galis et al. (2008, 2010); Moczo et al. (2014)

SeisSol

ADER-DG: arbitrary high-order derivative – discontinuous Galerkin method Käser and Dumbser (2006), De la Puente et al. (2009), Pelties et al. (2012)

• SORD

2nd-order support operator method Ely et al. (2008, 2009)

WaveQLab3D

6th-order summation-by-parts finite-difference method Duru and Dunham (2015)

verification | high background stress, **S** = **0.1**

FEM

verification | high background stress, **S** = **0.1**

verification | high background stress, **S** = **0.1**

the critical size of IZ converge systematically to consistent values in all 4 considered numerical methods (within resolution of the discrete models)

verification | low background stress, **S** = **2.0**

the critical size of IZ converge systematically to consistent values in all 4 considered numerical methods (within resolution of the discrete models)

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters of the IZ
- optimal parameters of the IZ
- summary

Uenishi 2009

Galis et al., 2015

$$L_{U3}^{a} \cong 0.624 \ C(v) \ \frac{1}{1 - v} \frac{\mu . D_{c}}{\tau_{s} - \tau_{d}}$$

$$L_{U3}^b \cong 0.624 \ C(v) \ \frac{\mu D_c}{\tau_s - \tau_d}$$

$$A_{2} = \frac{\pi^{3}}{16} \frac{1}{f_{min}^{4}} \frac{(\tau_{s} - \tau_{d})^{2}}{(\tau_{0} - \tau_{d})^{4}} \mu^{2} D_{c}^{2}$$
$$f(x) = \sqrt{x} \left(1 + \frac{\tau_{0}^{i} - \tau_{0}}{\tau_{0} - \tau_{d}} \left(1 - \sqrt{1 - 1/x^{2}} \right) \right)$$

$$C(v) = \frac{E(k) + (1 - v)K(k)}{2 - v}$$

$$k = \sqrt{\nu(2 - \nu)}$$

E(*k*) and *K*(*k*) are complete elliptic integrals of the first and second kind

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters of the IZ
- optimal parameters of the IZ
- summary

an illustrative example rupture initiatiated by

slightly over-critical parameters

 initiation with slightly over-critical parameters may take long time

an illustrative example rupture initiatiated by

slightly over-critical parameters

 initiation with slightly over-critical parameters may take long time

an illustrative example rupture initiatiated by

slightly over-critical parameters

- initiation with slightly over-critical parameters may take long time
- shorter duration of initiation can be achieved by higher overstress and/or larger initiation area
- if they are too large they can affect resulting self-sustained dynamic rupture
- we examine relations between the initiation area, overstress and duration of the initiation to find optimal parameters

optimal parameters | high background stress, **S** = **0.1**

optimal parameters | high background stress, S = 0.1

optimal parameters | high background stress, S = 0.1

optimal parameters | low background stress, S = 2.0

optimal parameters | low background stress, S = 2.0

optimal parameters | low background stress, S = 2.0

effects of initiation on ground motion | introduction

Galis et al., 2015 analyzed effects of initiation on rupture propagation

we now extend the analysis to effects on ground motion

effects of initiation on ground motion | high background stress, S = 0.1

effects of initiation on ground motion | low background stress, S = 2.0

comparison of magnitude of particle velocity

super-critical initiation

slightly overcritical initiation

- introduction
- critical parameters of the initiation zone (IZ) and their estimates
- effects of shape/aspect ratio on the IZ
- verification
- influence of material parameters on the IZ
- optimal parameters of the IZ
- summary

summary

for a fixed overstress and aspect ratio close to 1
the initiation is controlled by the area of the initiation zone
however, if one side of IZ should be shorter
than the corresponding critical half-length
initiation is controlled by half-length

• the critical area can be estimated by

 $A_{crit} = \max(A_U, A_2)$

 A_U : estimate by Uenishi, 2009 A_2 : estimate by Galis et al., 2015

• efficient initiation with minimized side effects on rupture propagation and ground motion can be achieved

high background stress (low S) low background stress (high S)

overstress < strength excess area of IZ < 1.2 x critical area

Thank you

e-mail: martin.galis@kaust.edu.sa